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Precision measurements using squeezed spin states via two-axis countertwisting interactions
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We show that the two-axis countertwisting interaction squeezes a coherent spin state into three states of interest
in quantum information, namely, the equally weighted superposition state, the state close to the twin-Fock state,
and the state achieving the Heisenberg limit of optimal sensitivity defined by the Cramér-Rao inequality, in
addition to the well-known Heisenberg-limited state of spin fluctuations.
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I. INTRODUCTION

Squeezed states have been intensively investigated orig-
inally in optics and extended to various bosonic and spin
systems. A defining feature of squeezing is to enhance the
quantum nature, such as reduced quantum noise and entangle-
ment, which forms the basis of their applications, for instance,
high-precision measurements [1,2]. While entanglement is not
always the key in high-precision measurements [3], some of
these implementations are expected to surpass the standard
quantum limit.

There are other quantum states proposed for high-precision
measurements, such as a superposition state of coherent
states [4], squeezed spin states (SSSs) [5], and other spin
ensemble states [6–14]. These states may also achieve sen-
sitivity beyond the standard quantum limit. Among them, the
advantage of spin squeezing is its feasible implementation of
the state [15–25]. For instance, spin squeezing by one-axis
twisting has been experimentally realized in cold-atomic
systems [16–22,24] and has been proposed in nitrogen-
vacancy-spin ensembles [25]. Furthermore, spin fluctuations
below the standard quantum limit have been observed [20,21].
Meanwhile, spin squeezing by the two-axis countertwisting
method [5] has not been realized; however, there are some
experimental proposals in realistic systems [9,26–32].

The minimum quantum fluctuations of the SSSs have been
thoroughly investigated; however, the sensitivity of measure-
ments utilizing the SSSs, which should also be discussed
in terms of estimation theory [33–35], has not been fully
analyzed. The precision of a measurement can be estimated
by the standard deviation of a measurement-and-estimation
process, which satisfies the Cramér-Rao inequality [36,37].
Similarly to the Heisenberg limit for quantum spin fluctuations,
we can define the Heisenberg limit of the minimum standard
deviation using the Cramér-Rao inequality. For the total spin
size of J of spin-1/2 particles, a coherent spin state (CSS)
gives the minimum standard deviation which is proportional to
J−1/2, and one-axis twisting brings the state to the Heisenberg
limit with the variance given by J−1 [33].

In this article, we investigate the time evolution of SSSs
in a spin-1/2 ensemble through the two-axis countertwisting
interaction [5] and the optimal sensitivity in high-precision
measurements. Similarly to the one-axis twisting case [33], we

expect that the SSS will change the sensitivity though time evo-
lution. We will numerically show that, depending on the evo-
lution time of the two-axis countertwisting interaction, we can
generate an SSS that has high fidelity to the equally weighted
superposition state (EWSS) [10] or an SSS close to the twin-
Fock state [6,13]. Both states can be used for high-precision
measurements with Heisenberg-limited sensitivity and are not
easily implemented experimentally. We will also numerically
obtain the sensitivities for these SSSs and the SSS optimizing
the sensitivity with respect to the evolution time, and compare
them with the EWSS, the twin-Fock state, and the cat state.

This paper is organized as follows. In Sec. II, we briefly
explain the two-axis countertwisting interactions. In Sec. III,
we numerically show that the two-axis countertwisting inter-
action brings a CSS to a state with high fidelity to the EWSS
or the twin-Fock state. In Sec. IV, we numerically obtain a
time evolution of optimal precision using SSSs and discuss
the scaling of the precision with respect to J . In Sec. V, we
summarize the main results of this article. The effect of a dc
magnetic field on two-axis countertwisting is discussed in the
Appendix to avoid digressing from the main subjects.

II. TIME EVOLUTION OF A COHERENT SPIN STATE
UNDER A TWO-AXIS COUNTERTWISTING

INTERACTION

We consider an SSS generated from a CSS via a two-axis
countertwisting interaction. Here, we assume an ensemble of
N spin-1/2 particles as a system. With two real parameters
α and β, a CSS is given by |�CSS(α,β)〉 = ⊗N

i=0 |ψ(α,β)〉i ,
where |ψ(α,β)〉i = cos β

2 |↑〉i + eiα sin β

2 |↓〉i . The suffix i

denotes the ith 1/2 spin and |↑〉i and |↓〉i are the eigenstates
of the Pauli matrix σ̂ (i)

z for the eigenvalues of ±1, respectively.
We introduce the collective spin operator Ĵ ≡ ∑N

i=0
1
2 σ̂ (i) and

expand the CSS in terms of the eigenstates of Ĵz, yielding

|�CSS(α,β)〉

=
J∑

M=−J

√
2J CJ−M ei(J−M)αcosJ+M β

2
sinJ−M β

2
|J,M〉, (1)

where J = N/2 and |J,M〉 represents the eigenstate of Ĵz with
the eigenvalue of M . We set α and β to be zero such that the
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initial CSS is fixed to |J,J 〉. Then, the two-axis countertwisting
Hamiltonian can be expressed in terms of the collective spin
operators as

