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Bipartite entanglement of quantum states in a pair basis
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The unambiguous detection and quantification of entanglement is a hot topic of scientific research, though it is
limited to low dimensions or specific classes of states. Here we identify an additional class of quantum states, for
which bipartite entanglement measures can be efficiently computed, providing rigorous results. Such states are
written in arbitrary d × d dimensions, where each basis state in the subsystem A is paired with only one state in
B. This class, to which we refer as pair basis states, is remarkably relevant in many physical situations, including
quantum optics. We find that negativity is a necessary and sufficient measure of entanglement for mixtures of
states written in the same pair basis. We also provide analytical expressions for a tight lower-bound estimation
of the entanglement of formation, a central quantity in quantum information.
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Quantum entanglement, after having been considered for
many years a peculiar aspect of quantum mechanics whose
interest was limited to specialists in foundations in quantum
mechanics [1], has assumed a pervasive role in contemporary
science with applications that range from cosmology [2] to
biology [3]. In particular it attracts considerable interest being
a fundamental resource for quantum technologies [1,4–7]. This
widespread relevance prompted the need of its unambiguous
detection and quantification, a result still largely unachieved
[8,9] and recently subject to a large theoretical effort [10].
Indeed, while bipartite entanglement in a pure state can be
estimated using the von Neumann entropy as well as other
measures, the problem of its evaluation is still open in the case
of a general mixed state. A significant step forward has been
done with the proof that that the bipartite entanglement in a
general mixed state of a system of dimension 2 × 2 is suitably
quantified by the concurrence [11]. In d × d dimensions, with
d � 3 [12], a suitable measure has not yet been found except in
the presence of special symmetries, like in the case of Werner
states [13]. A computable entanglement monotone in arbitrary
dimension is the negativity [14], which can be evaluated
for different physical systems [15–17], but, in general, it
represents only a sufficient condition for entanglement.

From the perspective of quantum information, it is helpful
to evaluate the entanglement of formation (EOF), a faithful
measure that quantifies the minimal entanglement resources
needed to prepare a given state, in terms of Bell pairs. At
variance with the negativity, the EOF is typically hard to
calculate, as it is obtained from an optimization problem that
only in some special cases can be solved analytically [11].
Sometimes, in a higher-dimensional system (when exact EOF
is impractical to evaluate), it is convenient to determine a lower
bound to EOF which sets the amount of resources that are at
least present inside the quantum state in consideration. Of
course, such a lower bound should be as tight as possible in
order to be useful.

We define the set of pure pair basis states of a bipartite
system in arbitrary dimension d × d as the set of states of the
form

|�〉 =
d∑

i=1

ci |φi〉A ⊗ |χi〉B, (1)

where {φi}di=1 and {χi}di=1 are fixed orthonormal bases for
Hilbert spaces of parts A and B, respectively. The coefficients
ci ∈ C satisfy the normalization condition

∑
i |ci |2 = 1. Of

course, every pure state can be expressed in the form (1),
through the Schmidt decomposition and arbitrary assignment
of phase factors to every ci . The peculiarity of this set is
that all the states belonging to it share the same basis, where
each element φi in A is paired with only one χi in B. This
represents a subset of the most general bipartite case, where
quantum states of a given ensemble may have different (pair)
basis after Schmidt decomposition.

In this paper, we address the problem of evaluating the
entanglement of mixtures of states written in a pair basis (1),
identifying suitable measures. Thus, we estimate rigorous and
numerical lower bounds to the EOF, comparing them to other
estimates proposed in the literature [18].

Pair basis states occur in a variety of physical situations,
the most remarkable one being represented by two-mode
Gaussian states in quantum optics [1,19–21], that include
twin-beam states, a key element of quantum communication,
metrology, and sensing. More interestingly, also non-Gaussian
states are included in the family of states of Eq. (1), like, for
example, a twin beam plus a dephased component or mixtures
of photon-subtracted states. For these latter cases, which are
relevant in many modern experiments of quantum mechanics
[22], good measures of entanglement have not been found so
far. Moreover, pair basis states are a natural way to explore
high-dimensional entanglement, recently observed in spatial
modes of pairs of downconverted photons [23]. In atomic
physics, bosonic atoms trapped in double wells have the same
structure (1), where the conservation of the total number N

imposes that each state |n〉 of n bosons in one well is paired
with the state |N − n〉 in the other well. Also for electron
models in a lattice it may be interesting to restrict the total
Hilbert space of two sites to the pair basis {|↑,↓〉, |↓,↑〉,
|↓↑,0〉, |0,↓↑〉}, i.e., the sector of zero magnetization and two
electrons, thanks to the presence of special quantum numbers.

