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Quantum Zeno effect for a free-moving particle
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Departamento de Óptica, Facultad de Ciencias Fı́sicas, Universidad Complutense, 28040 Madrid, Spain

(Received 13 October 2014; published 29 December 2014)

Although the quantum Zeno effect takes its name from Zeno’s arrow paradox, the effect of frequently observing
the position of a freely moving particle on its motion has not been analyzed in detail in the frame of standard
quantum mechanics. We study the evolution of a moving free particle while monitoring whether it lingers in a given
region of space, and explain the dependence of the lingering probability on the frequency of the measurements
and the initial momentum of the particle. Stopping the particle entails the emergence of Schrödinger cat states
during the observed evolution, closely connected to the high-order diffraction modes in Fabry-Pérot optical
resonators.
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I. INTRODUCTION

According to Zeno’s approach to dynamics, flying arrows
are always at rest because at any instant they are at some
position, which is interpreted in Zeno’s paradox as being
at rest. The conclusion turned out to be false, since being
instantaneously anywhere is actually compatible with motion,
as demonstrated by infinitesimal calculus. Despite this failure,
quantum mechanics offered a revival to Zeno’s paradox when
asking what happens when we actually monitor where the
arrow is. It emerged that the observation alters the evolution,
even to the extent of stopping it [1,2].

The first approaches to the observed evolution focused
on monitoring the state of the system, not on observing the
position of a traveling object like the flying arrow, an issue
that then deserved little attention [3]. In this work we step
into the arrow’s flight by observing whether a freely moving
object is located within a given spatial region (every position
observation must be on a finite region). This problem falls
within the context of the so-called quantum Zeno dynamics,
to distinguish it from the earlier Zeno effect [4]. The standard
Zeno effect deals with the observation of the system state.
Zeno dynamics deals with the observation of a dynamical
property, the spatial location in our case, while the system
state is otherwise free to evolve.

The system preparation and observation are presented
in Sec. II, where Zeno’s arrow is represented by a one-
dimensional particle with some initial linear momentum p

evolving freely. In a computational approach, we obtain in
Sec. III the probability that the particle remains in the location
where it is initially found, recovering previous results of unit
lingering probability in the limit of continuous observation [4].
Below this ideal limit, nevertheless, our analysis reveals that
it is harder to stop the particle (it needs more frequent
measurements) as the particle has an initial large momentum
with negligible uncertainty (�p/p → 0), like the classical
Zeno’s arrow. In Sec. IV, we explain the numerical results
in terms of the emergence during the observed evolution
of Schrödinger cat states as the coherent superposition of
two arrows traveling forward and backward (a Schrödinger
arrow state, so to speak). Thus, below the limit of continuous

measurement, the particle is not only trapped in the subspace
defined by the measurement, but is actually stopped in a highly
nonclassical state. The structure of this Schrödinger cat state
corresponds to what can be called a high-order time-diffraction
mode—a well-known wave object in the theory of open optical
resonators in wave optics [5,6]. Diffraction concepts in optics
are adapted to time diffraction in the quantum context [7] to
obtain a simple expression for the lingering probability as a
function of the frequency of the measurements that reproduces
the features described numerically.

In comparison with related previous works on quantum
Zeno dynamics, such as Refs. [3] and [8], the system that
we analyze is extremely simple and close to the original
Zeno paradox, we reveal and interpret finer details of the
Zeno dynamics below the limit of continuous measurements,
drawing many parallels with similar problems in classical wave
optics. This example provides moreover a suitable arena for
simple experimental implementations of Zeno dynamics, as
already demonstrated in previous works [9].

Similar schemes have been proposed as a natural way to
determine the distribution of arrival times, or the probability
that a particle spends a certain time period in a given region.
These two problems have been interwoven from the very
beginning of the modern history of the Zeno effect [10].
Nevertheless, in practical terms they tend to diverge since in
the Zeno effect the standard formalism is used to compute
probabilities at given time instants. Useful details about
the difficulties and efforts of formalizing time in quantum
mechanics may be found in Ref. [11].

