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In the context of (far-field) multislit interferometry we investigate the utility of two formulations of uncertainty
in accounting for the complementarity of spatial localization and fringe width. We begin with a characterization
of the relevant observables and general considerations regarding the suitability of different types of measures.
The detailed analysis shows that both of the discussed uncertainty formulations yield qualitatively similar results,
confirming that they correctly capture the relevant tradeoff. One approach, based on an idea of Aharonov and
co-workers, is intuitively appealing and relies on a modification of the Heisenberg uncertainty relation. The
other approach, developed by Uffink and Hilgevoord for single- and double-slit experiments, is readily applied
to multislits. However, it is found that one of the underlying concepts requires generalization and that the choice
of the parameters requires more consideration than was known.
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I. INTRODUCTION

Multislit experiments are central to the foundational consid-
erations in quantum mechanics since the Bohr-Einstein debate.
Despite that, a number of open questions remain regarding the
suitability of the various uncertainty formulations proposed to
address the inadequacy of the Heisenberg uncertainty relation
in this context. Uncertainty relations are intended to express
the qualitative understanding about microscopic systems that is
embodied in the principle of uncertainty. However, a particular
formulation of uncertainty comes with a scope of validity and
might not capture the relevant tradeoff in a given situation. For
instance, take the so-called Heisenberg relation

�(Q,�) �(P,�) � 1/2, (1)

relating the standard deviation of position and of momentum in
state � in the form of a tradeoff relation. (We are using units
such that � = 1.) The fact that the Heisenberg relation fails
at quantifying the uncertainty of quantum states prepared in
multislit experiments is well documented. The particular cause
of this failure, however, is not agreed upon: Although it was
suggested that the Heisenberg relation is unsuitable because
of the inadequacy of standard deviations, it is that momentum
is not the correct observable to consider. In fact, we show
here that a Heisenberg-type uncertainty relation yields the
same qualitative results—by virtue of appropriately chosen
observables—as an alternative formulation of uncertainty,
which does without standard deviations.

While experiments suggest that the spatial localization at
the aperture mask and the fringe property of the interference
pattern constitute a pair of incompatible observables, whose
relationship is described by an uncertainty tradeoff, the precise
character of this relationship or the particular form of the
relevant observables is not obvious. We address both these
matters at a general level. This results in a better understanding
of the significance of the envelope to the interference pattern
and the functions governing its fine structure. Thus we can
address the suitability of different kinds of measures at an
equally general level, concluding that measures of fringe width
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capture the relevant observable in the context of multislit
experiments. In this way, the general discussion also serves
as a justification of the particular choice of uncertainty
formulations discussed here, as each employs a measure of
fringe width. Furthermore, the insights obtained are found
valuable for the example applications considered.

We then proceed to address the failure of the Heisenberg
relation. Two courses of action are available for obtaining a
correct expression of the uncertainty principle for applications
in multislit interferometry: The already established Heisenberg
relation could be modified or replaced. Both options are
discussed and compared. We explore a modification based
on work by Aharonov, Pendleton, and Peterson (APP), who
proposed an uncertainty formulation by way of a heuristic
argument presented in Ref. [1]. Also, we investigate the
alternative relation that was derived by Uffink and Hilgevoord
(UH) in their extensive study of single- and double-slit
experiments reported in Ref. [2] and related work. Prima facie
both formulations of uncertainty appear more suitable than
the Heisenberg relation for two reasons. First, two distinct
measures are used, reflecting the two different properties
that are measured—that being the spatial localization on the
one hand and the fringe width on the other. Second, both
formulations of uncertainty reflect the structure observed in
multislit experiments.

II. GENERAL CONSIDERATIONS

From experimental observation it was concluded that
the particular illumination of the aperture mask is related to the
character of the fringes seen on a distant detection screen. The
change in the interference pattern that results from illuminating
more slits suggests that the spatial localization (related to the
number of illuminated slits) and the fringe property (related
to the appearance and shape of the fringes) constitute a pair
of incompatible observables, whose relationship is described
by an uncertainty tradeoff. The precise character of this
relationship or the particular form of the relevant observables,
however, is not obvious. For instance, the fringe property could
be expressed using a measure of fringe width (two examples
of which are discussed below in detail) or fringe contrast
(also referred to as fringe visibility). The latter is particularly
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common in the context of Mach-Zehnder interferometry.
These two measures are, however, not equally suitable for
a description of multislit experiments.

For the present, let us consider experiments with uniformly
illuminated aperture masks of 2d slits, where d can be any
non-negative integer. These setups prepare quantum states
ψd , whose momentum-space representation ψ̂d (k) can be
expressed in terms of two functions ĝd (k) and f̂d (k),

ψ̂d (k) ∝ ĝd (k) f̂d (k), (2)

up to some normalization factor. The function ĝd (k) describes
an envelope; it is referred to as the effective envelope. The
function f̂d (k) describes the fringe property, i.e., the fine
structure of the momentum-space wave function. In previous
work [3], a recursive relationship between the wave functions
was discussed,

ψ̂d (k) ∝ ψ̂d−1(k) cos , (3)

arguing that Eqs. (2) and (3) should be identified, giving

ĝd (k) = ψ̂d−1(k), (4)

f̂d (k) = cos . (5)

According to Eq. (5), the fine structure of the momentum-
space wave function ψ̂d (k) is determined by a simple cosine.
In fact, this single cosine is all that differentiates ψ̂d (k)
from ψ̂d−1(k). As this cosine does not change the overall
localization property of the interference pattern, ψ̂d (k) shares
its localization property with ψ̂d−1(k). Applying this argument
repeatedly, we conclude that the localization property of ψ̂d (k)
is determined by ψ̂0(k).