I. PURE STATES

Given the orthonormality of both bases |φi〉A and |χi〉B ,
the Schmidt decomposition of states of the form (1) is
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just written in the same basis, but with the non-negative
coefficients μi = |ci |. The Schmidt coefficients μi are the
square roots of the eigenvalues of the reduced density matrix
ρA = TrBρ. It follows that the only factorized states are those
with ci = 0 for every i except one. The entanglement of a
pure state |�〉 is estimated by the von Neumann entropy
S(d)(�) = −∑d

i=1 μ2
i log μ2

i . In the following, we shorten
|φi〉A ⊗ |χi〉B ≡ |i,i〉.

For estimating the entanglement of pure states, in this work
we use a generalization of the concurrence that we construct
in the following way. First, let us consider the easiest case
d = 2 with the two basis elements |0,0〉 and |1,1〉. In the
full four-dimensional space the double spin-flip operation is
performed by σ

y

A ⊗ σ
y

B , and the concurrence is given by the
well-known formula C = |〈�|σy

A ⊗ σ
y

B |�∗〉|, where �∗ is the
complex conjugate of � and σα , α = x,y,z are the usual
Pauli matrices acting on single qubits. In our special d = 2
case for states in a pair basis, the concurrence becomes C =
|〈�|τ x |�∗〉| = 2|c1c2|, where the swap is represented by the
single Pauli matrix τ x acting on the pair basis.

Any extension to the d-dimensional case has to take into
account the fact that for product states, the concurrence
has to be zero in every possible two-dimensional subspace.
Even if the literature proposes different generalizations of
the concurrence [24], we opt to take the sum over every
two-dimensional concurrence,

D(�) = 2
∑
i<j

|cicj | = (Tr
√

ρA)2 − 1, (2)

which manifestly vanishes only in the factorized case and, like-
wise, it fulfills the additivity property whenever the dimension
d is built up by the direct product of two-dimensional states.
In our picture, each term of Eq. (2) considers the state |j 〉
as the spin flipped state of |i〉. A remarkable fact that further
justifies the choice of the quantity D(�) is that it turns out
to be twice the negativity N (ρ) ≡ (‖ρTA‖1 − 1)/2, where ρTA

stands for the partial transpose with respect to subsystem A and
‖G‖1 = Tr

√
GG† is the trace norm. To prove this statement we

write the entries of the density matrix of the state (1) in the full
Hilbert space 〈i,j | ρ ∣∣i ′,j ′〉 = δij δi ′j ′cic

∗
i ′ . As a matter of fact,

the operation of partial transposition introduces nonvanishing
matrix elements outside the set of pair basis states, obtaining
〈i,j | ρTA

∣∣i ′,j ′〉 = δij ′δi ′j cic
∗
i ′ . Besides the diagonal part of ρ

that is left unchanged, the matrix ρTA displays 2 × 2 blocks
for every pair i < j in the subspace formed by the two basis
vectors |i,j 〉 and |j,i〉. The eigenvalues of such blocks turn out
to be pairs of opposite numbers ±|cicj |, signaling the presence
of entanglement due to a negative eigenvalue. So, the negativity
for pure pair states amounts to N (�) = ∑

i<j |cicj |, which is
a necessary and sufficient measure of entanglement, being zero
only for factorizable states.