II. AN OBSERVED FREELY MOVING PARTICLE

For simplicity, we consider a free particle of mass m moving
in one dimension x. At a time t = 0, the wave function of the
particle is described by ψT (x,0) = ψ(x) exp(ipx/�)rect(x/a),
where rect(ξ ) = 1 for |ξ | � 1 and 0 otherwise, with∫ a

−a

dx|ψ(x)|2 = 1. (1)

The particle is then confined in [−a,a] with a probability
density |ψ(x)|2, and moves at a velocity v = p/m. As time
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passes, a measurement device is used to monitor whether the
particle remains in [−a,a] or not. In the negative case, a click
is heard and the particle is eliminated from the system. After
a time t , the probability that the particle remains in [−a,a] is

P1 =
∫ a

−a

dx|ψ(x,t)|2, (2)

where ψ(x,t) is the wave function at the time t given by the
time-dependent Schrödinger equation

i�
∂ψ

∂t
= − �

2

2m

∂2ψ

∂x2
(3)

with the initial condition ψT (x,0). After a positive mea-
surement, the particle is certainly in [−a,a] so that the
state of the particle is described by the wave function
ψT (x,t) = ψ(x,t)rect(x/a)/

√
P1, i.e., is projected in [−a,a]

and normalized to unity. The probability P1 is smaller than
unity because the wave function translates on average at
velocity v, and also because it spreads.

Suppose now that we perform N of the above measurements
within the time t at equispaced intervals t/N . Starting again
with ψT (x,0), the wave function experiences N of the above
cascaded transformations. For example, from the (n − 1)th to
the nth measurement (n = 1,2, . . . ,N ),

ψT

(
x,

(n − 1)t

N

)
evol→ ψ

(
x,

nt

N

)
(4)

meas→ ψT

(
x,

nt

N

)
= ψ

(
x,

nt

N

)
rect(x/a)√

P
(n)
N

, (5)

where

P
(n)
N =

∫ a

−a

dx

∣∣∣∣ψ
(

x,
nt

N

)∣∣∣∣
2

(6)

is the probability that the particle is found in [−a,a] at the
nth measurement after having been found in [−a,a] at the
(n − 1)th measurement. After the time t , the particle is
in [−a,a] only if all measurements were positive, with a
probability equal to the product of the individual probabilities:

PN =
N∏

n=1

P
(n)
N . (7)

The particle can be said to slow down its free motion during the
time interval t of frequent observations if the probability PN

of finding the particle in the original position [−a,a] is greater
than the probability P1 with only a final measurement. In this
situation, a Zeno effect can be said to occur in the moving free
particle.

For more general quantum systems, Facchi and Pascazio [4]
have shown that in the limit of infinitely frequent measure-
ments N → ∞, which is considered to be equivalent to a
continuous measurement, the particle becomes trapped in
an infinite potential well in [−a,a], experiencing a unitary
evolution, or Zeno dynamics, preserving the norm (P∞ = 1).
This approach does not consider the nonunitary (PN < 1)
Zeno dynamics below this limit, and how it is reached for
large and increasing N . In particular, trapping the particle
is independent of its dynamical properties in the limit of

continuous observation, but this is not true with a finite number
of measurements.

III. ZENO EFFECT IN THE OBSERVED FREELY
MOVING PARTICLE

The physical magnitudes that are actually at work in
this problem are evidenced by introducing the dimensionless
distance ξ = x/a and the dimensionless time τ = (v/2a)t ,
i.e., the time in units of the time 2a/v that the wave function
takes to travel its own length 2a, so that at τ = 1 the
probability of finding a classical particle in its original location
is zero. With these variables, the initial wave function reads
ψT (ξ,0) = ψ(ξ ) exp(isξ )rect(ξ ), where s = pa/� = mva/�

is an action in units of �. Starting with ψ(ξ ) such that∫ 1

−1
dξ |ψ(ξ )|2 = 1, (8)

cascaded free evolution from one measurement to another is
performed according to the normalized Schrödinger equation

∂ψ

∂τ
= i

s

∂2ψ

∂ξ 2
, (9)

measurements are performed as in Eq. (5) with rect(ξ )/P (n)
N ,

where

P
(n)
N =

∫ 1

−1
dξ

∣∣∣ψ (
ξ,

nτ

N

)∣∣∣2
, (10)

and the probability of finding the particle in its original location
[−1,1] after the N measurements is PN = ∏N

n=1 P
(n)
N . The

natural time at which to enquire whether the particle remains
in [−1,1] is the time τ = 1 that the particle would classically
take to leave [−1,1]. Once this time is fixed, the dynamics
of the observed free particle depends only on the number of
measurements N and on the dimensionless action s.

