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Unitarily inequivalent mutually unbiased bases for n qubits
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The standard construction of complete sets of mutually unbiased bases (MUBs) in prime power dimensions
is based on the quadratic Gauss sums. We introduce complete MUB sets for three, four, and five qubits that are
unitarily inequivalent to all existing MUB sets. These sets are constructed by using certain exponential sums,
where the degree of the polynomial appearing in the exponent can be higher than 2. Every basis of these MUBs
(except the computational) consists of two disjoint blocks of vectors with different factorization structures and
associated with a unique hypergraph (or graph) that represents an interaction between the qubits.
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I. INTRODUCTION

The concept of mutually unbiased bases (MUBs) [1] allows
us to express the fundamental idea of complementarity [2,3]
probably in the clearest and most precise form. Among the
several practical applications of MUBs one can mention
quantum state determination and tomography [4–6], quantum
key distribution [7,8], quantum error-correcting codes [9,10],
and the mean king problem [11–15] (for a review of the subject,
we refer the reader to [16]). In most of the relevant applications,
one needs the so-called complete (or maximal) sets of MUBs.
Let us recall that two orthonormal basesBα andBα′

, α �= α′, of
a d-dimensional Hilbert space are said to be mutually unbiased

if |〈�α′
β ′ |�α

β 〉|2 = d−1 for every |�α
β 〉 ∈ Bα and |�α′

β ′ 〉 ∈ Bα′
,

and a maximal set of pairwise unbiased bases contains only
d + 1 bases.

Ivanovic came up with the first explicit construction of
complete MUB sets for prime dimensions [4]. His work was
extended to prime-power cases by Wootters [5]. Fundamen-
tally, the approaches developed in [4], [5], and [17–24] are
based on properties of certain finite exponential sums of roots
of unity. These exponential sums, the so-called quadratic
Gauss sums (see chap. 5 in [25]), emerge in the evaluation
of the absolute value of the inner products |〈�α′

β ′ |�α
β 〉| of basis

elements.
Although from the physical perspective, locally inequiva-

lent complete MUB sets [19,26–28] represent a certain interest,
they are related by global unitary transformations (unitarily
equivalent) to each other and, particularly, to Ivanovich-
Wootters (IW) MUBs [4,5]. Since unitary transformation
preserves the inner product, every set unitarily equivalent
to the IW MUB set will have the same Gaussian sums on
which the IW framework is based. We call a set of MUBs a
Gaussian set (GS) if the absolute value of the inner product
of its vectors is a quadratic Gauss sum. Every IW set and all
its unitarily equivalent sets belong to the family of GSs. It is
noteworthy that there exist GSs of MUBs [29] that are unitarily
inequivalent to the IW sets.

From the algebraic point of view [30,31], each (but the
computational) basis of the IW MUBs is associated with
a graph [32] with loops. Furthermore, the IW sets have a
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particular property that all the vectors of a single basis are
locally equivalent to one another and, thus, carry the same
factorization structure [33].

In this paper, we introduce complete sets of MUBs for three,
four, and five qubits (d = 2n with n = 3,4,5), where the inner
product between elements of different bases can be a cubic (or
higher-degree) exponential sum. These sets, which henceforth
we call non-Gaussian sets (NGSs), are unitarily inequivalent
to the whole family of the GSs of MUBs.

It will be shown that about half of the MUBs of a NGS are
related to the hypergraphs [34], where a hypergraph represents
higher-order interactions among the qubits; every (excluding
the computational) basis of a NGS is a union of two disjoint
sets (blocks) of vectors with the same cardinality, where all
the vectors are locally equivalent within each block but not
across the blocks. In other words, the NGSs of MUBs possess
a two-block factorization structure.

Section II contains some basic mathematical objects that
are used to construct MUBs for qubits. In Sec. III, we present
two sets of polynomials with the necessary constraints to
achieve a maximal MUB set and review important points of
the IW approach. Taking the three-qubit case in Sec. III A, we
highlight all the major differences between the NGS and the IW
set. The NGSs of MUBs for four and five qubits are delivered
in Sec. III B. We close the discussion with some concluding
remarks and open problems in Sec. IV. The Appendix includes
the three- and four-qubit IW MUB sets with some additional
details.

II. MATHEMATICAL OBJECTS

Let us considerZq := {0,1, . . . ,q − 1}, an additive Abelian
group of integers modulo q, where 0 is the identity element
and c ∈ Zq is the inverse of c ∈ Zq if c + c ≡ 0(modq). In
the particular case q = 2, the extension Zn

2 is an Abelian
group of all 2n possible n-bit strings, where each string
λ := (l1,l2, . . . ,ln), lj ∈ Z2 for all 1 � j � n, is isomorphic
to a ket |λ〉 = |l1l2 . . . ln〉 ∈ Hn

2 . The collection of all such
kets forms the computational basisBc := {|λ〉 | λ ∈ Zn

2} of the
Hilbert space Hn

2 for n qubits. We start the construction of a
complete set of 2n + 1 MUBs by keepingBc as its first element.