The quantum state ψ0 is prepared through illumination of a
single slit. However, diffraction is independent of interference,
while the present investigation is about superposition states
and the resulting interference phenomena. The given choice
of aperture, which implies the particular form of ψ0(x),
determines the overall localization properties of the various
ψ̂d (k) in the form of an envelope ψ̂0(k). We refer to ψ̂0(k) as
the fundamental envelope. While the fundamental envelope is,
in general, only part of the effective envelope, it is qualitatively
distinct in that it depends on diffraction. Accordingly, a
measure of the fringe property should not depend on the
fundamental envelope. In fact, there should not be any
dependence on the effective envelope, but only dependence
on the function actually determining the fine structure of
the momentum-space wave function, i.e., Eq. (5). Note that
any measure of fringe contrast necessarily has this unwanted
dependence.

It follows naturally that the particular wave function chosen
for modeling the quantum state prepared by a single slit is not
important. Typically, the wave function prepared by a single
slit is modeled using a rectangular function

ψ0(x) = reca(x),

of width a; see Eq. (19) for a formal introduction of reca . This
choice is often rejected on the basis of the diverging standard
deviation of momentum, i.e., �(P,ψ0) = ∞. However, as we
argued, this function is not part of the relevant observable.
Hence the concern regarding the diverging standard deviation

is unnecessarily restrictive in the given context, and only
important when (also) considering single-slit diffraction.

III. UNCERTAINTY BASED ON THE APP MODEL

This formulation of uncertainty is based on a modification
of the Heisenberg relation (1). It follows from the realization
that the observables of multislit interferometry are not Q and
P , but rather a discretized spatial localization (related to the
number of illuminated slits) and the width of single fringes
rather than the width of the entire momentum distribution.
A detailed derivation of this uncertainty formulation was
provided in previous work [3]. Here only the necessary
definitions are provided in order to use this uncertainty
formulation and the interested reader is referred to the earlier
discussion.

The relevant observables are obtained using the following
decomposition of Q and P :

Q = Qmod + QT , (6)

P = Pmod(n) + PK (n), (7)

where Q is decomposed into a T -periodic part Qmod and a
remainder QT , and P into a Kn-periodic part Pmod(n) with
remainder PK (n). We use the following abbreviations:

K = 2π/T , (8)

Kn = 2π/(nT ). (9)

The abstract quantity n is used to characterize interference
wave functions below. The periodic operators are defined in
terms of T and Kn,

Qmod = Q mod T , (10)

Pmod(n) = (P + Kn/2 mod Kn) − Kn/2 . (11)

The definitions of the operators QT and PK (n) follow from
Eqs. (6) and (7). For wave functions �̂(k) that vanish
periodically,

�̂((j + 1/2)Kn) = 0 for each j ∈ Z (12)

(see Ref. [3] regarding this restriction), we have

�(QT ,�)�(Pmod(n),�) � 1
2 . (13)

This is the first uncertainty relation we wish to discuss.
Illustrations of QT and Pmod(n) are displayed in Fig. 1.
Although it may seem like a formidable task to compute the
standard deviations of the operators QT and Pmod(n) with
complicated wave functions, we are going to find that this
decomposition actually leads to marvellous simplifications for
the considered quantum states, and to intuitively satisfying
results.

IV. UNCERTAINTY AS FORMULATED BY UH

In their extensive investigation of uncertainty in the con-
text of single- and double-slit experiments, UH define two
measures to express uncertainty [2]. They define the overall
width �N (�) of a normalized wave function � and the mean
fringe width ωM (�) (in momentum space). They proceed to
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FIG. 1. In (a) QT is depicted in position space; it is defined
indirectly through Eqs. (6) and (10), whereas (b) illustrates the
operator Pmod(n), as defined in Eq. (11), in momentum space as a
function of k.

show that an uncertainty relation exists for these quantities,
expressing a tradeoff between spatial localization on the one
hand, and fine structure in momentum space on the other: The
product of �N (�) and ωM (�) is bounded from below. The
same analysis applies independently to �̂ (formally obtained
by exchanging � for �̂), and hence �N (�̂) ωM (�̂) is bounded
from below as well. However, we focus on � in our present
investigation.

The overall width �N (�) of a quantum state � is the
smallest interval that contains probability N :

�N (�) = min

{
|p1 − p2| :

∫ p2

p1

|�(x)|2dx = N

}
. (14)

The parameter N is a number less than 1, although chosen
close to 1. Note that the value of the overall width necessarily
reflects the discreteness of the aperture mask. In the analysis
below, particularly of aperture masks with a small number of
illuminated slits, this is going to lead to notable discontinuous
jumps of the overall width.