We are particularly interested in the behavior of PN as
N is large, and in particles featuring a definite translation
movement, like Zeno’s arrow. In the quantum context this
means that the wave function does not experience a strong
deformation due to time diffraction spreading at τ = 1.
Imposing then the requirement that the characteristic time
ma2/� of time diffraction is longer than 2a/v, we find the
condition s > 2 for the action. The Zeno dynamics in the
opposite regime where time-diffraction spreading dominates
over translation (s < 2) has been studied in Ref. [9]. In the limit
s → ∞, the freely evolving wave function does not experience
any transformation other than a rigid translation with a fully
defined momentum, which can be considered in this context
to represent the limit of a moving classical particle. Indeed,
for wave packets obeying the Heisenberg uncertainty relation
a�p ∼ �, we have �p/p ∼ 1/s, meaning that the uncertainty
�p in momentum becomes negligibly small compared to p in
the limit s → ∞.

We have simulated with a numerical code the problem
described above in a grid of points ξi of finite size, verifying
in all simulations that the grid size and number of points are
large enough so that any effects of finiteness and discretization
are negligible. The particular choice of the initial, smooth
wave function ψ(ξ ) filling the region [−1,1] does not alter
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FIG. 1. (Color online) (a) Probability PN that a moving particle
remains in its original location at the time that the particle would
classically take to leave it, as a function of the number N of
intermediate measurements and the action s of the particle. (b)
Probability on increasing the number of measurements and fixed
action. (c) Probability on increasing the action and fixed number of
measurements.

substantially the results described below, particularly for
large N . For convenience we have chosen the Gaussian
wave function ψ(ξ ) ∝ exp(−ξ 2) in most of the numerical
simulations.

Figure 1(a) shows the probability PN that the particle is
found in [−1,1] at τ = 1 for different values of N and s. The
probability PN for fixed values of s and variable N and for
fixed N and variable s are displayed in Figs. 1(b) and 1(c),
respectively. As seen, PN always increases with the number of
measurements N , approaching unity in the limit N → ∞, as
expected from [4] and regardless of the action s of the particle
[Fig. 1(b)]. However, as s increases, more and more mea-
surements are needed to obtain the same increase of the
probability. Indeed, the probability of stopping the particle
with any given value of measurements N approaches zero as
the action of the particle increases [Fig. 1(c)]. This means
that the Zeno effect is less effective as the particle becomes
classical, and disappears as s → ∞. Provided N is large, the
probability PN is numerically found to depend only on the
quotient N/s. Thus, as the action s is increased by a certain
factor, the number of measurements must be increased by the
same factor in order to maintain the probability.

As a more specific example, Fig. 2(a) shows the squared
modulus of the wave function of a particle with s = 8 at
the initial time τ = 0 (dashed curve) and at the final time
τ = 1 after N = 4, 16, 128, and 1024 measurements (solid
curves). For a visualization of the increasing probabilities

〈ξ
〉

〈κ
〉

FIG. 2. For a particle with s = 8 initially in [−1,1], (a) probabil-
ity density before (dashed curve) and after free evolution for a time
τ = 1 with N intermediate measurements; (b), (c) time evolution of
the expected values of the position 〈ξ〉 and momentum 〈κ〉 during free
evolution with N intermediate measurements; (d) probability that the
particle remains in [−1,1] at the nth intermediate measurement as a
function of the time τ = n/N of the measurement.