For the purpose of building the other 2n bases, we consider
monomials c (lk1

1 l
k2
2 · · · lkn

n ) of n binary variables, where the
coefficient c ∈ Z4 and the exponent κ = (k1,k2, . . . ,kn) ∈ Zn

2
determines the degree of the monomial. For a nonzero c,
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TABLE I. Examples of first-, second-, and third-degree mono-
mials p and the corresponding unitary operators Up of Eqs. (3) for
one, two, and three qubits. From the top, the first, second, and third
Up are the π /2-phase (P) operator, controlled-phase (CP) operator,
and controlled-controlled-Z (CCZ) operator, respectively. Labels of
qubits (on which the operators act) are given in the subscripts, and I

and Z are the standard single-qubit Pauli operators.

p(λ) Up

li Pi = Ii + (ω − 1)(|1〉〈1|)i
li lj CPij = IiIj + (ω − 1)(|11〉〈11|)ij
2 l1l2l3 CCZ123 = I1I2I3 − 2 (|111〉〈111|)123

there exist n!
k!(n−k)! different monomials of degree k = ∑n

j=1 kj .
A polynomial p : Zn

2 → Z4 is formed as the sum of such
monomials,

p(λ) := �
κ∈Zn

2

cκ

(
l
k1
1 l

k2
2 . . . lkn

n

)
, with cκ ∈ Z4; (1)

the symbol � stands for the modulo-4 summation. For every
p, there is a unique polynomial

p(λ) = �
κ∈Zn

2

cκ

(
l
k1
1 l

k2
2 . . . lkn

n

)
, with cκ ∈ Z4, (2)

such that p(λ) � p(λ) = 0, where cκ is the modulo-4 additive
inverse of cκ . To avoid cumbersome expressions we use, only
in this paragraph, binary string κ for the subscript of c. In the
rest of the text, labels of qubits are used instead of the index κ .

We can associate an n-qubit unitary operator and its adjoint,

Up :=
∑
λ∈Zn

2

ωp(λ) |λ〉〈λ|,

(3)
U †

p =
∑
λ∈Zn

2

ωp(λ) |λ〉〈λ|,

with p and p, respectively (for examples, see Table I), where
ω is the imaginary unit

√−1. Observe that both Up and U
†
p

are diagonal in the computational basis, and the arithmetic in
the exponent of ω is modulo 4.

The superpositions

|�〉 := 1√
2n

∑
λ∈Zn

2

ωp(λ) |λ〉,

〈�| = 1√
2n

∑
λ∈Zn

2

ωp(λ) 〈λ| (4)

are such that |�〉 = Up|+〉, |+〉 := 1√
2n

∑
λ∈Zn

2
|λ〉 and are

unbiased with every element of the computational basis:
|〈γ |�〉| = 1√

2n
, |γ 〉 ∈ Bc. We construct the rest of the 2n

MUBs as collections of kets of the form of Eqs. (4) (see
the next section), where the inner product 〈� ′|�〉 is directly
proportional to the exponential sum,∑

λ∈Zn
2

ωp(λ) � p′(λ). (5)

III. MUBS FOR QUBITS

Let us consider two sets of polynomials,
F (n) := {fβ(λ) | β ∈ Zn

2} and G(n) := {gα(λ) | α ∈ Zn
2};

the first set will be used to achieve the orthonormality of each
basis and the second set is needed to make the bases mutually
unbiased. Polynomials of both sets are of the form of Eq. (1),
and f0 = g0 = 0. According to Eqs. (4), the state vector

∣∣�α
β

〉 = 1√
2n

∑
λ∈Zn

2

ωgα (λ) � fβ (λ) |λ〉 (6)

corresponds to the polynomial gα(λ) � fβ(λ). The inner
product of such vectors

〈
�α′

β ′
∣∣�α

β

〉 = 1

2n
S

α,α′
β,β ′ ,

(7)
where S

α,α′
β,β ′ =

∑
λ∈Zn

2

ωgα (λ) � gα′ (λ) � fβ (λ) � fβ′ (λ)

is an exponential sum similar to Eq. (5).
For a string α = (a1,a2, . . . ,an) ∈ Zn

2, we define a set

Bα := {∣∣�α
β

〉 ∣∣ β ∈ Zn
2

}
(8)

of vectors of Eq. (6). If the absolute values of the exponential
sums of Eqs. (7),∣∣Sα,α′

β,β ′
∣∣ =

√
2n (1 − δα,α′ ) + 2n δα,α′ δβ,β ′ , (9)

where δα,α′ = ∏n
m=1 δam,a

′
m

is the Kronecker delta-function of
2n binary variables, then every Bα of Eq. (8) is an orthonormal
basis of the Hilbert space Hn

2 , and Bα and Bα′
(α �= α′) are

mutually unbiased.
One can check that the orthogonality of vectors [α = α′ in

Eqs. (7) and (9)] in a basis Bα is achieved if the following
conditions are fulfilled:

(i) The set F (n) constitutes an Abelian group under
modulo-4 addition.