The fine structure of �̂ is quantified through the mean fringe
width ωM (�), which is the smallest shift such that the inner
product of �̂(k) and the shifted �̂(k − s) is associated with a
value M:

ωM (�) = min

{
s :

∣∣∣∣∫ ∞

−∞
�̂∗(k) �̂(k − s)dk

∣∣∣∣ = M

}
. (15)

The parameter M is chosen smaller than N ; see Eq. (18) below.
This measure is conceptually rather different; it quantifies how
much the momentum-space wave function �̂(k) deviates from
precise values of momentum: ωM (�) is not sensitive to the
number of momentum peaks, but to how sharp they are. Similar
approaches to quantifying uncertainty are also found in other
work; for example Ref. [4].

For a normalized quantum state �, the following uncer-
tainty relation, derived and proved by Uffink and Hilgevoord
[2], gives a lower bound to the overall width �N (�) and the
mean fringe width ωM (�):

�N (�) ωM (�) � 2 arccos

(
M + 1

N
− 1

)
, (16)

with the following two conditions required:

M2 + N2 � 1, (17)

M � 2N − 1. (18)

Each of the acceptable pairs (N,M) yields another acceptable
value for the uncertainty product. While UH found that the ex-
act choice of N and M was not important (for the applications
they considered), we arrived at a different conclusion, which
is detailed in the analysis below. There are, however, certain
qualitative results that indeed might not depend on N or M .
For example, the exact choice of M is entirely irrelevant for
an analysis of the double-slit state so long as N is chosen very
close to unity. Then, the uncertainty is approximately equal to
the lower bound for any M (strictly true for N = 1).

UH state that (in adapted notation) “ωM (�) and �N (�) are
governed by the slit separation T , and ωM (�̂) and �N (�̂) by
the slit width a.” We generalize their statement: The slit width
a governs �N (�̂) and ωM (�̂), while the fringe width b governs
�N (�) and ωM (�). (For the examples we consider below, b

can be identified with Kn.) Previously, the latter was governed
by the slit separation T , but T is directly related to �N (�)
and ωM (�) only in the special case considered by UH. In fact,
T is a mere scaling parameter and, as would be expected, the
value of the uncertainty product is independent of T . This is
a straightforward consequence of the scaling property of the
Fourier transform.

V. A SELECTION OF QUANTUM STATES

We are using the most common (and simplest) description
of multislit experiments: A single illuminated slit is assumed
to prepare a quantum state described by a rectangular function
of slit width,

reca(x) =
{

1/
√

a for x ∈ [−a/2,a/2],
0 for x /∈ [−a/2,a/2],

(19)

while a general aperture mask yields a suitable superposition
of those:

ψ(x) =
∑

j

cj reca

(
x + j

T

2

)
, (20)

where
∑

j |cj |2 = 1. Figures 2 and 3 depict examples of such
wave functions. A wave function prepared through uniformly
illuminating an aperture mask with four slits is displayed in
Fig. 2(a). The position-space representation of such a quantum
state, also referred to as the spatial wave function, is specified
by

ψn(x) = 1√
2n

n∑
j=1

{reca[x + (2j − 1)T/2]

+ · · · · · · + reca[x − (2j − 1)T/2]}. (21)
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FIG. 2. The state ψ2 is illustrated; in (a) the position-space
representation |ψ2(x)| and in (b) the momentum-space representation
|ψ̂2(k)|. The parameters have been chosen such that a/T = 1/4.

The associated momentum probability distribution is depicted
in Fig. 2(b). The momentum-space wave function ψ̂n(k) is
given by

ψ̂n(k) =
√

a

nπ
sinc

(
a

2
k

) n∑
j=1

cos. (22)

For future reference, we define

fn(y) =
n∑

j=1

cos(2j − 1)y]. (23)

Note that the central fringe of ψ̂n(k) is supported on an
interval of size Kn, which thus makes a suitable measure of
fringe width.

A different class of wave functions that is discussed
here is depicted in Fig. 3. These quantum states provide an
alternative way of producing quantum states with increasingly
fine fringes by way of increasing the size of the nodes, which

FIG. 3. The state φ2 is illustrated; in (a) the position-space
representation |φ2(x)| and in (b) the momentum-space representation
|φ̂2(k)|. The parameters have been chosen such that a/T = 1/4.

is directly related to the shape of the fringes found between
two neighboring nodes. These states are specified according
to

φn(x) = [g ∗ (IIIT · hn)](x), (24a)

φ̂n(k) = [̂g · (IIIK ∗ ĥn)](k). (24b)

Throughout the present text the convolution operation is
indicated using the asterisk (∗). The Dirac comb is defined as

IIIT (x) =
∞∑

j=−∞
δ(x − T/2 − jT ), (25)

IIIK (k) =
√

2π

T

∞∑
j=−∞

(−1)j δ(k − jK), (26)

where δ denotes the delta distribution. Under Fourier transfor-
mation, the Dirac comb IIIT is mapped onto a Dirac comb IIIK
with reciprocal spacing and a numerical factor. The function
g describes the slit shape,

g(x) = reca(x), (27)

while the function ĥn is associated with the fringe shape and
corresponds to

ĥn(k) =
{√

2/Kn cos πk/Kn for k ∈ [−Kn/2,Kn/2],
0 for k /∈ [−Kn/2,Kn/2].