PN , the wave function is not normalized to unity after the
last measurement, but to PN . Some aspects of the Zeno
dynamics from τ = 0 to τ = 1 can be seen in Figs. 2(b)–2(d).
Figures 2(b) and 2(c) depict the temporal evolution of the
expected values of the position 〈ξ 〉 and of the momentum 〈κ〉
[κ = −i∂ξ = −i(a/�)∂x is the dimensionless momentum] in
the case that the particle is found in [−1,1] at τ = 1. The values
for the unobserved motion are indicated by dashed lines. Each
measurement causes a sudden shift in the mean position and
momentum, resulting in an almost reflected motion at τ = 1.
Except for a very small number of measurements, this effect is
seen to be substantially independent of N and s. To illustrate
how the increase of the final probability at τ = 1 is furnished
during the observed motion, Fig. 2(d) shows the probability∏n

i=1 P
(i)
N that the particle remains in [−1,1] after the nth

intermediate measurement as a function of time τ = n/N .
While in the limit of infinite measurements this probability is
always unity, with finite N this probability diminishes in each
intermediate measurement. The point to be understood is why
an increasing number of measurements, each one causing a
diminution of the probability, i.e., increasing the number of
steps down in Fig. 2(d), leads to a higher final probability
PN < 1 at τ = 1, and why this probability depends on the
action of the particle.

IV. HIGH-ORDER TIME-DIFFRACTION MODES
IN THE ZENO DYNAMICS OF THE OBSERVED FREELY

MOVING PARTICLE

An explanation of the above facts requires a closer look at
the dynamics of the observed free evolution. If we prolong
it up to longer times (maintaining the frequency of the

062131-3



MIGUEL A. PORRAS, ALFREDO LUIS, AND ISABEL GONZALO PHYSICAL REVIEW A 90, 062131 (2014)
〈ξ

〉

〈κ
〉

FIG. 3. (a), (b) For a particle with s = 8 initially in [−1,1], the
position probability densities and momentum probability densities
before (dashed curves) and after free evolution for a time τ = 4 with
N = 4096 intermediate measurements (solid curves). (c), (d) For par-
ticles with s = 8 and s = 14 initially in [−1,1], the time evolution of
the expected values of the position 〈ξ〉 and momentum 〈κ〉 during free
evolution with N = 4096 intermediate measurements. (e), (f) The
same as in (a) and (b) except that s = 14.

measurements), e.g., from τ = 1 with N = 1024 to τ = 4
with N = 4096 in Fig. 3, we observe that the incipient wave
structure with five main maxima (for s = 8) already observed
at τ = 1 [Fig. 2(a)] becomes more sharply defined with
(close to) zero intermediate minima [Fig. 3(a)]. In momentum
representation, the wave function

φ(κ,τ ) = 1√
2π

∫
dξψ(ξ,τ ) exp(−iξκ), (11)

with an initial single probability maximum at κ = s, retains
that maximum at κ 	 s and develops a symmetric maximum
at κ 	 −s [Fig. 3(b)]. The relative amplitude of the different
maxima in |ψ(x,τ )|2 fluctuate with time, making the average
position 〈ξ 〉 also oscillate in time, and the relative amplitudes
of the two maxima of |φ(κ,τ )|2 also fluctuate, making the
average momentum 〈κ〉 oscillate also. All these fluctuations are
however damped in time, as observed in Figs. 3(c) and 3(d) for
the average position and momentum. This description holds
irrespective of the value of s > 2 provided that the number
of measurements N is large, except the number of maxima
formed in the long-term evolution. In Figs. 3(c)–3(f) for s =
14, for example, the same behavior is observed except that the
number of maxima in |ψ(ξ,τ )|2 is nine and the two maxima
of |φ(κ,τ )|2 are centered at κ 	 ±14.

The dynamics above strongly recalls the well-known
optical-wave dynamics of the formation of high-order diffrac-

tion modes in a Fabry-Pérot resonator (or equivalently, the
high-order diffraction modes in cascaded diffracting aper-
tures). Translated to the quantum mechanical language and
notation, a “time-diffraction” mode is a solution ψl(ξ ) of the
integral equation∫ a

−a

dx ′K(x ′ − x)ψl(x
′) = γlψl(x), (12)

where

K(x ′ − x) =
(

m

2πi��t

)1/2

exp

[
i

m

2��t
(x ′ − x)2

]
(13)

is the kernel of the free-particle propagator for a time
�t between two measurements. Equation (12) states that a
mode ψl(x) self-reproduces in [−a,a] from one projective
measurement to a subsequent measurement after a time �t