(ii) The elements of F (n) fulfill

fβ = fβ for all β ∈ Zn
2 (10)

and

Sβ =
∑
λ∈Zn

2

ωfβ (λ) =
{

2n for β = 0,

0 for β �= 0.
(11)

Since Zn
2 is an Abelian group under modulo-2 addi-

tion (symbolized by ⊕), we can establish an isomorphism
(F (n), �) → (Zn

2, ⊕), such that fβ � fβ ′ = fβ⊕β ′ for all
fβ,fβ ′ ∈ F (n). Observe that, due to Eq. (10) ωfβ , and therefore,
the sums Sβ are real for every β. The group F (n) is generated
by a set {fm}nm=1 of n nonzero polynomials such that
fβ(λ) := �n

m=1bmfm(λ) for every β = (b1,b2, . . . ,bn) ∈ Zn
2.

The bases Bα and Bα′
are made mutually unbiased by

imposing the following conditions:
(i) The polynomials gα, gα′ ∈ G(n) are such that

gα � gα′ = gα′′ � fη for some gα′′ ∈ G(n), fη ∈ F (n).
(ii) The elements of G(n) satisfy

gα = gα � fα for all α ∈ Zn
2 (12)
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and

∣∣Sα
β

∣∣ =
∣∣∣∣ ∑

λ∈Zn
2

ωgα(λ) � fβ (λ)

∣∣∣∣ =
{

Sβ for α = 0,√
2n for α �= 0,

(13)

where the sum Sβ is defined in Eq. (11). Observe that Eq.
(12) implies that the choice of the set G(n) depends on
F (n), and neither ωgα�fβ nor Sα

β is, in general, real. The
set G(n) can be generated by n nonzero polynomials gm(λ),
1 � m � n, gα(λ) := �n

m=1amgm(λ). Note that the collection
{gα � fβ | gα ∈ G(n),fβ ∈ F (n)} forms an Abelian group of
22n polynomials under modulo-4 addition, where F (n) is
its subgroup, and gα � F (n) = {gα � fβ | fβ ∈ F (n)} are its
cosets modulo F (n) for every gα ∈ G(n).

Then the bases Bα , Eqs. (6) and (8), along with the
computational basis Bc build a complete MUB set for n qubits,

M(n) := {
Bα

∣∣ α ∈ Zn
2

} ∪ Bc. (14)

Both the IW sets (see the Appendix) and the NGSs (see Secs.
III A and III B) of MUBs for qubits can be constructed using
the above procedure.

For an IW set, gα � fβ can be, at most, a quadratic
polynomial, Eqs. (A1), and hence the sum S

α,α′
β,β ′ of Eq. (7)

always has the Gaussian form, Eq. (A2). Every Bα of an IW
set is associated with a unique graph [30,31] with loops (see
Fig. 2). A unitarily equivalent set to an IW MUBs, of course,
may contain higher-degree polynomials gα � fβ (for instance,
take the unitary operator CCZ from Table I to have an equivalent
set); nevertheless, the sums S

α,α′
β,β ′ of Eq. (7) will be the same

Gaussian sums as for the IW construction, because unitary
transformations do not change the inner products.

In contrast to the family of the GSs of MUBs, higher-degree
polynomials, employed to construct the NGSs of MUBs, lead
to cubic (and of higher order) sums S

α,α′
β,β ′ . Thus, the NGSs are

unitarily inequivalent to the GSs, and about half of the bases
of a NGS are related to hypergraphs [34] (see Fig. 1).

Let us proceed with the explicit constructions of the NGSs
of MUBs for qubits. Obviously, there are no inequivalent sets
of the form (6), (8), and (14) to the two-qubit IW MUB set,
since S

α,α′
β,β ′ of Eq. (7) cannot be more than quadratic. However,

for n � 3 qubits, the sums can be made cubic (or of higher
degree), leading to unitary inequivalent sets of MUBs.

A. NGS of MUBs for three qubits

For a system of n = 3 qubits, a general polynomial is of the
form

p(λ) = c123(l1l2l3)

� c12(l1l2) � c23(l2l3) � c31(l3l1)

� c1(l1) � c2(l2) � c3(l3), (15)

which is completely specified by the values of c ∈ Z4

coefficients. Note that Eq. (15), in which the labels of qubits
appear in the subscripts of c (and l), is just a different way
to express Eq. (1). Nonzero values of the coefficients c123,
cij , and ci give three-, two-, and one-qubit unitary operations,
respectively (see Table I).

