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We consider the quantum and local hidden variable (LHV) correlations obtained by measuring a pair of qubits
by projections defined by randomly chosen axes separated by an angle θ . Local hidden variables predict binary
colorings of the Bloch sphere with antipodal points oppositely colored. We prove Bell inequalities separating
the LHV predictions from the singlet quantum correlations for θ ∈ (0, π

3 ). We raise and explore the hypothesis
that, for a continuous range of θ > 0, the maximum LHV anticorrelation is obtained by assigning to each qubit
a coloring with one hemisphere black and the other white.
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I. INTRODUCTION

According to quantum theory, spacelike separated experi-
ments performed on entangled particles can produce outcomes
whose correlations violate Bell inequalities [1] that would be
satisfied if the experiments could be described by local hidden
variable theories (LHVTs). Many experiments have tested the
quantum prediction of nonlocal causality (see, e.g., [2–8]). The
observed violations of Bell inequalities are consistent with
quantum theory. They refute LHVTs with overwhelmingly
high degrees of confidence, modulo some known loopholes
that arise from the difficulty in carrying out theoretically ideal
experiments, most notably the locality loophole (closed in
[2–4]), the detection efficiency loophole [9] (closed in [5,6,8]),
and the collapse locality loophole [10] (addressed in [7],
though not fully closed).

Typically, Bell experiments test the Clauser-Horne-
Shimony-Holt (CHSH) inequality [11] in an Einstein-
Podolsky-Rosen (EPR) -Bohm experiment [12,13] in which
two entangled particles are sent to different experimental
setups at different locations. One setup is controlled by Alice,
who performs one of two possible measurements A ∈ {0,1},
the other by Bob, who similarly performs B ∈ {0,1}. Alice’s
and Bob’s outcomes a and b are assigned numerical values
a,b ∈ {1, − 1}, corresponding to spin up or spin down for
spin measurements about given axes on spin- 1

2 particles. The
experiments must be completed at spacelike separated regions.
The experiment is repeated many times, ideally under identical
experimental conditions. We define the correlation C(A,B) as
the average value of the product of Alice’s and Bob’s outcomes
in experiments where measurements A and B are chosen.

According to deterministic LHVTs, the outcomes a and b

are determined respectively by the measurement choices A

and B and by hidden variables λ shared by both particles.
Thus, a = a(A,λ) and b = b(B,λ). An LHVT also assigns
a probability distribution ρ(λ), independent of A and B, to
the hidden variables, satisfying ρ(λ) � 0 and

∫
�

dλ ρ(λ) = 1,
where � is the sample space of hidden variables. Probabilistic
LHVTs can be described by the same equations, extending
the definitions of λ and ρ to allow for probabilistic measure-
ment outcomes; we can thus focus on deterministic LHVTs
without loss of generality. An LHVT predicts C(A,B) =∫
�

dλ ρ(λ)a(A,λ)b(B,λ). Such correlations satisfy the

CHSH inequality [11] I2 = |C(0,0) + C(1,1) + C(1,0) −
C(0,1)| � 2.

Consider for definiteness the EPR-Bohm experiment per-
formed on spin- 1

2 particles in the singlet state |�−〉 =
1√
2
(|↑〉|↓〉− |↓〉|↑〉). Alice and Bob measure their particle

spin projection along the directions �aA and �bB , respectively.
As before, Alice and Bob choose a measurement from a
set of two elements, that is, A,B ∈ {0,1}. In general, the
vectors �aA and �bB can point along any direction in three-
dimensional Euclidean space and the sets of their possible
values define Bloch spheres S2. The correlation predicted
by quantum theory is Q(θ ) = − cos θ , where cos θ = �aA · �bB .
Sets of measurement axes can be found for which the quantum
correlations violate the CHSH inequality I

QM
2 > 2 up to the

Cirel’son [14] bound I
QM
2 � 2

√
2.