ĤTAT = �χ

2i
(e−2iγ Ĵ 2

+ − e2iγ Ĵ 2
−), (2)

where χ is the strength of the interaction, Ĵ± denotes the
spin-J ladder operators, and γ determines the orientation of
spin squeezing. For the sake of simplicity, we choose χ = 1
and γ = 0, setting the squeezing axis to be Jy . We begin with
the initial coherent state |J,J 〉, let it evolve for a certain time τ ,
and then rotate it along the y axis by π/2; hence the resulting
state is

|�SSS(τ )〉x = e−i π
2 Ĵy e− i

�
ĤTATτ |J,J 〉. (3)

III. COMPARISON WITH THE EQUALLY WEIGHTED
SUPERPOSITION STATE AND THE TWIN-FOCK STATE

First, we evaluate the SSS in Eq. (3) at a certain evolution
time τ , when the SSS has the first local maximum of fidelity
to the EWSS [10] or the twin-Fock state [6,13], as shown in
Fig. 1. Here, the fidelity of the SSS in Eq. (3) to the state
|�X〉 is given by FX(τ ) = |〈�X|�SSS(τ )〉x |2 as a function of
the evolution time τ in Eq. (3). The EWSS and the twin-Fock
state (TFS) are given by

|�EWSS〉 ≡ 1√
2J + 1

J∑
M=−J

|J,M〉 (4)

and

|�TFS〉 ≡ e−i π
2 Ĵx |J,0〉, (5)

respectively. The fidelity functions FEWSS(τ ) and FTFS(τ ) are
maximized at certain evolution times τEWSS and τTFS for a fixed
collective spin J . We refer to the SSSs at evolution times τEWSS
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FIG. 1. (Color online) Plots of the fidelity to the EWSS FEWSS(τ ),
the fidelity to the twin-Fock state FTFS(τ ), and the quantum fluctua-
tions 〈(�Jz)2〉1/2

SSS(τ ) for J = 250 as functions of the evolution time
τ around their first local maxima. The fidelity to the EWSS FEWSS(τ )
around the maximum can be well fitted to the Lorentzian function
with a full width at half maxima (FWHM) of ∼2/(3J ), which is
indicated by the blue solid curve.

and τTFS as those optimized to the EWSS and the twin-Fock
state, respectively. We numerically obtain FEWSS(τEWSS) and
FTFS(τTFS) and plot them in Fig. 2(a).

The maximal fidelity FEWSS(τEWSS) to the EWSS monoton-
ically decreases with respect to J , which can be well fitted for
J � 400 to

FEWSS(τEWSS) =
(

0.0298 ± 0.0001

J 0.621±0.001
+ 0.995

)2

. (6)

Here, the numerical results throughout the article contain
errors less than the order of the last digit, unless otherwise
stated. In the large-J limit, FEWSS(τEWSS) in Eq. (6) converges
to ∼0.990, which is interesting because the EWSS is not easy
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FIG. 2. (Color online) (a) Maximal fidelity of the SSS to the EWSS and that to the twin-Fock state as functions of the collective spin J .
The blue solid curve is given by Eq. (6) and well fitted to the region of J � 400, while the red solid curve is given by Eq. (8) and shows
excellent agreement with the plot points. (b) Squeezing-evolution time τEWSS, τTFS, τmax[�Jz], and τmin[�Jy ]. Here, τmax[�Jz] maximizes the
quantum fluctuations in Jz and τmin[�Jy ] minimizes the quantum fluctuations in Jy , respectively. The results of τEWSS, τTFS, and τmax[�Jz] are
well fitted to Eqs. (7), (9), and (18), which are plotted by the solid curves for all J ’s. (c) (i) Probability distributions and QPD functions for
the EWSS and the SSS optimized to the EWSS for J = 50. The QPD functions are plotted on the upper hemispheres of the Bloch spheres
and their magnitudes are expressed by the thickness of the blue color. Note that these QPDs are symmetric about the equator. The probability
distribution for the SSS with respect to the eigenvalues of Ĵz is expressed by blue boxes. Here the blue dots of the probability distribution
for the EWSS are plotted at (2J + 1)−1. (ii) Probability distributions and QPD functions of the twin-Fock state and the SSS optimized to the
twin-Fock state for J = 50. The probability distribution for the SSS with respect to the eigenvalues of Ĵz is expressed by blue boxes with red
crosses of the probability distribution shown for the twin-Fock state.
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to implement experimentally. We also plot the evolution time
τEWSS that optimizes the fidelity FEWSS in Fig. 2(b), which can
be well fitted to a function of J as