For the three-qubit NGS of MUBs, we present the sets F
(3)
NGS

and G
(3)
NGS of polynomials in Tables II and III, respectively. The

2 3 

1 

(0, 0, 0) 

2 3 

1 

(1, 0, 0) 

2 3 

1 

(0, 1, 0) 

2 3 

1 

(1, 1, 0) 

2 3 

1 

(0, 1, 1) 

2 3 

1 

(1, 0, 1) 

2 3 

1 

(1, 1, 1) 

1 

(0, 0, 1) 

2 3 

FIG. 1. The hypergraphs that represent the unitary operations Ugα

of Eqs. (3) associated with gα ∈ G
(3)
NGS. Here, every hypergraph is

marked by α = (a1,a2,a3), and the labels of qubits are indicated at
the vertices of each hypergraph. The coefficients c listed in Table III
are represented as follows: the gray triangle depicting the operator
CCZ123 from Table I corresponds to c123 = 2; the bonds between the
ith and the j th vertices are associated with cij , the number of bonds
is equal to the value of cij , and each bond stands for the operator CPij

from Table I; and one loop or two loops around the ith vertex are
used for ci = 1 or ci = 2, respectively, and each loop illustrates the
Pi operator from Table I.

hypergraphs associated with gα ∈ G
(3)
NGS, which represent the

unitary operations Ugα
of Eqs. (3), are shown in Fig. 1. Here, all

the polynomials are of the form of Eq. (15) and are described
by the values of the coefficients c in the tables. Nonzero
polynomials fβ are expressed as modulo-4 additions of the

TABLE II. The set F
(3)
NGS = {fβ}β∈Z3

2
for the three-qubit NGS of

MUBs. Each polynomial of the set is of the form of Eq. (15) and
defined by the values of its coefficients provided in the rightmost
six columns. The degree of every nonzero fβ is either 2 or 1. In the
first column, the labels of polynomials, binary strings β = (b1,b2,b3),
are listed, and every polynomial (except the zero polynomial f0) is
described in terms of the modulo-4 sum of the generating polynomials
f1, f2, and f3 in the second column.

β fβ c12 c23 c31 c1 c2 c3

(0,0,0) f0 0 0 0 0 0 0
(1,0,0) f1 2 2 2 0 2 2
(0,1,0) f2 2 2 2 2 0 2
(0,0,1) f3 2 2 2 2 2 0
(1,1,0) f1 � f2 0 0 0 2 2 0
(0,1,1) f2 � f3 0 0 0 0 2 2
(1,0,1) f3 � f1 0 0 0 2 0 2
(1,1,1) f1 � f2 � f3 2 2 2 0 0 0
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TABLE III. The set G
(3)
NGS = {gα}α∈Z3

2
of polynomials for the

three-qubit NGS of MUBs. Here, the degree of a nonzero polynomial
is either 3 or 2. The first column carries the labels α = (a1,a2,a3),
and in the second column, each member of the set (except g0) is listed
as a modulo-4 addition of the generating polynomials g1, g2, and g3.
The remaining columns list the values of the coefficients c of the
polynomials gα . Hypergraphs related to gα are displayed in Fig. 1.

α gα c123 c12 c23 c31 c1 c2 c3

(0,0,0) g0 0 0 0 0 0 0 0
(1,0,0) g1 2 1 1 3 0 1 1
(0,1,0) g2 2 3 1 1 1 0 1
(0,0,1) g3 2 1 3 1 1 1 0
(1,1,0) g1 � g2 0 0 2 0 1 1 2
(0,1,1) g2 � g3 0 0 0 2 2 1 1
(1,0,1) g3 � g1 0 2 0 0 1 2 1
(1,1,1) g1 � g2 � g3 2 1 1 1 2 2 2

generating polynomials f1, f2, and f3 in Table II. Similarly,
the nonzero polynomial gα as the modulo-4 addition of g1, g2,
and g3 is given in Table III. It follows from the tables and
Fig. 1 that, under the permutation of qubits 1 → 2 → 3 → 1,
the polynomials are transformed as f1 → f2 → f3 → f1 and
g1 → g2 → g3 → g1.

One can verify that the sets F
(3)
NGS and G

(3)
NGS fulfill the

requirements given in Eqs. (10)–(13). Thus, M(3)
NGS from

Eq. (14) is a complete set of three-qubit NGS of MUBs, where
every Bα

NGS is constructed by taking fβ and gα from Tables II
and III, respectively.

The three-qubit IW MUBs M(3)
IW are defined by the polyno-

mials of F
(3)
IW and G

(3)
IW listed in Tables VIII and IX. In Fig. 2, the

graphs linked to G
(3)
IW are displayed. The sums S

α,α′
β,β ′ , defined in

Eq. (7), satisfy Eq. (9) for both M(3)
NGS and M(3)

IW. Moreover, the
sums are always quadratic for the IW MUBs, while they can

be cubic for the NGS of MUBs. Therefore, M(3)
NGS is unitarily

inequivalent to M(3)
IW and to every GS of MUBs.