When Alice’s and Bob’s measurement choices belong to
a set of N possible elements, the correlations predicted by
LHVTs satisfy the Braunstein-Caves inequality [15]

IN =
∣∣∣∣

N−1∑
k=0

C(k,k) +
N−2∑
k=0

C(k + 1,k) − C(0,N − 1)

∣∣∣∣
� 2N − 2. (1)

The CHSH inequality is a special case of the Braunstein-Caves
inequality with N = 2. We are interested here in exploring Bell
inequalities that generalize the CHSH and Braunstein-Caves
inequalities, in the following sense. Instead of restricting
Alice’s and Bob’s measurement choices to a finite set, we
allow them to choose any spin measurement axes �a and
�b. However, we constrain these axes to be separated by a
fixed angle θ , so cos θ = �a · �b. The maximal violation of the
Braunstein-Caves inequality by quantum correlations, given
by I

QM
N = 2N cos( π

2N
) [16], arises for fixed sets of pairs of

axis choices that satisfy this constraint with θ = π
2N

. We
consider experiments where pairs of axes separated by θ are
chosen randomly and θ is unrestricted. Our work contributes
to understanding how to quantify quantum nonlocality, by
studying a natural class of Bell inequalities. As well as proving
different inequalities, our work raises questions and suggests
techniques that we hope will be developed further.
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Another more practical motivation is to explore simple
Bell tests that might allow quantum theory and LHVT to
be distinguished somewhat more efficiently, particularly in
the adversarial context of quantum cryptography. Here an
eavesdropper and/or malicious device manufacturer may be
trying to spoof the correlations of a singlet using locally held or
generated information. Of course, given sufficient guarantees
about the devices involved, modulo the loopholes mentioned
above and with sufficiently many runs, any Bell test can expose
such spoofing. However, in practical situations in which the
number of possible tests is limited, users would like to ensure
that such eavesdropping attacks can be detected as efficiently
as possible. Standard CHSH tests simplify the eavesdropper’s
problem, by informing her in advance that she need only
generate outcomes for a small set of possible measurements.
By comparison, tests involving randomly chosen axes give the
eavesdropper no such information.1 A first step towards under-
standing Alice’s and Bob’s optimal test strategy in such con-
texts is to identify the full range of Bell inequalities available.

II. BLOCH-SPHERE COLORINGS AND CORRELATION
FUNCTIONS

We explore LHVTs in which Alice’s and Bob’s spin mea-
surement results are given by a(�a,λ) and b(�b,λ), respectively;
where λ is a local hidden variable common to both particles.
For fixed λ, we can describe the functions a and b by two binary
(black and white) colorings of spheres, associated with a and
b, respectively, where black (white) represents the outcome 1
(−1). Different sphere colorings are associated with different
values of λ. To look at specific cases, we drop the λ dependence
and include a label x that indicates a particular pair of coloring
functions ax(�a) and bx(�b).

Measuring spin along �a with outcome 1 (−1) is equivalent
to measuring spin along −�a with outcome −1 (1). The coloring
functions a and b defining any LHVT are thus necessarily
antipodal functions

ax(�a) = −ax(−�a), bx(�b) = −bx(−�b) (2)

for all �a,�b ∈ S2.
We notice that the antipodal property arises due to the

definition of a dichotomic measurement on the sphere for
arbitrary deterministic LHVTs. For an arbitrary probabilistic
theory, this property would read

Px(μa,νb|μ�a,ν �b) = Px(a,b|�a,�b), (3)

where μ,ν,a,b ∈ {±1}; �a,�b ∈ S2; and the label x indicates a
particular probabilistic theory being considered. Equation (3)
holds because a measurement is defined by a pair of opposite
axes �a and −�a and inverting their sense corresponds only to
relabeling the measurement outcomes.

1One possibility here is for Alice and Bob to fix in advance the value
of θ and a list of random pairs of axes separated by θ . Another would
be to make random independent choices and then generate plots of
the correlations as a function of θ . This second type of test would
be generated automatically by quantum key distribution schemes that
require Alice and Bob to make completely random measurements on
each qubit (see, e.g., [17]).