II. MIXED STATES

Mixtures of pure states in the same pair basis define a
large nontrivial subset of the full Hilbert space, described by
density matrices depending on d2 − 1 independent parameters.
A fundamental property of the negativity is that it represents an
entanglement monotone under local operations and classical

communication (LOCC) for every mixed state in arbitrary
dimension [4,14]. Specifically, N (P (ρ)) � N (ρ) for an ar-
bitrary LOCC P (ρ). Moreover, given that a mixed state is
a convex combination of pure states ρi , the negativity is, in
general, a convex function, i.e., N (

∑
i piρi) �

∑
i piN (ρi),

with weights obeying
∑

i pi = 1 and pi � 0, ∀ i.
For a mixed pair state ρij , a convex combination of pure

states in a pair basis (1), the negativity becomes

N (ρ) =
∑
i<j

|ρij |, (3)

which turns out to be a good measure of entanglement for
our class of states, since N is convex and vanishes only in
the absence of off-diagonal terms of ρij , i.e., for factorizable
states. In other words, this proves that a necessary and sufficient
condition for having entanglement is the nonvanishing of
negativity, a property which is not valid for general states.
In addition, the monotonicity of N (ρ) introduces an ordering
in terms of entanglement content. Despite its simplicity,
Eq. (3) constitutes an important result, which may reveal great
utility in the evaluation of entanglement in several systems
expressible in a pair basis. Along the same line, one can
compute the logarithmic negativity EN (ρ) ≡ log ‖ρTA‖1 =
log(1 + 2

∑
i<j |ρij |), which bounds the distillable entangle-

ment of ρ [14].

III. ENTANGLEMENT OF FORMATION

The EOF Ef (ρ) is, in general, defined as the convex roof

Ef (ρ) = min
{pk,ψk}

d∑
k=1

pkS
(d)(ψk), (4)

which gives the minimum average entropy over all possible
decompositions of ρ = ∑

k pk|ψk〉〈ψk| into pure states |ψk〉,
k = 1, . . . ,d, with weights pk . The calculation of (4) for
general states is notoriously a formidable task. However, for
our class of states we are able to establish some tight lower
bounds of Ef of evident use in a variety of applications.

In our case, the task is somewhat facilitated by the crucial
property that the element |ψk〉 of every decomposition must
also be restricted to the same pair basis as ρ. In fact, the
diagonal elements 〈ij |ρ|ij 〉 = 0 for i �= j , can only result from
a convex combination of zero diagonal elements 〈ij |ρk |ij 〉 = 0
for any k, since they cannot be negative by definition, as well
as the weights pk . As a consequence, even the off-diagonal
elements of ρk that lie outside the pair basis are zero.

The entanglement of any pure state in Eq. (1) is determined
by d − 1 parameters, the Schmidt weights μj = |cj |, plus
the normalization condition. As is known, these coefficients
cannot be inferred by the partial trace in the mixed case.
Instead, we want to relate them to the off-diagonal entries of
ρij . After relabeling the states such that μ1 � μ2 � · · · � μd

(hence, �1 � �2 � · · · � �d ), it holds that

μ2
i = 1

2

(
1 − εi

√
1 − 4�2

i

)
, (5)

where

�2
i = μ2

i

(
1 − μ2

i

) =
∑
j �=i

μ2
i μ

2
j =

∑
j �=i

|ρij |2 (6)
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and all εi = 1 except ε1 = −1 if |μ1|2 > 1/2. Of course, for
pure states the quantities |ρij |2 are overdetermined, so there are
many ways to take d − 1 of them which are independent. One
way to avoid such an overdetermination is to consider only the
first row of the density matrix, obtaining μ2

j = |ρ1j |2/μ2
1, j =

2, . . . ,d, and μ2
1 as in Eq. (5). Now we are able to find a lower

bound to the EOF, by means of the following theorem.
Theorem. For every pair state described by a density matrix

ρ in the relabeled basis with �1 � �2 � · · · � �d , it holds

Ef (ρ) � F (x) ≡ −
d∑

i=1

α2
i (x) log α2

i (x), (7)

where

α2
1 = 1

2 (1 +
√

1 − 4|x|2); α2
i = |xi |2

α2
1

, i = 2, . . . ,d,

(8)

and the components of the vector x ≡ {ρ12,ρ13, . . . ,ρ1d} are
the d − 1 off-diagonal elements in the first row of ρ, which
act as independent parameters.