(28)

The function ĥn(k) is supported on an interval of size Kn,
which thus makes a suitable measure of fringe width.

Our parametrization is such that φ1 corresponds to ψ1

while for d � 2, a joint eigenfunction of commuting functions
of position and momentum is obtained. These quantum
states are eigenstates of periodic position and momentum
projectors, which were used earlier to explain the observation
of seemingly incompatible properties in Ref. [5]. They share
the underlying structure with the uncertainty formulation
discussed in Sec. III: These states are constructed in light of
the compatibility of commuting functions of position and mo-
mentum that naturally occur in multislit experiments, whereas
the uncertainty formulation addresses the incompatibility of
the observables of multislit interferometry. Hence these states
make natural candidates for further examination.

The quantity n expresses the “order of interference.”
Intuitively speaking, as n increases the quantum states feature
more pronounced fringes. In the case of φn there is no particular
number of illuminated slits that would serve to classify the
state, because this number is in general infinity (although the
intensity may be negligible in all but a small, finite number
of illuminated slits). Hence we use the abstract quantity n,
which is associated with the support of the principal fringe;
it captures the relevant information about interference and the
similarities between ψn and φn.

VI. UNCERTAINTY ANALYSIS PART 1

In this section we present an application of the uncertainty
formulation based on the work of Aharonov et al. [1], to the
quantum states introduced in the previous section.
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FIG. 4. The uncertainty product of Eq. (13) is illustrated for ψn

(dots) and φn (crosses). Note that the uncertainty products coincide
for n = 1, because ψ1 = φ1.

A. Uncertainty of ψn (part 1)

In earlier work we already discussed an application of this
uncertainty formulation to the states ψn [3]. In the interest of
a self-contained exposition, we review the earlier results in
preparation for further discussion below.

An expression of the standard deviation �(QT ,ψn) is easily
obtained analytically [6],

�(QT ,ψn) = T

√
n2

3
− 1

12
. (29)

The fringe width is resolved using the operator Pmod(n) that
was introduced in Eq. (11). We find

�(Pmod(n),ψn) =
(

2

Kn

∫ Kn/2

−Kn/2
k2 cos2dk

)1/2

= Kn

2π

√
π2 − 6

3
= 1

nT

√
π2 − 6

3
. (30)

Using the results of Eqs. (29) and (30), we proceed to calculate
the uncertainty product for the double-slit state ψ1 and the
large-n limit. Regarding the former we find

�(QT ,ψ1) �(Pmod(1),ψ1) = 1

2

√
π2 − 6

3
, (31)

while for the latter we obtain

lim
n→∞ �(QT ,ψn) �(Pmod(n),ψn) =

√
π2 − 6

3
≈ 0.656. (32)

We observe that this uncertainty product is smallest for the
state ψ1 and converges to a value of approximately 0.656
as n increases. This behavior of the uncertainty product is
illustrated in Fig. 4. Illuminating an increasing number of
slits of the aperture mask precisely reflects the change in fine
structure, resulting in a converging uncertainty product.

B. Uncertainty of φn (part 1)

Calculating the standard deviation of QT in state φn is
substantially more involved than it was for ψn, although the
final result is rather simple. Note that the operator QT is
sensitive only to the total probability contained in intervals of

length T . Let Pj correspond to the probability in the interval
[jT ,(j + 1)T ], where j is any integer. The standard deviation
of QT in quantum state � is given by

�(QT ,�) = T

⎡⎣ ∞∑
j=−∞

j 2 Pj −
⎛⎝ ∞∑

j=−∞
j Pj

⎞⎠2⎤⎦1/2

. (33)

An aperture mask with infinitesimal slits prepares a quantum
state �δ , indicated by the δ subscript. The variance of Q in
state �δ is given by

�(Q,�δ) = T

( ∞∑
j=−∞

(j + 1/2)2 Pj

)1/2

. (34)

Following from our assumption of even probability distri-
butions, i.e., we assume that |ψ(x)|2 = |ψ(−x)|2, the two
equations (33) and (34) are equal,

�(QT ,ψ) = �(Q,ψδ). (35)

This is shown explicitly in Appendix A. While the operator QT

is insensitive to detailed features of the probability distribution
of ψ , the state ψδ lacks them. Note that according to Eq. (35)
the spatial localization property does not depend on the shape
of the slits in general.

An explicit expression for �(QT ,φn) can now be obtained
using Eq. (35), the result of Appendix B, and ĥn as specified
in Eq. (28). We find

�(QT ,φn) = �(Q,φn,δ) (36)

= �(Q,φn) − a/12 (37)

= nT/2. (38)

The two subscripts of φn,δ in Eq. (36) denote this quantum state
as a joint eigenfunction prepared by an aperture mask with
infinitesimal slits. Equation (37) follows by the calculation
provided in Appendix B, while Eq. (38) follows from a
straightforward calculation of the standard deviation of hn.