FIG. 1. Some antipodal coloring functions ax on the sphere, see
Appendix C for definitions. Their correlations Cx(θ ), computed from
Eq. (4), subject to the constraint (6), are plotted in Appendix C.

We define X as the set of all colorings x satisfying the
antipodal property (2). For example, a simple coloring of
the spheres satisfying the antipodal property is coloring 1, in
which, for one sphere, one hemisphere is completely black and
the other one is completely white and the coloring is reversed
for the other sphere (see Fig. 1).

The correlation for outcomes of measurements about
randomly chosen axes separated by θ for the pair of coloring
functions labeled by x is

Cx(θ ) = 1

8π2

∫
S2

dAax(�a)
∫ 2π

0
dω bx(�b), (4)

where dA is the area element of the sphere corresponding
to Alice’s axis �a and ω is an angle in the range [0,2π ]
along the circle described by Bob’s axis �b with an angle
θ with respect to �a. A general correlation is of the form
C(θ ) = ∫

X dx μ(x)Cx(θ ), where μ(x) is a probability
distribution over X .

If all colorings x ∈ X satisfy QρL (θ ) < CL(θ ) � Cx(θ ) or
Cx(θ ) � CU(θ ) < QρU (θ ) for quantum correlations QρL (θ )
and QρU (θ ) obtained with particular two-qubit states ρU and
ρL and some identifiable lower and upper bounds CL(θ ) and
CU(θ ), respectively, then a general correlation C(θ ) must
satisfy the same inequalities. Our aim here is to explore
this possibility via intuitive arguments and numerical and
analytic results. We focus on the case ρL = |�−〉〈�−|, for
which QρL (θ ) ≡ Q(θ ) = − cos θ , which is the maximum
quantum anticorrelation for a given angle θ (see Sec. V for
details and related questions). We begin with some suggestive
observations.

First, we consider coloring functions x ∈ X for which the
probability that Alice and Bob obtain opposite outcomes when
they choose the same measurement, averaged uniformly over
all measurement choices, is

P (ax = −bx |θ = 0) = 1 − γ. (5)

In general, 0 � γ � 1. We first consider small values of γ

and seek Bell inequalities distinguishing quantum correlations
for the singlet from classical correlations for which an anti-
correlation is observed with probability 1 − γ when the same
measurement axis is chosen on both sides. Experimentally,
we can verify quantum nonlocality using these results if we
carry out nonlocality tests that include some frequency of
anticorrelation tests about a randomly chosen axis (chosen
independently for each test). The anticorrelation tests allow
statistical bounds on γ , which imply statistical tests of
nonlocality via the γ -dependent Bell inequalities.

In the limiting case γ = 0, we have

ax(�a) = −bx(�a) (6)

for all �a ∈ S2. This case is quite interesting theoretically, in
that one might hope to prove stronger results assuming perfect
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anticorrelation. We describe some numerical explorations of
this case below.

Second, for any pair of colorings x ∈ X and θ ∈ [0,π ],
we have Cx(π − θ ) = −Cx(θ ). This can be seen as follows.
For a fixed �a, the circle with angle θ = θ ′ around the axis �a,
defined by the angle ω in Eq. (4), contains a point �b that is
antipodal to a point on the circle with angle θ = π − θ ′ around
�a. Since the coloring is antipodal, we have that the value of
the integral

∫ 2π

0 dω bx(�b) in Eq. (4) for θ = θ ′ is the negative
of the corresponding integral for θ = π − θ ′. It follows that
Cx(π − θ ′) = −Cx(θ ′). Therefore, in the rest of this paper, we
restrict consideration to correlations for the range θ ∈ [0, π

2 ],
unless otherwise stated. From the previous argument we have
Cx(π

2 ) = −Cx(π
2 ), which implies that Cx(π

2 ) = 0. We also
have that Cx(0) = 1 − 2P (ax = −bx |θ = 0), so the LHVTs
we consider give Cx(0) = −1 + 2γ . The local hidden variable
(LHV) correlations given by Eqs. (4) and (5) in the case γ = 0
thus coincide with the singlet-state quantum correlations for
θ = 0 and θ = π

2 , where Q(0) = Cx(0) = −1 and Q(π
2 ) =

Cx(π
2 ) = 0.