(from one to another planar mirror of width 2a separated by a
certain distance), aside from a complex constant γl . Given �t

and the interval [−a,a], there exists an infinite numerable set
of modes ψl(ξ ), l = 1,2, . . . , whose probability distributions
|ψl(ξ )|2 have l maxima and l − 1 intermediate nodes. In this
respect, these time-diffraction modes resemble the stationary
states of an infinite potential well in [−a,a]. In particular, for
high-order l, the l maxima in 2a of the mode ψl(ξ ) imply that
the wave function φl(p) in momentum representation features
two opposite maxima at p 	 ±�πl/2a. They differ from
perfect standing waves in that they are not zero at ±a. A portion
of the wave function escapes from [−a,a] during the time
�t and is therefore removed in the projective measurement,
which causes the probability of finding the particle in [−a,a]
(the light power in optics) after the measurement to be reduced
by a factor |γl|2. This quantity is well known in the context
of optical resonators, and is given, in quantum mechanical
notation, by [6]

|γl|2 	 1 − 0.12 l2

(
2π��t

ma2

)3/2

, (14)

provided that (ma2/2π��t) (the resonator Fresnel number)
is larger than unity. Evaluation of the exact shape of the
diffraction modes requires solving the integral equation (12).
Alternatively, and in a more practical approach, a wave mode
ψl(x) defined by Eq. (12) tends to emerge spontaneously upon
repeated projections in [−a,a] at time intervals �t (repeated
bounces in the resonator) starting from a suitable excitation
ψT (x,0).

This theory and the above numerical results suggest that
a large number N of projective measurements in [−a,a]
performed within a time t , starting with a particle in [−a,a]
with a momentum wave function φT (p,0) sharply peaked at
p (�p/p ∼ 1/s), tends to excite the mode in [−a,a] with
�t = t/N and the order l such that its momentum maximum
�πl/2a is closest to p, that is, the mode

l ≈ 2ap

π�
= 2

π
s. (15)

This relation accounts, for example, for the l = 5 and l = 9
maxima for excitation with s = 8 and s = 14, respectively, in
Fig. 3. Equation (14) with �t = t/N and the above value of
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FIG. 4. (a) For s = 8, and for several numbers of total measure-
ments N within τ = 4, the probability that the particle remains in
[−1,1] at the nth intermediate measurement as a function of the
time τ = 4n/N of the measurement. The solid curves represent the
numerically evaluated values and the dashed curves the theoretical
predictions. (b) Probability PN that a moving particle remains in
[−1,1] after N intermediate measurements within τ = 1 as a function
of the action s of the particle. The circles represent the numerically
evaluated probabilities and the dashed curves the predictions of
Eq. (17).

l yields

P
(n)
N ≈ 1 − 0.12

(
2ap

π�

)2 (
2π�t

ma2N

)3/2

= 1 − 0.12

(
2

π
s

)2 (
4πτ

Ns

)3/2

(16)

for the probability of finding the particle in [−a,a] in the
nth measurement after having been found in [−a,a] in the
(n − 1)th measurement, under the assumption that the mode is
already formed at the times of these two measurements. This
probability is independent of n, and increases with increasing
N [the heights of the steps down in Fig. 2(b) diminish
with increasing number of steps, N ] fast enough so that the
probability that the particle remains in [−a,a] after the N th
measurement at τ , given by

PN =
N∏

n=1

P
(n)
N ≈

{
1 − 0.12

(
2

π
s

)2 (
4πτ

Ns

)3/2
}N

, (17)

approaches unity as N increases. Also, for N → ∞, use of
Newton’s binomial theorem leads to the approximate asymp-
totic expression PN ≈ 1 − 1.08(sτ/N )1/2, which accounts for
the numerically observed dependence of the probability on the
quotient N/s in this limit, and for the increasing difficulty of
stopping the particle as its momentum becomes larger, as in
the case of classical arrows.