τEWSS = ln (1.10J )

4.02J
, (7)

for all J . Here, the fidelity FEWSS(τ ) for τ ∼ τEWSS can be well
fitted to the Lorentzian function with a FWHM of ∼2/(3J ),
as shown in Fig. 1. Hence, a small change in τ reduces
FESSS(τ ), which may lead to practical difficulties; however,
we can expect to achieve high fidelity by setting χ sufficiently
small.

Meanwhile, FTFS(τTFS) monotonically decreases with re-
spect to J similarly to the EWSS case, as shown in the lower
panel of Fig. 2(a), which can be well fitted to

FTFS(τTFS) =
(

0.0743

J 1.00
+ 0.932

)2

. (8)

Equation (8) converges to ∼0.868 in the large J limit. The
evolution time τTFS is plotted with respect to J in Fig. 2(b),
which can be well fitted to

τTFS = ln [(25.2 ± 0.2)J ]

3.93J
. (9)

As shown in Fig. 1, the fidelity FTFS(τ ) has a peak around
τ ∼ τTFS which is broader than the Gaussian or Lorentzian
functions. This implies that we can expect to achieve high
fidelity in a manner similar to the case of τEWSS.

To discuss the deviations of FEWSS(τEWSS) and FTFS(τTFS)
from F = 1, we plot the quasiprobability distribution (QPD)
and the probability distributions for the SSSs optimized to
the EWSS and the twin-Fock state for J = 50 in Fig. 2(c)(i).
Here, the QPD function [5] and the probability distribution
of the state |�X〉 are respectively defined as P̃X(ϕ,θ ) =
|〈�CSS(ϕ,θ )|�X〉|2 and PX(M) = |〈J,M|�X〉|2, where ϕ and
θ in the QPD are the azimuth and polar angles of the
sphere with a unit radius. The probability distribution of
|�SSS(τEWSS)〉x in Fig. 2(c)(i) oscillates around |M| ∼ J ,
unlike that of the EWSS in Fig. 2(c)(i), which may decrease
FEWSS(τEWSS). On the other hand, both the QPD and the
probability distribution of |�SSS(τTFS)〉x are distinct from those
of the twin-Fock state, as shown in Fig. 2(c)(ii): The QPD
of |�SSS(τTFS)〉x shows a gap at (ϕ,θ ) ∼ (π,π/2) and the
probability distribution in Fig. 2(c)(ii) has a dip structure
around M = 0, which contributes to the degradation of the
fidelity for large J .

Here, we discuss the effect of the linear Zeeman effect
on the fidelity. The fidelity does not change so much if the
magnetic field B is oriented in the z axis and satisfies

2γBB ln J

J
	 1 (10)

for τ ∼ ln J/J in Eqs. (7) and (8), which is shown in the
Appendix.

IV. PRECISIONS OF MEASUREMENTS USING
SQUEEZED SPIN STATES

Then, we evaluate the SSS for high-precision measurements
using the Cramér-Rao inequality. The Cramér-Rao inequality
gives the lower bound of the standard deviation of unbiased

measurements [36–39]. Let us assume that we perform a
positive operator-valued measure (POVM) on a value X,
repeating it Nmsr times to estimate X from Nmsr outcomes. The
statistical deviation of X’s unbiased estimator Xest is defined
as δX ≡ Xest/|d〈〈Xest〉〉X/dX| − X, where 〈〈〉〉X represents the
expectation value over the Nmsr-times measurements. Since
we assume an unbiased measurement, the precision of the
measurement, i.e., the standard deviation of Xest, can be
expressed in terms of δX as σX ≡ (Nmsr〈〈(δX)2〉〉X)1/2. The
standard deviation σX for any unbiased measurement satisfies
the Cramér-Rao inequality, that is,