Proof. Let us assume that there exist an optimal decom-
position of ρ = ∑

k pk|ψk〉〈ψk| formed by an ensemble of
pure states {pk,|ψk〉}, where each ψk must belong to the same
pair basis set, as discussed above. To any state ψk of the
decomposition, we associate a set of vectors xk and exact
Schmidt weights {μ2

i (ψk)}di=1, as given by Eqs. (5) and (6).
The off-diagonal elements of ρ contained in x are given by
the convex sum x = ∑

k pkxk . It follows that the EOF is lower
bounded by F (x) because

Ef (ρ) = −
∑

k

pk

[
d∑

i=1

μ2
i (ψk) log μ2

i (ψk)

]

� −
∑

k

pk

[
d∑

i=1

α2
i (xk) log α2

i (xk)

]

=
∑

k

pkF (xk) � F (x). (9)

The first inequality has been obtained by observing that ∀ z ∈
[0,1], we get 1

2 (1 + √
1 − z) log[ 1

2 (1 + √
1 − z)] � 1

2 (1 −√
1 − z) log[ 1

2 (1 − √
1 − z)], which gives a lower bound for

the first term in the sum in Eq. (9) and eliminates the problem
of determining the sign ε1. This latter inequality is also
crucial to compensate the increase of the second term in the
sum, when e−1 � μ2

1 � μ2
2 � 1/2. The second inequality in

Eq. (9) holds thanks to the convexity of F (x) over its domain
{x : |x|2 ∈ [0, 1

4 ]}. After observing that F depends only on the
moduli of the components of x = {xi}di=2, we get

∑
k

pkF (xk) =
∑

k

pkF
({∣∣xk

i

∣∣}) � F

({∑
k

pk

∣∣xk
i

∣∣})

� F

({∣∣∣∣∣
∑

k

pkx
k
i

∣∣∣∣∣
})

= F (x),

where the first inequality comes from the convexity of F (v)
as a function of a real positive vector v, such that |v|2 ∈
[0, 1

4 ], while the second inequality is a consequence of the
triangular inequality |z + w| � |z| + |w|, with z,w ∈ C and
the monotonicity of F (v) with respect to any of its components.
The latter property can be directly proven by calculating
∇[F (x)] and showing that all its components are non negative
for |v|2 ∈ [0, 1

4 ] (see Appendix A). Proving that F (v) is convex
for any d by checking directly the positiveness of its Hessian
H[F (v)] can be a hard task. By means of a mathematical
stratagem we have found a way to write Eq. (7) as a sum of
convex functions F (v) = ∑

k Fk(v), where each Fk explicitly
depends only on the two variables |v| and vk , whose convexity
is analytically proven through ordinary calculus methods (see
Appendix A). This shows that F (v) is indeed convex in every
dimension. �

A step further in the search for lower bounds for the EOF
can be made by defining the function G(x1, . . . ,xd ) in a similar
way as F (x) in Eqs. (7) and (8), but with

α2
1 = (1 +

√
1 − 4|x1|2)/2,

α2
i = (1 −

√
1 − 4|xi |2)/2, i = 2, . . . ,d,

where xi ≡ {ρii ′ , i ′ �= i}. In this new definition the number
of independent variables is increased to d(d − 1)/2. Unfor-
tunately, the function G is not convex over all its domain,
a property that would be a sufficient condition for proving
its validity as a lower bound for EOF, like in the previous
theorem. However, strictly speaking, we need only the weaker
property of convexity with respect to the set of pure states
(as opposed to the overall set of density matrices). This
latter feature is indeed displayed by G, though it seems to
be rather hard to prove it analytically. Instead, we provide
a stochastic demonstration by generating several samples
of ρ through random mixtures of pure states {pk,ψk} with
uniformly distributed pk and coefficients of ψk . We have
numerically checked that the average entropy

∑
k pkS

(d)(ψk)
of every sampled decomposition is always larger than the lower
bound G, calculated directly from the matrix elements of ρ.
Without loss of generality, we have generated pure states of
the form (1) with real positive coefficients, i.e., pure state
decompositions which are closer to the optimal one (which we
do not know) thanks to the triangular inequality and because
the entropy depends only on the absolute value of the entries
of ρ. The results of the numerical simulations are collected in
Fig. 1.