As a theory-numerics comparison, Fig. 4(a) represents
the probability

∏(n)
i=1 P

(i)
N that the particle remains in [−1,1]

after the nth intermediate measurement simulated numerically
(solid curves) and given by the above theory (dashed curves)
for a particle with s = 8 and several values of the number
of total measurements N within τ = 4. The good agreement
between theory and numerics is surprising if we consider that
the higher-order mode is formed only gradually from the initial
wave function ψT (x,0) (the mode is not even fully formed at
the final time τ = 4, as seen in Fig. 3).

Finally, the circles in Fig. 4(b) replicate the numerically
obtained values of the probability already shown in Fig. 1(c),
that is, the probability of finding the particle in [−1,1] at
τ = 1 as a function of the action s of the particle for a few
values of N . The dashed curves in Fig. 4(b) represent the
theoretical predictions of Eq. (17). These curves are seen to
explain the Zeno effect of freezing the particle as the number
of measurements increases, and its gradual ineffectiveness as
the action of the particle increases.

V. CONCLUSIONS

We have analyzed a simple implementation of the observa-
tion of the free evolution of a system mimicking the famous
problem of Zeno’s arrow. We have shown that a moving
object tends to be stopped by observation of its location
with a probability that always increases with the frequency
of the observations. For a given observation rate, on the other
side, the effectiveness of stopping the object decreases as the
momentum and size of the object increases, which brings to
mind the fatuousness of stopping a classical object like Zeno’s
arrow by simple observation.

The wave function of the stopped particle tends to be similar
to a high-order diffraction mode of a Fabry-Pérot resonator,
with a symmetric momentum distribution about p = 0 and
therefore 〈p〉 = 0. Measurements introduce lossy reflections
that create a coherent superposition of the initial system with
its equivalent moving backwards, leading to a neat example of
a Schrödinger cat state. Since the system state is always pure,
a momentum distribution such as in Fig. 3 reveals the coherent
superposition of two arrows flying in opposite directions.

We emphasize that mode formation and the emergence of
the Schrödinger cat states hold just in the case of finite N .

FIG. 5. (Color online) Wigner functions for (a) the initial and (b)
evolved states in Figs. 3(a) and 3(b).
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Otherwise, in the infinite limit, we will get a particle bouncing
back and forth within the interval, so that the two opposite
momentum values will not coexist. No stationary distribution
will be approached. The strange nature of such Schrödinger
cat state can be well expressed by the negativities of its Wigner
function [12],

W (ξ,κ) = 1

π

∫
duψ(ξ + u)ψ∗(ξ − u)e−2iκu, (18)

which is considered to be the best candidate for a simultaneous
distribution of position and momentum. In Fig. 5(a) we have
represented the Wigner function of the initial state in Figs. 3(a)
and 3(b). The Wigner function shows no negativities other
than small ripples caused by the truncation of the initial
Gaussian wave function. On the other hand, the Wigner
function of the evolved state in Fig. 5(b), corresponding
to the solid curves in Figs. 3(a) and 3(b), displays clear

negativities where the typical structure of a Schrödinger cat
can be recognized. There are two large positive-momentum
peaks located at κ = ±8 and in between a series of positive and
negative interference peaks reflecting the coherent nature of the
superposition. These negativities reveal a clear incompatibility
of the evolved particle with classical physics. Alternatively,
this structure has a natural counterpart in classical wave optics
as indicating coherence properties that cannot be accounted
for in geometrical optics [13].
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Muñoz, Y. Ban, and J. G. Muga, Phys. Rev. A 83, 043608
(2011).

[8] J. M. Raimond, C. Sayrin, S. Gleyzes, I. Dotsenko, M. Brune,
S. Haroche, P. Facchi, and S. Pascazio, Phys. Rev. Lett. 105,
213601 (2010); J. M. Raimond, P. Facchi, B. Peaudecerf, S.
Pascazio, C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, and
S. Haroche, Phys. Rev. A 86, 032120 (2012); A. Signoles, A.

Facon, D. Grosso, I. Dotsenko, S. Haroche, J.-M. Raimond, M.
Brune, and S. Gleyzes, Nat. Phys. 10, 715 (2014); F. Schäfer, I.
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