Regarding the fine structure of φ̂n(k), note the following:
The only difference between the momentum-space wave
functions of ψ2 and φ2, depicted in Figs. 2(b) and 3(b),
respectively, is found in the effective envelope of ψ̂2, i.e., the
fact that ψ̂2 possesses secondary maxima. However, we already
discovered that the effective envelope does not contribute to
the fine structure of a wave function. We conclude immediately
that the fringe widths of ψn and φn should be identical. Indeed,
this is what we find: �(Pmod(n),ψn) can be calculated directly,

�(Pmod(n),φn) =
[

2

Kn

∫ Kn/2

−Kn/2
k2 cos2dk

]1/2

= Kn

2π

√
π2 − 6

3
= 1

nT

√
π2 − 6

3
(39)

= �(Pmod(1),φn). (40)

The first equality follows, because (a) we assume that the
fringes are supported on intervals of size Kn, and (b)
�(Pmod,φn) can be computed by considering a single interval
of periodicity without the effective envelope. Note that
according to Eq. (40), there is no benefit from adapting the
operator Pmod(n) to the given experimental setup. The operator
Pmod(n) is insensitive to the presence of extended nodes, i.e.,
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FIG. 5. The operators Pmod(1) and |φ̂2(k)|2 are depicted. This
example illustrates that for states φn the action of Pmod(1) is identical
to that of Pmod(n), because only those parts of Pmod(1) contribute
which are identical to Pmod(n). The other parts do not contribute,
because there the wave function vanishes. In the depicted example
the action of Pmod(1) is identical to that of Pmod(2). Note that the wave
function, as depicted, is not normalized.

extended intervals where the wave function vanishes. See
Fig. 5 for an illustration of this point.

The uncertainty product in state φn can now be calculated
using Eqs. (36) and (39). We obtain

�(QT ,φn) �(Pmod,φn) = 1

2

√
π2 − 6

3
. (41)

Evidently this formulation of uncertainty assigns the same
uncertainty product to φn irrespective of the particular value
of n; see Fig. 4.

VII. UNCERTAINTY ANALYSIS PART 2

In this section we investigate the uncertainty formulation
due to Uffink and Hilgevoord. Any application of this for-
mulation of uncertainty should start with choosing a suitable
pair (N,M). Although Uffink and Hilgevoord discussed the
mathematical constraints on (N,M)—Eqs. (17) and (18)—and
argued that the precise choice is not important, we found that
the results can differ: The correct choice can be made only after
careful consideration of the given problem; for our purpose that
is the discussion of Sec. II.

A. Uncertainty of ψn (part 2)

We choose N = 1. It follows from a simple consideration
of the support property of ψn(x) that the overall width of the
given state is specified by

�1(ψn) = (2n − 1)T + a , (42)

featuring linear dependence on n and an absolute term a. The
presence of the absolute term, however, is somewhat unwanted
in the context of multislit interferometry as the slit width a is
unrelated to interference. Note that its presence stems from
matters of consistency: The present uncertainty formulation
allows for analysis of single-slit states. Increasing the slit width
to a = T results in a single illuminated slit of width mT =
2nT , and the overall width must reflect this. Naturally, as

FIG. 6. An intuitive interpretation of ωM (ψ) is illustrated here for
this otherwise abstract measure. Considering a uniformly illuminated
aperture mask, the mean fringe width ωM (ψ) is equal to half the
fringe width of the central peak at height 0 � Mψ̂(k) � ψ̂(k).

the value of �N (ψn) increases, this absolute term is going to
become negligible.

The mean fringe width ωM (ψn) can be calculated and the
result is

ωM (ψn) = min

{
s :

∣∣∣∣1

n
sinc

(
a

2
s

)
fn

(
T

2
s

)∣∣∣∣ = M

}
. (43)

The function fn was defined in Eq. (23). The derivation of
Eq. (43) is provided in Appendix C, and an illustration in Fig. 6.
According to Eq. (43), the mean fringe width of ψn depends
on the slit width a. However, note the following special case:

ω0(ψn) = min

{
s :

∣∣∣∣1

n
sinc

(
a

2
s

)
fn

(
T

2
s

)∣∣∣∣ = 0

}
(44)

= min {s : cos (2n − 1)T s/2 = 0} (45)

= π/(nT ) = Kn/2. (46)

When M = 0, the value of ω0(ψn) does not depend on a,
because ω0(ψn) depends on the support property of the central
fringe only. In fact, ω0(ψn) is independent of the effective
envelope, which distinguishes this particular choice of M and
indicates that the desired features are captured. Noting that the
sinc factor does not depend on n, the additional contributions
introduced for a different choice of M are restricted to small
values of n. In general, the choice of M (and N ) is apparently
not as straightforward as Eqs. (17) and (18) suggest. Observe
that Eq. (46) simply corresponds to half the support of the
central fringe.

Using Eqs. (42) and (46), we calculate the uncertainty
product

�1(ψn) ω0(ψn) = [(2n − 1)T + a]Kn/2

= 2π − π

n
+ πa

nT
. (47)

The uncertainty product decomposes naturally into three
terms, each of which features different quantities and con-
tributes depending on the respective sign. The third term
depends on the ratio of slit width to slit separation (a/T )
and expresses the fact that for a = T any change in n would
be a scale transformation without physical effect.
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FIG. 7. Illustration of the uncertainty product given in Eq. (47)
for states ψn. Qualitatively identical behavior is displayed as was
found for APP uncertainty; compare Fig. 4.