For the IW MUBs, every nonzero fβ ∈ F
(3)
IW is a linear

polynomial (see Table VIII in the Appendix), therefore, all
the vectors within each basis of M(3)

IW are locally equivalent
to each other and, thus, bear the same factorization structure
(and quantity of quantum entanglement). While for the NGS
of MUBs, half of the polynomials of F

(3)
NGS are quadratic (see

Table II), with the same quadratic part 2(l1l2 � l2l3 � l3l1), and
the rest of the nonzero polynomials fβ are linear. Thus, F

(3)
NGS

is divided into two disjoint subsets of the same cardinality: one
contains all the quadratic polynomials and the other contains
the rest. As a result, every basis Bα

NGS consists of two blocks of
vectors corresponding to the subsets of F

(3)
NGS. The state vectors

are locally equivalent within each block, but not across blocks.
In other words, every basis of M(3)

NGS (except the computational)
possesses a two-block factorization structure.

There are two more important differences between M(3)
IW

and M(3)
NGS:

(i) Any three nonzero polynomials from Table VIII gener-
ate (by modulo-4 addition) the same F

(3)
IW . Furthermore, any

choice of three degree 2 polynomials from Table IX leads to
a set similar to G

(3)
IW in the sense that we get the same M(3)

IW.
On the other hand, for M(3)

NGS, one cannot get the quadratic
polynomials of F

(3)
NGS by adding the linear polynomials from

Table II and get the cubic polynomials of G
(3)
NGS by summing

the quadratic polynomials from Table III. In particular, the
choice of the generating set {gm}3

m=1 is unique in the case of
NGS but not in the IW case.

(ii) Every basis in M(3)
IW is a common eigenbasis of a disjoint

class of 23 − 1 mutually commuting (except the identity)
operations of the three-qubit Pauli group [18]: for Bc and B0

IW,
the disjoint classes are obtained by multiplying the operators
from {ZII,IZI,IIZ} and {XII,IXI,IIX}, respectively,
where I , X, Y , and Z are the standard single-qubit Pauli

TABLE IV. The set F
(4)
NGS = {fβ}β∈Z4

2
for the four-qubit NGS of MUBs. All the polynomials of F

(4)
NGS are of the form of Eq. (18) and

presented in the same way as F
(3)
NGS in Table II. Here, every nonzero fβ is of either degree 3 or degree 1.

β fβ c123 c124 c134 c234 c12 c34 c14 c23 c13 c24 c1 c2 c3 c4

(0,0,0,0) f0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(1,0,0,0) f1 2 2 2 2 2 2 2 2 2 2 0 2 2 2
(0,1,0,0) f2 2 2 2 2 2 2 2 2 2 2 2 0 2 2
(0,0,1,0) f3 2 2 2 2 2 2 2 2 2 2 2 2 0 2
(0,0,0,1) f4 2 2 2 2 2 2 2 2 2 2 2 2 2 0
(1,1,0,0) f1 � f2 0 0 0 0 0 0 0 0 0 0 2 2 0 0
(0,0,1,1) f3 � f4 0 0 0 0 0 0 0 0 0 0 0 0 2 2
(1,0,0,1) f1 � f4 0 0 0 0 0 0 0 0 0 0 2 0 0 2
(0,1,1,0) f2 � f3 0 0 0 0 0 0 0 0 0 0 0 2 2 0
(1,0,1,0) f1 � f3 0 0 0 0 0 0 0 0 0 0 2 0 2 0
(0,1,0,1) f2 � f4 0 0 0 0 0 0 0 0 0 0 0 2 0 2
(1,1,1,0) f1 � f2 � f3 2 2 2 2 2 2 2 2 2 2 0 0 0 2
(1,1,0,1) f1 � f2 � f4 2 2 2 2 2 2 2 2 2 2 0 0 2 0
(1,0,1,1) f1 � f3 � f4 2 2 2 2 2 2 2 2 2 2 0 2 0 0
(0,1,1,1) f2 � f3 � f4 2 2 2 2 2 2 2 2 2 2 2 0 0 0
(1,1,1,1) f1 � f2 � f3 � f4 0 0 0 0 0 0 0 0 0 0 2 2 2 2
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TABLE V. The set G
(4)
NGS = {gα}α∈Z4

2
for the four-qubit NGS of MUBs. The degree of a nonzero gα is �3. The polynomials of G

(4)
NGS are

described in the same fashion as the polynomials of G
(3)
NGS in Table III and are of the form of Eq. (18).