σX � IX
−1/2, (11)

the lower bound of which gives the optimal precision. Here
IX is the quantum Fisher information [38,39], which has an
upper bound determined by the input state interacting with
X. Since we are interested in the fundamental properties of
high-precision measurements, we assume the input state to be
pure, ρ̂inp = |�inp〉〈�inp| [33,34,39]. In this case, the quantum
Fisher information satisfies

IX � 4
〈
ρ̂ ′2

inp

〉
inp

, (12)

where the operator ρ̂ ′
inp is the X derivative of ρ̂inp and the expec-

tation value 〈Ô〉inp ≡ Tr[ρ̂inpÔ]. Combining inequalities (11)
and (12), we obtain the inequality satisfied by the standard
deviation:

σX � 1

2
〈
ρ̂ ′2

inp

〉1/2

inp

. (13)

We use inequality (13) to obtain the optimal sensitivity for the
estimation of the magnetic field B along the z axis [34,35]. The
system evolves under the Hamiltonian ĤB = −�γsBĴz, where
γs denotes the gyromagnetic ratio and B is the magnitude of
B. To estimate B, a state ρ̂inp(0) is prepared at the initial
time, and the state after a certain time t under ĤB , ρ̂inp(t), is
used as the input state of the parameter estimation. Since the
upper bound of the Fisher information is given by Eq. (12),
we obtain IB(t) � 4(γst)2〈(�Jz)2〉inp by substituting ρ̂inp(t)
into the inequality (12). Here the quantum fluctuations in
an observable Ô is defined as 〈(�O)2〉 ≡ 〈Ô2〉 − 〈Ô〉2. The
Cramér-Rao inequality in Eq. (13) is now given by

σB � 1

2γst〈(�Jz)2〉1/2
inp

, (14)

implying that the measurement precision is determined by
〈(�Jz)2〉1/2

inp and the Heisenberg-limited sensitivity can be
achieved when 〈(�Jz)2〉1/2

inp is linear to J ; hence we analyze
the scaling law of 〈(�Jz)2〉1/2

inp instead of inequalities (14) to
discuss the sensitivity.

The quantum fluctuations in Ĵz are numerically calculated
for the SSSs optimized to the EWSS and the twin-Fock state,
and the SSS maximizing 〈(�Jz)2〉1/2

inp with respect to τ , and
they are plotted in Fig. 3. For the SSS optimized to the EWSS,
〈(�Jz)2〉1/2

SSS(τEWSS) is well fitted for J � 300 to

〈(�Jz)
2〉1/2

SSS(τEWSS) = 0.557(J + 1.03)1.00, (15)

which can achieve the Heisenberg-limited sensitivity in
Eq. (14). The linear coefficient in Eq. (15) is close to that
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SSS

for the SSSs optimized to the EWSS and the twin-Fock state, the
maximal quantum fluctuations in Ĵz, and the minimal quantum fluc-
tuations in Ĵy which are compared to those for the cat state, the EWSS,
and the twin-Fock state. Quantum fluctuations 〈(�Ĵz)2〉1/2

SSS(τEWSS) are
well fitted to Eq. (15) for J � 400, and 〈(�Ĵz)2〉1/2

SSS(τTFS) and the
maximal 〈(�Ĵz)2〉1/2

SSS are well fitted for all J to Eqs. (16) and (17),
respectively.

for the EWSS as shown in Fig. 3, since 〈(�Jz)2〉1/2
EWSS =√

J (J + 1)/3 � 0.577J in the large-J limit. The difference
in the linear coefficients for the EWSS and |�SSS(τEWSS)〉
in Eq. (15) is as small as 3.59%, which indicates that spin
squeezing through two-axis countertwisting can be used to
generate an approximate state of the EWSS for high-precision
measurements. Similarly, 〈(�Jz)2〉1/2

SSS(τTFS) is well fitted to
the function that shows the Heisenberg-limit scaling of the
sensitivity,

〈(�Jz)
2〉1/2

SSS(τTFS) = 0.775(J + 0.494)1.00, (16)

which is smaller than that for the twin-Fock state by a
factor of 0.912, since 〈(�Jz)2〉1/2

TFS � √
J (J + 1)/2 � 0.707J

in the large-J limit [9,35], as shown in Fig. 3. The quantum
fluctuations 〈(�Jz)2〉1/2

SSS maximized with respect to τ is also
well fitted to the Heisenberg-limit scaling of the sensitivity,
that is,

〈(�Jz)
2〉1/2

SSS(τmax[�Jz]) = 0.799(J + 0.453)1.00, (17)

with the corresponding evolution time of τmax[�Jz], which can
be well fitted to

τmax[�Jz] = ln (11.5J )

3.94J
(18)

for all J . As shown in Fig. 1, the local maximum of the
quantum fluctuations 〈(�Jz)2〉1/2

SSS is broader than the Gaussian
and Lorentzian functions; hence we can expect that a good
optimal Fisher information can be achieved by a manner
similar to the case of τEWSS and τTFS in Eqs. (7) and (9).