In Fig. 7 the behavior of the uncertainty product (47) is
illustrated. We observe that this uncertainty product is smallest
for the state ψ1 and converges to a value of 2π as n increases.
The uncertainty product for ψ1 would reach the lower bound
in the limit of vanishing a/T .

B. Uncertainty of φn (part 2)

The states φn have the property that the associated fringes
are isolated for n � 2; see Fig. 3. This implies that for n � 2
the mean fringe width ωM (φn) depends only on the overlap of
a single fringe with a shifted copy. While for n = 1 we find the
same mean fringe width as we did for ψ1, because φ1 = ψ1,
for n � 2 we use Eq. (28) and obtain

ωM (φn) = min

{
s :

∣∣∣∣sinc

(
a

2
s

)[(
1 − s

Kn

)
cos π

s

Kn

+ · · · · · · + 1

π
sin π

s

Kn

]∣∣∣∣ = M

}
. (48)

The calculation leading to this result is provided in Ap-
pendix D. The min condition requires that s � Kn. Hence,
assuming s � Kn enables us to simplify the entire expression:

M = sinc

(
a

2
ωM (φn)

)[(
1 − ωM (φn)

Kn

)
cos π

ωM (φn)

Kn

+ · · · · · · + 1

π
sin π

ωM (φn)

Kn

]
(49)

It follows immediately from this result that ωM (φn) must be
directly proportional to Kn for M to remain approximately
constant across n (accurate for a/T → 0). Just as for the pre-
viously investigated ψn, Eq. (43), we find a dependence on a.
For a 	 T this dependence becomes negligible numerically,
and we ignore it under this assumption henceforth. We set

ωM (φn) = cM Kn. (50)

The non-negative number cM determines the particular value
of M; cM is necessarily smaller than or equal to unity. For
the states ψn we found a similar expression in Eq. (46) and
conclude ωM (φn) ∝ ωM (ψn). We make the arbitrary choice
cM = 1/2, which results in M = 1/π and gives

ωπ−1 (φn) = Kn/2 = π/(nT ). (51)

FIG. 8. The scaling of the overall width in state φn is depicted for
three choices of N . The numerical calculations show that asympto-
tically �N (φn) depends linearly on n. The dotted line corresponds to
Eq. (55). Observe that N = 0.25 and N = 0.5 do not make suitable
choices according to Eqs. (17) and (18), but are represented in order
to illustrate the mathematical aspects of the overall width.

Regarding the overall width �N (φn), not much can be said in
terms of analytical results. While it is fairly simple to show
that �N (φn) is approximately proportional to n, more concrete
results are difficult to obtain. The proportionality follows from
a straightforward calculation of the function determining the
overall width,

hn(x) = 1√
2π

∫ Kn/2

−Kn/2

√
2

Kn

cos ei xkdk, (52)

= H (Knx). (53)

The argument of the function H scales inversely with n, which
means that �N (φn) will approximately scale with n. Our
numerical investigation shows that �N (φn) indeed displays
this behavior in the limit of large n. See Fig. 8, which depicts
identical qualitative behavior for three different choices of N .
We conclude that

�N (φn) = πcNT n for large n. (54)

The linear dependence on T follows from the general discus-
sion in Sec. IV. The numerical factor cN is non-negative, but
otherwise undetermined. Explicit values of cN are not obtained
as easily as for cM . We approximate the value of cN using
numerical investigations. For example, inspection of the data
points in Fig. 8 suggests

�0.99(φn) ≈ 21.25T n, (55)

indicated by the dotted line displayed in Fig. 8. Using this
expression along with the result for ωπ−1 (φn) in Eq. (51), we
calculate the asymptotic behavior of the uncertainty product
for the given choices of N and M . We find that asymptotically
a precise tradeoff occurs:

�0.99(φn) ωπ−1 (φn) ≈ 7.47 for large n. (56)

The convergence of this particular uncertainty product is
illustrated in Fig. 9, showing that the uncertainty product
converges to a value of approximately 7.41. This is in good
agreement with our prediction, which was based solely on
inspection of the data points of Fig. 8.
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FIG. 9. Illustration of the uncertainty product given in Eq. (56)
for states φn. The dotted line represents the lower bound on the un-
certainty product. Compare Fig. 4, which illustrates the qualitatively
similar behavior of the uncertainty product (13) for large values of n.

A different choice of a/T would allow for φ1 to reach
the lower bound, which is illustrated in Fig. 9 by the dotted
line. It is unclear, however, whether the asymptotic limit or a
particular uncertainty product could be decreased to meet the
lower bound.

A general expression for the uncertainty product is obtained
from Eqs. (50) and (54),

�N (φn) ωM (φn) ≈ 2πNcM for large n . (57)

This is the general form of the asymptotic limit of the
uncertainty product for the states φn. It remains approximately
true for small values of n, but no definite statement can be
made due to the discrete character of the measures used. It is,
in fact, this discreteness that results in the erratic behavior of
the uncertainty product for small values of n.