α gα c123 c124 c134 c234 c12 c34 c14 c23 c13 c24 c1 c2 c3 c4

(0,0,0,0) g0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(1,0,0,0) g1 3 3 3 3 3 3 1 3 1 1 0 1 1 1
(0,1,0,0) g2 3 3 3 3 3 3 3 1 1 1 1 0 1 1
(0,0,1,0) g3 1 1 1 1 3 1 1 3 1 1 1 1 0 1
(0,0,0,1) g4 1 1 1 1 3 1 3 1 1 1 1 1 1 0
(1,1,0,0) g1 � g2 2 2 2 2 2 2 0 0 2 2 1 1 2 2
(0,0,1,1) g3 � g4 2 2 2 2 2 2 0 0 2 2 2 2 1 1
(1,0,0,1) g1 � g4 0 0 0 0 2 0 0 0 2 2 1 2 2 1
(0,1,1,0) g2 � g3 0 0 0 0 2 0 0 0 2 2 2 1 1 2
(1,0,1,0) g1 � g3 0 0 0 0 2 0 2 2 2 2 1 2 1 2
(0,1,0,1) g2 � g4 0 0 0 0 2 0 2 2 2 2 2 1 2 1
(1,1,1,0) g1 � g2 � g3 3 3 3 3 1 3 1 3 3 3 2 2 2 3
(1,1,0,1) g1 � g2 � g4 3 3 3 3 1 3 3 1 3 3 2 2 3 2
(1,0,1,1) g1 � g3 � g4 1 1 1 1 1 1 1 3 3 3 2 3 2 2
(0,1,1,1) g2 � g3 � g4 1 1 1 1 1 1 3 1 3 3 3 2 2 2
(1,1,1,1) g1 � g2 � g3 � g4 0 0 0 0 0 0 0 0 0 0 3 3 3 3

operators (the tensor product sign ⊗ between two single-qubit
operators is omitted throughout the paper). For α �= 0, Bα

IW
can be realized by applying unitary operators Ugα

of Eqs.
(3) on B0

IW, where gα ∈ G
(3)
IW. In the IW case, every Ugα

is a
composition of operators from the Clifford group, which is the
normalizer of the Pauli group.

For M(3)
NGS, B0

NGS can be obtained by applying the unitary
transformation

V = XXX − ( |000〉〈111| + |111〉〈000| )

+ ( |000〉〈000| + |111〉〈111| ) (16)

toB0
IW. One can observe that V is not an element of the Clifford

group, and (under conjugation) it maps the Pauli operators to
some linear combinations of operators from the Pauli group:

V
(
XII

)
V † = 1

2 (XII − XZZ + IXX − IYY ),
(17)

V
(
IXI

)
V † = 1

2 (IXI − ZXZ + XIX − YIY ),

V
(
IIX

)
V † = 1

2 (IIX − ZZX + XXI − YYI ).

The disjoint class of 23 − 1 commuting operators (defining
the basis B0

NGS) is created by multiplying the operators from
the right-hand side of Eqs. (17). The commuting operators,
except V

(
XXX

)
V † = XXX, cannot be reduced into the

tensor products of single-qubit operators.
Similarly to the IW MUBs, for α �= 0, Bα

NGS can be
obtained by applying the unitary operator Ugα

from Eqs. (3) to
B0

NGS, where gα ∈ G
(3)
NGS. Note that Ugα

does not belong to the
Clifford group when gα is a cubic polynomial. In other words,
every basis in M(3)

NGS is a common eigenbasis (with eigenvalues
±1) of a disjoint class of 23 − 1 commuting unitary operators
not, in general, belonging to the Pauli group, although every
operator is a linear combination of the Pauli operators.

B. NGSs of MUBs for four and five qubits

Although we do not yet have a general procedure to
construct a full NGS of MUBs for n qubits, in this subsection
we show that our scheme is not limited to the three-qubit case
only. Here, we present the NGSs for four and five qubits in the
same manner as used in the previous subsection.

TABLE VI. The generating set {fm}5
m=1 of F

(5)
NGS for the five-qubit NGS of MUBs. As in Tables II and IV, the polynomials are expressed

here in terms of c coefficients. The second column states that all five coefficients ci1i2i3i4 associated with the four-degree monomials
(
li1 li2 li3 li4

)
have the same value 2 for every fm. Therefore, all the generating polynomials of F

(5)
NGS are of degree 4. The third column shows that all 10

coefficients ci1i2i3 = 2 for every fm; these coefficients are related to the third-degree monomials
(
li1 li2 li3

)
. In the remaining columns, the values

of coefficients are explicitly listed.

fm {ci1i2i3i4} {ci1i2i3} c12 c23 c34 c45 c51 c13 c24 c35 c41 c52 c1 c2 c3 c4 c5

f1 2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2 2
f2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2
f3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 2
f4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2
f5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0
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TABLE VII. The generating set {gm}5
m=1 of G

(5)
NGS for the five-qubit NGS of MUBs. As fm polynomials are listed in Table VI, gm polynomials

are listed here. Since c12345 = 2 for every gm, all the generating polynomials are quintic. Here, for every gm, all 5 coefficients ci1i2i3i4 = 1
(second column), and all 10 coefficients ci1i2i3 = 3 (third column).

gm c12345 {ci1i2i3i4} {ci1i2i3} c12 c23 c34 c45 c51 c13 c24 c35 c41 c52 c1 c2 c3 c4 c5

g1 2 1 3 1 3 1 3 1 3 3 1 1 1 0 1 1 1 1
g2 2 1 3 1 1 3 1 3 1 3 3 1 1 1 0 1 1 1
g3 2 1 3 3 1 1 3 1 1 1 3 3 1 1 1 0 1 1
g4 2 1 3 1 3 1 1 3 1 1 1 3 3 1 1 1 0 1
g5 2 1 3 3 1 3 1 1 3 1 1 1 3 1 1 1 1 0

For n = 4 qubits, a general polynomial is of the form

p(λ) = c1234(l1l2l3l4)

� c123(l1l2l3) � c124(l1l2l4) � c134(l1l3l4) � c234(l2l3l4)

� c12(l1l2) � c13(l1l3) � c24(l2l4)

� c14(l1l4) � c23(l2l3) � c34(l3l4)

� c1(l1) � c2(l2) � c3(l3) � c4(l4) (18)

and is determined by the values of its coefficients c ∈ Z4. The
sets F

(4)
NGS and G

(4)
NGS are listed in Tables IV and V, respectively.