Finally, we consider the lower bound introduced in
Ref. [18], which depends on ρ only through one variable: the
maximum between the partial transpose and the realignment
for general states. Restricting to pair states, this single param-
eter reduces to the negativity. In the set of pure states, there
is no unique correspondence between negativity and entropy
for d > 2, as there can be states with the same negativity
but different entropy. However, one may introduce a convex
function s(N ), that for any N is not larger than the minimum
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FIG. 1. (Color online) The average entropy (horizontal axis) is
plotted against the function G (vertical axis) for several density
matrices ρ in various dimensions d . Each point is calculated from a set
of randomly generated pure states, combined with random weights
(see text). The fact that all the points lie below the bisector line
constitutes a stochastic demonstration that G is a lower bound to the
EOF. The square dot indicates the entropy of the maximally entangled
state.

entropy S(d)
min(N ) = min{ψk,N }S(d)(ψk) in the manifold of all

pure states |ψk〉 with a given negativity N . This optimization
problem has been solved in Ref. [25], with solution

s(N ) =
{

H2(γ ) + (1 − γ ) log(d − 1), N ∈ [
0, 3

2 − 2
d

]
,

2N+1−d
d−2 log(d − 1) + log d, N ∈ [

3
2 − 2

d
, d−1

2

]
,

where γ (N ) = 1
d2 [

√
2N + 1 + √

(d − 1)(d − 2N − 1)]2. By
assuming first to know the optimal decomposition {pk,|ψk〉}
that gives the minimum in Eq. (4), one can apply the
inequalities

Ef (ρ) �
∑

k

pk min
{pk,ψk}

S(d)(ψk) �
∑

k

pks(N (ψk))

� s

[∑
k

pkN (ψk)

]
� s(N (ρ)), (10)

thanks to the convexity of both s and N . It is clear that the
function s(N (ρ)) sets a lower bound to the EOF of ρ. The
advantage of introducing the function s is to establish a 1-1
relationship between negativity and EOF, like in the two-qubit
case. On the one hand, this lower bound to EOF is exact for
isotropic states [25] and in our case works very well for states
where the off-diagonal terms assume very similar values. On
the other hand, F and G set better lower bounds for states
where few �j ’s dominate over the others. In particular, in large
dimensions when d � N , the leading term s(N ) ≈ (2N −
1)d−1 log d goes to zero. In fact, in infinite dimension s(N )
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FIG. 2. (Color online) The maximum between the lower bounds
to the EOF in various dimensions d . Circles (blue), squares, (red)
and rhombi (yellow) represent F (ρ), G(ρ), and s(ρ), respectively.
The sample states ρ are arranged according to their negativity N
(horizontal axis). For reference, we have plotted the curve s(N ).

fails to give a reliable lower bound for every finite N , while
F and G still give a good estimation of EOF, e.g., in the case
of two-mode squeezed states (see Appendix B).

The best estimation of the EOF for an arbitrary state
ρ is given by max{F (ρ),G(ρ),s(ρ)}. In Fig. 2 we show a
comparative plot of the three lower bounds F, G, and s for
some randomly generated states (with the sampling method
used for Fig. 1), ordered according to their negativity. As
expected from the previous analysis, s is a good estimation
of EOF for some instances in low dimension and close to
the maximally entangled state. However, as the dimension
is increased s becomes useless, while F and G give sizable
estimates. For high dimensions, we observe that G is slightly
greater than F , so it tends to dominate, as shown in Fig. 2
for d = 20, where the square symbols often overtake the
circles. More detailed applications of entanglement estimation
of states in pair basis will be considered in forthcoming
works.

IV. CONCLUSIONS

In this article we have significantly extended the family of
states for which the negativity is a necessary and sufficient
condition for entanglement by considering mixtures of pure
states written in the paired form (1), which are relevant in
several physical situations. We have also found new lower
bounds improving the estimation of the EOF with respect
to other quantities known in the literature. We believe that
our scheme for determining the functions F and G may be
extended to arbitrary states, shining some light toward the
identification of a general efficient entanglement measure.
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APPENDIX A: CONVEXITY OF THE FUNCTION F

The entropy function F , defined in Eq. (7),

F (x) ≡ −
d∑

i=1

αi(x) log αi(x) (A1)

is notoriously a concave function as a function of the α’s.
However, here we want to prove that F as a function of
the (d − 1)-dimensional vector x ≡ {xi, i = 1, . . . ,d − 1} is
instead convex over the domain D = {xi � 0,|x|2 � 1/4},
with the choice

α1 = 1

2
(1 +

√
1 − 4r2); αi = x2

i−1

α1
, i = 2, . . . ,d,

(A2)

where we have renamed r =
√

|x|2.
Proving the convexity of F in every dimension d through a

“brute force” demonstration of the positiveness of its Hessian,
can be a hard task. Here instead we proceed by presenting
a detailed calculation after splitting the function in a sum of
convex terms.