The maximal Fisher information in Eq. (17) is larger
than the optimal Fisher information at τ = τmin[�Jy ] when
the quantum fluctuations in Ĵy are minimized, as shown in
Fig. 3. The Cramér-Rao inequality in Eq. (14) gives the best
precision when the state is the cat state [or the Greenberger-
Horne-Zeilinger (GHZ) state], namely, the superposition state

of the highest and lowest weight states, i.e., |�CAT〉 = (|J,J 〉 +
|J,−J 〉)/√2. and the quantum fluctuations in Ĵz are given
by 〈(�Jz)2〉1/2

CAT = J [35]. It is clear that the sensitivity
using the SSSs cannot reach the best sensitivity that the
optimal superposition state gives for the same J . However, the
sensitivity by the SSSs can achieve higher sensitivities than
the ones achievable by the EWSS, the twin-Fock state, or the
minimal quantum fluctuation state, all of which are candidate
state measurements.

V. SUMMARY

To summarize, we have numerically analyzed the time
evolution of SSSs under the two-axis countertwisting inter-
action and the sensitivity in magnetic-field measurements.
We find that at time τEWSS the SSS can be approximately
represented as the EWSS because of its high fidelity of 0.990
in the large-J limit, and after that, at the time τTFS the SSS
becomes close to the twin-Fock state with a fidelity of 0.868
in the large-J limit. We have also calculated the sensitivity
defined by the lower bound of the Cramér-Rao inequality and
have shown that the SSS reaches the Heisenberg limit and
exceeds the sensitivity limit given with the EWSS and the
twin-Fock state, though it does not reach the sensitivity limit
of the optimal state |�CAT〉. To evaluate the feasibility, we
still have to consider noise effects involved in the squeezing;
however, as there are theoretical proposals to realize a two-axis
countertwisting interaction in Bose-Einstein condensates and
one-axis twisting has already been demonstrated beyond the
standard quantum limit, we can expect that it will be more
realistic to use SSSs than other states to realize the Heisenberg
limit. The time required to achieve the best sensitivity for the
SSS is τmax[�Jz] = ln (11.5J )/(3.94J ); thus, by adjusting the
time and the size of the collective spin, we may minimize the
effect of noise, though further research is necessary to clarify
the noise effects (e.g., Refs. [10,27,28,40,41]).
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APPENDIX: DERIVATION OF EQ. (10)

When a static magnetic field B is applied, the Hamiltonian
becomes ĤTAT + ĤB , where

ĤB = −�γBB

(
eiϕ

2
sin θĴ+ + e−iϕ

2
sin θĴ− + cos θĴz

)
,

(A1)

and the Schrödinger equation in the rotating frame of Ĥ−B can
be expressed as

d|�SSS(τ )〉rot

dτ
= 1

i�
Û−B(τ )ĤTATÛ

†
−B(τ )|�SSS(τ )〉rot, (A2)
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where Û−B(τ ) ≡ exp[Ĥ−Bτ/i�] and |�SSS〉rot ≡ Û−B(τ )
|�SSS〉. If the magnetic field B is applied along the z axis,
the two-axis countertwisting interactions in the rotating frame
depend on τ as follows:

Û−B(τ )ĤTATÛ
†
−B(τ ) = �χ

2i
(e−2iγBBτ Ĵ 2

+ − e2iγBBτ Ĵ 2
−),

(A3)

which implies that the fidelity does not change drastically if
2γBBτ 	 1 in Eq. (10). By numerically solving Eq. (A2), we
obtain |�SSS(τ )〉 for J = 50, χ = 1, and the magnetic field
of γBB = 0, 0.01, 1, and 100. In cases of γBB = 0.01 and 1,
the condition 2γBBτ 	 1 is satisfied and the fidelity does not
decrease significantly. On the other hand, 2γBBτ ∼ 1 for the
case of γBB = 100 and the fidelity drastically decreases, as can
be seen from the quasiprobability distributions for γBB = 100
in Fig. 4.
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