Third, consider coloring 1, defined above. We have C1(θ ) =
−(1 − 2θ

π
) for θ ∈ [0, π

2 ]. This is easily seen as follows. For
any two different points on the spheres defining coloring 1, �a in
one sphere and �b in the oppositely colored one, an arc of angle
π of the great circle passing through �a and �b is completely
black and the other arc of angle π is completely white. Thus,
given that the pair of vectors �a and �b are chosen randomly,
subject to the constraint of angle separation θ , the probability
that both �a and �b are in oppositely colored regions is P (a1 =
−b1|θ ) = π−θ

π
= 1 − θ

π
. Thus, the correlation for coloring 1

is C1(θ ) = 1 − 2P (a1 = −b1|θ ) = −1 + 2θ
π

. That is, C1(θ )
linearly interpolates between the values at C1(0) = −1, which
is common to all colorings with γ = 0, and C1(π

2 ) = 0, which
is common to all colorings, and we have 0 > C1(θ ) > Q(θ )
for θ ∈ (0, π

2 ).
Then, in the following section we present some lemmas and

a theorem.

III. HEMISPHERICAL COLORING MAXIMALITY
HYPOTHESES

In this section, we motivate two hemispherical coloring
maximality hypotheses. These make precise the intuition
that, for a continuous range of θ > 0, the maximum LHV
anticorrelation is obtained by coloring 1. We first consider the
following lemmas, whose proofs are given in Appendix A.

Lemma 1. For any coloring x ∈ X satisfying Eq. (5) and
any θ ∈ (0, 2π

3 ], we have −1 + 2
3γ � Cx(θ ) � 1

3 + 2
3γ .

Remark 1. Unsurprisingly, since small γ implies near-
perfect anticorrelation at θ = 0, we see that for θ ∈ (0, 2π

3 ] and
γ small there are no colorings with very strong correlations.
However, strong anticorrelations are possible for small θ . We
are interested in bounding these.

Lemma 2. For any coloring x ∈ X satisfying Eq. (5),
any integer N > 2, and any θ ∈ [ π

N
, π
N−1 ), we have Cx(θ ) �

C1( π
N

) − 2γ .
Remark 2. In other words, for small θ , C1(θ ) is very close to

the maximal possible anticorrelation for LHVTs when γ � θ .

Geometric intuitions also suggest bounds on Cx(θ ) that
are maximized by coloring 1 for small θ . Consider simple
colorings, in which a set of (not necessarily connected)
piecewise differentiable curves of finite total length separate
black and white regions. (Points lying on these curves may
have either color.) Intuition suggests that, for small θ and
simple colorings with γ = 0, the quantity 1 + Cx(θ ), which
measures the deviation from pure anticorrelation, should be
bounded by a quantity roughly proportional to the length
of the boundary between the black and white areas of the
sphere coloring x ∈ X . Since coloring 1 has the smallest
such boundary (the equator), this might suggest that Cx(θ ) �
C1(θ ) for small θ and for all simple colorings x ∈ X with
γ = 0. Intuition also suggests that any nonsimple coloring
will produce less anticorrelation than the optimal simple
coloring, because regions in which black and white colors
alternate with arbitrarily small separation tend to wash out
anticorrelation. These intuitive arguments are clearly not
rigorous as currently formulated. For example, they ignore the
possibility of sequences of colorings Ci(θ ) and angles θi → 0
such that Ci(θi) < C1(θi), while limθ→0[Ci(θ ) − C1(θ )] > 0
for all i (see [18] for an extended discussion). Still, they are
suggestive, at least in generating hypotheses to be investigated.

These various observations motivate us to explore what we
call the weak hemispherical coloring maximality hypothesis
(WHCMH).