For convenience, we rewrite F (x) as

F = −α1 log α1 −
d−1∑
i=1

x2
i

α1
log

x2
i

α1

= (1 − 2α1) log α1 − 1

α1

(
d−1∑
i=1

x2
i log

x2
i

r2
− r2 log r2

)

=
d−1∑
k=1

x2
k

r2

[
−α1 log α1 − (1 − α1) log(1 − α1)

− (1 − α1) log
x2

k

r2

]

≡
d−1∑
k=1

Fk(x), (A3)

where we have used the identity r2 = α1(1 − α1). We have
rewritten F in this way because it is feasible to show that Fk(x)
is convex in D for every k = 1, . . . ,d − 1. Since the sum of
convex functions is convex, this will prove our statement.

Lemma. The function

Fk(x) = x2
k

r2

[
HC(r) − f (r) log

x2
k

r2

]
,

where

HC(r) = − 1
2 (1 +

√
1 − 4r2) log

[
1
2 (1 +

√
1 − 4r2)

] − 1
2 (1 −

√
1 − 4r2) log

[
1
2 (1 −

√
1 − 4r2)

]
,

f (r) = 1
2 (1 −

√
1 − 4r2)

is convex in the domain D and it is an increasing function with respect to any component of x. (Notice that HC has just the same
form as the entropy for a pair of qubits as a function of the concurrence.)

Proof. We use the fact that Fk(x) depends explicitly only on the two quantities g1(x) = |x| and g2(x) = xk/r; thus,

Fk(x) = Fk(g1(x),g2(x)) ≡ g2
2(x)

[
HC(g1(x)) − f (g1(x)) log g2

2(x)
]
,

whose gradient and Hessian functions in terms of g = (g1,g2) are expressed as

∇g[Fk(g)] = (G10,G01) = (
g2

2

(
H ′

C − f ′ log g2
2

)
,2g2

[
HC − f

(
1 + log g2

2

)])
,

Hg[Fk(g)] =
(

G20 G11

G11 G02

)
=

(
g2

2

(
H ′′

C − f ′′ log g2
2

)
2g2

[
H ′

C − f ′ (1 + log g2
2

)]
2g2

[
H ′

C − f ′ (1 + log g2
2

)]
2
[
HC − f

(
3 + log g2

2

)]
)

,

where the primes denote derivation of functions of one variable
with respect to their argument. For brevity, we denote Gnm =
∂n
g1∂

m
g2Fk(g1,g2).

The gradient in terms of the original coordinates takes the
form

∇Fk = ∂Fk

∂xj

=
∑

l

∂Fk

∂gl

∂gl

∂xj

(A4)

=
∑

l

∇g[Fk(g)]lJ [g(x)]lj

= ∇g[F (g)] · J [g(x)]

= G10∇g1 + G01∇g2. (A5)

The Jacobian of the vector function g(x) is defined as
J [g(x)]ij = ∂gi

∂xj
. The Hessian is

HFk = J [∇Fk] =
[

∂2Fk

∂xi∂xj

]
ij

= ∂

∂xi

(∑
l

∂Fk

∂gl

∂gl

∂xj

)

=
∑

l

{∑
l′

(
∂Fk

∂gl∂gl′

∂gl′

∂xi

∂gl

∂xj

)
+ ∂Fk

∂gl

∂2gl

∂xi∂xj

}

=
∑

l

∑
l′

(J [g(x)]ljHg[Fk(g)]ll′J [g(x)]l′j )

+
∑

l

∇g[Fk(g)]lH[gl(x)]ij
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= J [g(x)]THg[Fk(g)]J [g(x)] + ∇g[Fk(g)]H[g(x)]

= G20∇g1 ⊗ ∇g1 + G02∇g2 ⊗ ∇g2

+G11(∇g2 ⊗ ∇g1 + ∇g1 ⊗ ∇g2)

+G10H(g1) + G01H(g2).