Both sets of polynomials obey all the constraints imposed by
Eqs. (10)–(13), and the corresponding M(4)

NGS [see Eq. (14) for
a definition] is a complete four-qubit NGS of MUBs.

In spite of the similarities, the four-qubit case is slightly
different from the three-qubit case. There are no degree 4 poly-
nomials in the MUB construction (see Tables IV and V). The
generating polynomials are transformed as f1 ↔ f2, f3 ↔ f4

and g1 ↔ g2, g3 ↔ g4 under the qubit permutation 1 ↔ 2,
3 ↔ 4. Unlike G

(3)
NGS, the number of degree 3 polynomials in

G
(4)
NGS is not exactly half of the total number (compare Tables III

and V).
Half of the polynomials from F

(4)
NGS are cubic, so that M(4)

NGS
also has a two-block factorization structure. Additionally,
some elements of G

(4)
NGS are cubic polynomials, and the cubic

nature of the sums S
α,α′
β,β ′ evidences the unitary inequivalence of

M(4)
NGS and M(4)

IW (and any other GS of MUBs). The four-qubit
IW MUBs M(4)

IW can be composed by using the generating sets
of F

(4)
IW and G

(4)
IW given in Tables X and XI, correspondingly.

For n = 5 qubits, we list in Tables VI and VII only the
generating sets for F

(5)
NGS and G

(5)
NGS. The rest of the polynomials

can be retrieved by adding the generating polynomials under
modulo-4 arithmetic. Here several properties observed in the
three-qubit case reappear: for instance, the qubit permutation
1 → 2 → 3 → 4 → 5 → 1 leads to the following changes
in the polynomials: f1 → f2 → f3 → f4 → f5 → f1 and
g1 → g2 → g3 → g4 → g5 → g1 (see Tables VI and VII).
Half of the elements in F

(5)
NGS are quartic polynomials, and the

rest (nonzero) are linear, and thus, a two-block factorization
structure occurs. Also, half of the polynomials of G

(5)
NGS are

of degree 5, which leads to quintic exponential sums S
α,α′
β,β ′ ,

Eqs. (7).

IV. OUTLOOK

The standard construction of complete MUB sets in prime
power dimensions is naturally related to the underlying finite

field structure, which is reflected on both the algebraic
[6,10,16,20,23,26,33] and the geometric [27,30,31] levels.
The semifield approach [29] leads to MUBs that are unitarily
inequivalent, but algebraically similar, to the IW MUBs: they
are eventually connected to graphs [32]; all elements of a
given basis have the same factorization structure, and the inner
products of vectors are the quadratic Gauss sum [25].

The inclusion of higher-order interactions (for instance, the
CCZ operator) opens the possibility of constructing sets of
MUBs with different mathematical and physical properties.

We have shown in the particular examples of three, four, and
five qubits that it is possible to find non-Gaussian complete sets
of MUBs which not only are unitarily inequivalent to the entire
family of the Gaussian MUB sets, but also have a different
factorization structure inside each (except the computational)
basis. Since there is an intimate relation between MUBs and
the optimal measurements [4,5], we expect that the present
research may offer a new look at the complementarity problem
in finite-dimensional systems.

Finally, this approach to the construction of MUBs in the
many-qubit case provides an incentive to expand the study
of higher-order exponential sums (Weil sums [35]) and their
application in quantum information theory.
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APPENDIX: THE IW MUBS

The existence of a complete set of MUBs [4,5] is demon-
strated for any prime-power dimension using a finite Galois

TABLE VIII. The set F
(3)
IW = {fβ}β∈Z3

2
of polynomials for the

three-qubit IW MUBs. All the polynomials are of the kind of Eq.
(15) and are expressed as in Table II. Every nonzero polynomial is
linear here.