VIII. COMPARISON AND CONCLUSION

We now compare the results of our example applications
and discuss the similarities and differences between the two
uncertainty formulations. We also address to what extent the
general considerations are met that were discussed in Sec. II.

The applications presented here show that both uncertainty
formulations yield qualitatively similar results. This is reas-
suring, independently confirming that the relevant physical
structure is captured. However, it is not necessarily straight-
forward to arrive at this conclusion in general terms, because
the two uncertainty formulations appear to be very different.
In actual fact, although implemented differently, the respective
measures describe very similar observables. In particular, both
uncertainty formulations feature measures that relate to the
width of the fringes. This captures the relevant observable in
accordance with the discussion of Sec. II. The particular mea-
sures employed, though, are rather different. The formulation
based on Aharonov et al. employs a measure that corresponds
to computing the standard deviation of a single fringe while ne-
glecting the effective envelope. The formulation due to Uffink
and Hilgevoord is based on the autocorrelation function of the
interference wave function, and in general features a (possibly
negligible) dependence on the fundamental envelope.

The analysis of the quantum states ψn, prepared through
uniform illumination of an aperture mask, resulted in qual-
itatively identical results. Figures 4 and 6 show that both
uncertainty products display the same behavior: Starting at
a minimal uncertainty product for ψ1, the uncertainty product
converges to some larger, finite value as n increases. However,
the uncertainty formulation due to Uffink and Hilgevoord
actually allows for the lower bound to be reached in the limit
of vanishing slit width. This noncritical dependence on the slit
width is actually somewhat unwanted for purely multislit con-
siderations. The measures used in the uncertainty formulation
based on Aharonov et al. do not depend on the slit width or
the related envelope function of the interference pattern.

The second example application involves quantum states
φn, which are characterized by their extended nodes. In this
case, for the uncertainty formulation based on Aharonov et al.
the uncertainty tradeoff is exact and the uncertainty product
constant across n. For the formulation of uncertainty due
to Uffink and Hilgevoord this is the case only in the limit
of large n, because of the discrete quality of the employed
measures. See Figs. 4 and 9. Also note that the measure of
fringe width employed by Uffink and Hilgevoord results in
a dependence on the slit width. For most considerations this
dependence may be negligible with regard to numerical results,
but poses a qualitative difference. In general, a dependence on
the particular aperture is to be expected for this uncertainty
formulation, although in some cases a particular parameter
choice may remove this dependence (as is the case for ψn).

Regarding technical aspects, we found that the formulation
of uncertainty due to Uffink and Hilgevoord is computationally
more difficult. For our second example application we resorted
to numerical analysis in order to obtain an approximate expres-
sion for the spatial localisation. (The formulation based on the
work of Aharonov et al. was not particularly straightforward
to apply to this scenario either, but a satisfying analytical result
was obtained eventually.) This is further complicated by the
two degrees of freedom N and M . Uffink and Hilgevoord found
that the exact choice of N and M is not important to the analysis
of single- or double-slit experiments—while adhering to the
conditions (17) and (18), of course. In the context of multislit
experiments, however, we found that additional insight may
be required for appropriately choosing (N,M).
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APPENDIX A

Here we show the validity of Eq. (35). In order to establish
the claim, we proceed to show that

∞∑
i=−∞

i2Pj −
( ∞∑

i=−∞
iPj

)2

=
∞∑

i=−∞
(i + 1)2Pj , (A1)
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using the following two results:

∞∑
i=−∞

iPj =
−1∑

i=−∞
iPj +

∞∑
i=0

iPj (A2)

=
∞∑
i=1

(−i)Pi−1 +
∞∑
i=0

iPj (A3)

= −
∞∑

j=0

(j + 1)Pj +
∞∑
i=0

iPj (A4)

=
∞∑
i=0

[i − (i + 1)]Pi = −1

2
. (A5)

This result is obtained using the symmetry of the probabil-
ity distribution, i.e., |ψ(x)| = |ψ(−x)|, which entails Pj =
P−i−1. A very similar calculation yields

∞∑
i=−∞

i2Pj = 2
∞∑
i=0

i2Pj − 1

2
. (A6)

Hence the left-hand side of (A1) becomes

∞∑
i=−∞

i2Pj −
( ∞∑

i=−∞
iPj

)2

= 2
∞∑
i=0

i2Pj − 3

4
, (A7)

whereas the right-hand side of (A1) becomes
∞∑

i=−∞
(i + 1)2Pj = 2

∞∑
i=0

i2Pj − 1

2
+

(−1

2

)2

+ 1

4
(A8)

= 2
∞∑
i=0

i2Pj − 3

4
. (A9)

This shows the claimed proportionality of Eqs. (33) and (34).
Note that we assume nothing about the illumination of the
aperture, only that it be symmetrical about the origin.

APPENDIX B

Here we show how Eq. (37) is obtained. We denote the
limits of integration using α = jT − a/2 and β = jT + a/2.