Explicitly,

[∇g1]i = ∂

∂xi

r = ∂

∂xi

√∑
j

x2
j = xi

r
,

[∇g2]i = ∂

∂xi

xk

r
= 1

r3
(r2δik − xkxi).

These two vectors are orthogonal: another good feature of
decomposing F in the form of Eq. (A3).

From Eq. (A5) it is immediate to verify that ∂xj
[Fk(x)] � 0,

∀ j , because G10 and G01 are both non-negative in D as well
as each component of ∇g1 and ∇g2. Since each component
of the gradient ∇[F (x)] is a sum of positive contributions, it
follows that F (x) is an increasing function with respect to each
component of x.

The outer products of derivative terms are

[∇g1 ⊗ ∇g1]ij = xixj

r2
,

[∇g2 ⊗ ∇g1]ij = 1

r4
(r2δik − xkxi)xj = [∇g1 ⊗ ∇g2]ji ,

[∇g2 ⊗ ∇g2]ij = 1

r6
(r2δik − xkxi)(r

2δjk − xkxj ),

and

[Hg1]ij = J [∇g1]ij = δij

r
− xixj

r3
= 1

r
(I − ∇g1 ⊗ ∇g1) ,

[Hg2]ij = J [∇g2]ij = ∂

∂xj

[
1

r3

(
r2δik − xkxi

)]

= −1

r
(∇g2 ⊗ ∇g1 + ∇g1 ⊗ ∇g2)

−xk

r3
(I − ∇g1 ⊗ ∇g1) .

Thus, the Hessian becomes

HFk = 1

r3
(xkG01 − r2G10 + r3G20)∇g1 ⊗ ∇g1

+
(

G11 − 1

r
G01

)
(∇g2 ⊗ ∇g1 + ∇g1 ⊗ ∇g2)

+G02∇g2 ⊗ ∇g2 + 1

r3
(r2G10 − xkG01)I.

This matrix can be decomposed in direct sum of a nonsingular
2 × 2 matrix written in the basis {∇g1,∇g2} and a uniform
diagonal part. The square norm of ∇g2 is

‖∇g2‖2 = 1

r4

(
r2 − x2

k

) = 1

r2

(
1 − g2

2

)
.

Introducing the orthonormal basis b1 = ∇g1 and b2 =
∇g2/‖∇g2‖, we obtain

HFk = 1

r2
(g2G01 − rG10 + r2G20)b1 ⊗ b1

+ 1 − g2
2

r

(
G11 − 1

r
G01

)
(b1 ⊗ b2 + b2 ⊗ b1)

+ 1 − g2
2

r2
G02b2 ⊗ b2 + 1

r2
(rG10 − g2G01) I.

In the two-dimensional subspace spanned by b1 and b2, the
Hessian becomes

H‖Fk =
(

α β

β γ

)
,

where

α = G20,

β =
√

1 − g2
2

r

(
G11 − 1

r
G01

)
,

γ = 1 − g2
2

r2
G02 + 1

r2
(rG10 − g2G01) .

In the complementary space, we simply have

H⊥Fk = η(I − b1 ⊗ b1 − b2 ⊗ b2),

with η = 1
r2 (rG10 − g2G01).

Using the Sylvester criterion for testing the positivity of
matrices, we conclude that Fk is convex if η, α, and αγ − β2

are all non-negative. These are continuous functions of two
variables defined in the set r ∈ (0,1/2) and g2 ∈ (0,1], so their
sign can be evaluated through standard calculus methods. The
matrix element α = g2

2(H ′′
C − f ′′ log g2

2) is easily verified to
be non-negative since −g2

2 log g2
2 � 0 and both HC and f are

convex functions. The quantity

η = g2
2

r2
(rH ′

C − 2HC + 2f ) − g2
2

r2
log g2

2(rf ′ − 2f )

is made up of two contributions, both positive; in fact, rf
′ −

2f � 0 and rH ′
C − 2HC + 2f � 0. This latter inequality

requires some analysis. As a matter of fact, we can define the
function p(z) = (2z − 1)(rH ′