β fβ c1 c2 c3

(0,0,0) f0 0 0 0
(1,0,0) f1 2 0 0
(0,1,0) f2 0 2 0
(0,0,1) f3 0 0 2
(1,1,0) f1 � f2 2 2 0
(0,1,1) f2 � f3 0 2 2
(1,0,1) f3 � f1 2 0 2
(1,1,1) f1 � f2 � f3 2 2 2
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FIG. 2. Graphs illustrating the unitary operations Ugα
of Eqs. (3),

where gα ∈ G
(3)
IW. Like Fig. 1, the graphs—tagged α = (a1,a2,a3)—

can be explained with the use of Table IX. The vertices of each graph
are marked by the labels of qubits. Since there is no cubic polynomial
in G

(3)
IW, no gray triangle appears here as in Fig. 1. In Table IX, cij is

either 2 or 0, therefore, we have either two bonds or none between
a pair of vertices. In a graph, a vertex has either a loop or no loop,
depending on the value, 1 or 0, of the corresponding ci in Table IX. A
single bond and single loop depict the operators CP and P in Table I,
respectively.

field [25]. Here, we present the construction of the IW sets for
three and four qubits using the formulation given in Sec. III.
For an IW set one has

fβ(λ) = 2 βᵀλ and

gα(λ) = λᵀ( ⊕n
m=1 amA(m)

)
λ, (A1)

TABLE IX. The set G
(3)
IW = {gα}α∈Z3

2
of polynomials for the

three-qubit IW MUBs. Here, each gα—described by Eq. (15) and
presented as in Table III—is not more than a quadratic polynomial.

α gα c12 c23 c31 c1 c2 c3

(0,0,0) g0 0 0 0 0 0 0
(1,0,0) g1 2 2 0 1 0 0
(0,1,0) g2 0 2 2 0 1 0
(0,0,1) g3 2 0 2 0 0 1
(1,1,0) g1 � g2 2 0 2 1 1 0
(0,1,1) g2 � g3 2 2 0 0 1 1
(1,0,1) g3 � g1 0 2 2 1 0 1
(1,1,1) g1 � g2 � g3 0 0 0 1 1 1

TABLE X. The generating set {fm}4
m=1 of F

(4)
IW for the four-qubit

IW MUB set. Every fm is of degree 1, is expressed as in Table II, and
is defined by Eq. (18). All other polynomials of F

(4)
IW are obtained by

adding the generating polynomials under modulo-4 arithmetic.

fm c1 c2 c3 c4

f1 2 0 0 0
f2 0 2 0 0
f3 0 0 2 0
f4 0 0 0 2

where βᵀ and λᵀ are the transpose of binary column vectors
β and λ, respectively; {A(m)}nm=1 is a set of n × n nonsingular
binary matrices, which can be derived from Eq. (18) in [5];
and α = (a1,a2, . . . ,an) ∈ Zn

2. The IW polynomials given in
Eqs. (A1) satisfy the conditions of Eqs. (10)–(13), and hence
the n-qubit IW set M(n)

IW [defined in Eq. (14)] is obtained.
The matrices A(m) are symmetric and such that the modulo-

2 addition of any two of them is also a nonsingular matrix,
det(A(m) ⊕ A(m′)) �= 0 for m �= m′ [18]. Furthermore, under
modulo-2 arithmetic, the collection of linear combinations
{⊕n

m=1amA(m) | α ∈ Zn
2} form an additive Abelian group, and

excluding the 0 matrix (for α = 0), the collection constitutes
a multiplicative Abelian group. All A(m) (and their linear
combinations) can be associated with the adjacency matrices
of graphs with loops [30,31].

In the IW case, the degree of gα(λ) � fβ(λ) cannot be more
than 2 [see Eqs. (A1)]. Consequently, the exponential sums of
Eq. (7) are the quadratic Gauss sums,

S
α,α′
β,β ′ =

∑
λ∈Zn

2

ωλᵀ[(α−α′)·A] λ � 2 (β−β ′)ᵀλ, (A2)

where (α − α′) · A = ⊕n
m=1(am − a′

m) A(m) is an n × n sym-
metric nonsingular (provided that α �= α′) binary matrix. The
Gaussian sum always meets the required absolute value given
in Eq. (9).

Here, we provide Tables VIII and IX for the three-qubit sets
F

(3)
IW and G

(3)
IW, respectively. The polynomials from these sets

satisfy the conditions stated in Eqs. (10)–(13) and comprise
a complete MUB set M(3)

IW in agreement with Eq. (14). The
graphs related to G

(3)
IW are shown in Fig. 2. We also provide the

list of generating polynomials fm and gm in Tables X and XI,
respectively, used to build the four-qubit IW MUBs M(4)

IW.

TABLE XI. The generating set {gm}4
m=1 of G

(4)
IW for the four-qubit

IW MUB set. Every gm is presented as in Table III, is defined by Eq.
(18), and is quadratic. If the qubits are permuted as 1 ↔ 3 and 2 ↔ 4,
then the changes g1 ↔ g3 and g2 ↔ g4 occur. All other polynomials
of G

(4)
IW are built by modulo-4 addition of the generating polynomials.

gm c12 c34 c14 c23 c13 c24 c1 c2 c3 c4

g1 0 0 2 0 2 2 1 0 0 0
g2 2 2 0 2 2 0 0 1 0 0
g3 0 0 0 2 2 2 0 0 1 0
g4 2 2 2 0 2 0 0 0 0 1
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