�(Q,�) =
m∑

j=1

∫ β

α

x2Pj

a
dx −

⎛⎝ m∑
j=1

∫ β

α

x Pj

a
dx

⎞⎠2

=
m∑

j=1

Pj

∫ β

α

x2

a
dx −

⎛⎝ m∑
j=1

Pj

∫ β

α

x

a
dx

⎞⎠2

(B1)

=
m∑

j=1

Pj

(
a

12
+ j 2T 2

)
−

⎛⎝ m∑
j=1

Pj jT

⎞⎠2

(B2)

=
m∑

j=1

Pj

a

12
+

m∑
j=1

Pj j
2T 2 −

⎛⎝ m∑
j=1

Pj jT

⎞⎠2

. (B3)

Here we use the fact that the probabilities Pj sum to unity in
order to simplify the first term. We obtain

= a

12
+

m∑
j=1

Pj j
2T 2 −

⎛⎝ m∑
j=1

Pj jT

⎞⎠2

(B4)

= a

12
+ �(Q,�δ), (B5)

which is the desired result.

APPENDIX C

The derivation of the mean peak width in state ψn, Eq. (43),
is provided here. We proceed to calculate the autocorrelation
function of ψn(x).∫ ∞

−∞
ψ̂n(k)ψ̂n(k − s)dk

= 2a

nT π

∫
sinc

(
aκ

T

)
sinc

(
a

T
(κ − s)

)
fn(κ)fn(κ − s)dκ,

(C1)

where we are using the shorthand fn(k), which was introduced
in Eq. (23), and the dimensionless variable κ = T k/2. This
integral may be decomposed into an infinite sum of integrals
over the finite interval K (= π in units of κ),

= 2a

nT π

∞∑
j=−∞

∫ (j+1/2)π

(j−1/2)π
sinc

(
a

T
κ

)
sinc

(
a

T
(κ − s)

)
× · · · · · · × fn(κ)fn(κ − s)dκ. (C2)

We now substitute u = κ − jπ and immediately exploit the
periodicity of fn, i.e., that fn(κ + jπ )2 = fn(κ)2,

= 2a

nT π

∞∑
j=−∞

∫ π/2

−π/2
sinc

(
a

T
(u + jπ )

)

× sinc

(
a

T
(u + jπ − s)

)
fn(u)fn(u − s)du (C3)

= 2a

nT π

∫ π/2

−π/2

⎡⎣ ∞∑
j=−∞

sinc

(
a

T
(u + jπ )

)

× sinc

(
a

T
(u + jπ − s)

)⎤⎦ fn(u)fn(u − s)du. (C4)

The sum in square brackets can be evaluated by means of a
general result adapted to the particular problem: According to
Eq. (11) of Ref. [7] and the derivation provided in Ref. [8],

∞∑
j=−∞

sinc(α (v + j )) sinc(α(w + j )) (C5)

=
∫ ∞

−∞
sinc[α(v + x)] sinc[α(w + x)]dx (C6)

= π

α
sinc[α(v + w)]. (C7)
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The integration of the penultimate line can be evaluated to
yield the final expression. Using the definitions

v = u/π, w = (u − s)/π, α = aπ/T , (C8)

we return to the expression to be evaluated and obtain

= 2a

nT π

T

a
sinc

(
a

T
s

) ∫ π/2

−π/2
fn(u)fn(u − s)du (C9)

= 2

nπ
sinc

(
a

T
s

) ∫ π/2

−π/2
fn(u)fn(u − s)du (C10)

= 2

nπ
sinc

(
a

T
s

)
π

2
fn(s) = 1

n
sinc

(
a

T
s

)
fn(s). (C11)

The desired expression now follows trivially by means of
Eq. (15). Note that when fn(s) = 0, there is no dependence
on a. In regular units (k) this is the case for s = π/nT .

APPENDIX D

The calculation of ωM (φn), Eq. (48), proceeds identically
to the calculation provided in Appendix C, the only difference
being that instead of fn we consider Hn,

Hn(k) =
∞∑

j=−∞
ĥn(k − jK). (D1)

For n � 2, we calculate the autocorrelation function of φ̂n(k),∫ ∞

−∞
φ̂n(k)φ̂n(k − s)dk (D2)

= 2an

π

∫
sinc

(
ak

2

)
sinc

(
a

2
(k − s)

)
Hn(k)Hn(k − s)dk.

(All normalization factors are removed from the integral,
including those of Hn.) As previously, this integral may be
decomposed into an infinite sum of integrals over the finite
interval K . Upon substituting u = k − jK , the periodicity of
Hn can be exploited, and the sum over the two sinc functions
evaluated. We arrive at

= 2an

π

T

a
sinc

(
aπ

T

s

K

) ∫ K/2

−K/2
Hn(u)Hn(u − s)du (D3)

= 2nT

π
sinc

(
a

2
s

) ∫ Kn/2

−Kn/2
Hn(u)Hn(u − s)du (D4)

= 1

π
sinc

(
a

2
s

)[(
π − n

T

2
s

)
cos n

T

2
s + sin n

T

2
s

]
(D5)

= sinc

(
a

2
s

)[(
1 − s

Kn

)
cos π

s

Kn

+ 1

π
sin π

s

Kn

]
. (D6)

This is the desired expression. The suppressed detail of this
calculation is provided in Ref. [9].
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