C − 2HC + 2f ) and we study it
as a function of z ∈ [1/2,1], where r2 = z(1 − z). We find that
p′′(z) = 0 has a single root in z1 and is increasing: This means
that p′(z) has a negative minimum in z1 and has a zero in
z2 < z1 and z3 = 1. Going back to p(z), we learn that it has a
positive maximum in z2 and p(1/2) = p(1) = 0. This means
that p(z) is non-negative in its domain, hence also the function
rH ′

C − 2HC + 2f . This proves that η � 0.
Finally, the determinant

αγ − β2 = 1

r2

{(
1 − g2

2

)
G20G02 + G20(rG10 − g2G01)

− (
1 − g2

2

)(
G11 − 1

r
G01

)2}

can be efficiently evaluated numerically with arbitrary pre-
cision, as it is a continuous function of two variables in the
compact domain r ∈ (0,1/2) and g2 ∈ (0,1]. An analytic proof
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FIG. 3. (Color online) The determinant αγ − β2 can be proven
to be non-negative as a function of its explicit dependence r2 and g2

2 .

in closed form can be performed, in the same fashion as the
previous quantities, but it turns out to be rather cumbersome
since it involves higher derivatives and very long expressions.
In Fig. 3 we show graphically that αγ − β2 � 0 and in
particular we observe that it is monotonically increasing
with r . �

As this proof is valid for every permitted value of r and xk ,
it is shown that every Fk in the sum of Eq. (A3) is convex. This
concludes our proof of convexity of F (x) in Eq. (7).

APPENDIX B: TEST ON TWO-MODE SQUEEZED STATES

Given a Fock space of two bosonic modes |n1〉A ⊗ |n2〉B ,
the pure two-mode squeezed states have the form

|�r〉 = 1

cosh(r)

∞∑
n=0

tanhn(r) |n〉A ⊗ |n〉B, (B1)

where r � 0 is the squeezing parameter. Pair states of the
form (B1) belong to an infinite-dimensional Hilbert space
and are a good playground for testing lower bounds to
the EOF. Furthermore, they are exceptionally interesting for
experimental realizations in quantum technologies.

The density matrix ρij = 〈j |�r〉〈�r |i〉 in the pair basis
|i〉 ≡ |i,i〉 is written as

ρij = |cicj | = 1

cosh2(r)
tanhi(r) tanhj (r).

FIG. 4. (Color online) The exact entropy S(�r ) for the two-mode
squeezed state (B1) compared with the lower bound F (�r ) for the
EOF (dashed line).

The negativity for this state can be easily computed, giv-
ing N (�r ) = er sinh(r), and is finite for every finite r .
On the one hand, the entropy can be computed exactly,
yielding

S(�r ) = −
∞∑

n=0

c2
n log c2

n

= cosh2(r) log[cosh2(r)] − sinh2(r) log[sinh2(r)].

On the other hand, our lower bound F is given by

F (�r ) = cosh2(r) log[cosh2(r)] − sinh2(r) log[sinh2(r)]

+�

[
1

2
− 1

cosh2(r)

]
{cosh−2(r) log[cosh−2(r)]

− tanh2(r) log[tanh2(r)]},

where �(x) is the function of Heaviside. The lower bound
given in Ref. [18] is s(N ) = 0, because in infinite dimen-
sion we can always find states with finite negativity and
zero entropy. In Fig. 4 we can appreciate that in this test
case the lower bound F to the EOF gives a very good
estimation of the entropy of formation (in this pure case,
the entropy).

[1] M. Genovese, Phys. Rep. 413, 319 (2005).
[2] A. Wright, Nat. Phys. 9, 264 (2013); M. Genovese, Adv. Sci.

Lett. 2, 303 (2009).
[3] N. Lambert et al., Nat. Phys. 9, 10 (2013).
[4] I. Bengtsson and K. Zyczkowski, Geometry of Quantum States

(Cambridge University Press, Cambridge, UK, 2006).
[5] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press, Cambridge,
UK, 2000).

[6] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys.
80, 517 (2008).

[7] L. Campos Venuti, C. Degli Esposti Boschi, and M.
Roncaglia, Phys. Rev. Lett. 96, 247206 (2006); ,99, 060401
(2007).
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