The WHCMH. There exists an angle θw
max ∈ (0, π

2 ) such that
for every coloring x ∈ X with γ = 0 and every angle θ ∈
[0,θw

max], Cx(θ ) � C1(θ ).
The WHCMH considers models with perfect anticorrela-

tion for θ = 0, because we are interested in distinguishing
LHV models from the quantum singlet state, which produces
perfect anticorrelations for θ = 0. Of course, there is a
symmetry in the space of LHV models given by exchanging
the colors of one qubit’s sphere, which maps γ → 1 − γ

and Cx(θ ) → −Cx(θ ). The WHCMH thus also implies that
Cx(θ ) � −C1(θ ) for all colorings x ∈ X with γ = 1.

It is also interesting to investigate stronger versions of
the WHCMH and related questions. For instance, is it the
case that for every angle θ ∈ (θw

max,
π
2 ) there exists a coloring

x ′ ∈ X with γ = 0 such that Cx ′ (θ ) < C1(θ )? Further, does
this hypothesis still hold true (not necessarily for the same
θw

max) if we consider general local hidden variable models
corresponding to independently chosen colorings for the two
qubits, not constrained by any choice of the correlation
parameter γ ? The following theorem and lemmas, whose
proofs are presented in Appendix A, give some relevant
bounds.

Theorem 1. For any coloring x ∈ X , any integer N � 2, and
any θ ∈ [ π

2N
, π

2(N−1) ), we have C1( π
2N

) � Cx(θ ) � −C1( π
2N

).
Remark 3. In particular, for small θ , −C1(θ ) and C1(θ )

are very close to the maximal possible correlation and
anticorrelation for any LHVT, respectively.

Lemma 3. If any coloring x ∈ X obeys Cx(θ ) < C1(θ )
[Cx(θ ) > −C1(θ )] for some θ ∈ ( π

M+1 , π
M

] and an integer
M � 2 then there are angles θj ≡ π

M+1−j
− θ with j =

1,2, . . . ,M − 1, which satisfy 0 � θj < θ if j < M
2 + 1

and π
2 > θj > θ if j � M

2 + 1, such that Cx(θj ) > C1(θj )
[Cx(θj ) < −C1(θj )].
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Remark 4. In this sense (at least), the anticorrelations
defined by C1 and the correlations defined by −C1 cannot
be dominated by any other colorings.

Lemma 4. For any coloring x ∈ X and any θ ∈ (0, π
3 ), we

have Q(θ ) < Cx(θ ) < −Q(θ ).
Remark 5. This inequality separates all possible LHV

correlations Cx(θ ) from the singlet-state quantum correlations
Q(θ ) for all θ ∈ (0, π

3 ).
The previous observations motivate the strong hemispheri-

cal coloring maximality hypothesis (SHCMH).
The SHCMH. There exists an angle θ s

max ∈ (0, π
2 ) such

that for every coloring x ∈ X and every angle θ ∈ [0,θ s
max],

C1(θ ) � Cx(θ ) � −C1(θ ).
Note that the SHCMH applies to all colorings, without any

assumption of perfect anticorrelation for θ = 0. If the SHCMH
is true, then so is the WHCMH. In this case, we have that
θ s

max � θw
max. Thus, an upper bound on θw

max implies an upper
bound on θ s

max.

IV. NUMERICAL RESULTS

We investigated the WHCMH numerically by computing
the correlation Cx(θ ) for various coloring functions that satisfy
the antipodal property (2) and the condition (6) and that have
azimuthal symmetry (see Fig. 1). Details of our numerical
work are given in Appendix C. Our numerical results are
consistent with the WHCMH for θw

max � 0.386π and with the
SHCMH for θ s

max � 0.375π , but do not give strong evidence
for these values. Nor do the numerical results per se constitute
compelling evidence for the WHCMH and SHCMH, although
they confirm that the underlying intuitions hold for some
simple colorings.

We note that the slightly improved bound θ s
max � 0.345π

was obtained in [18]. Further details are given in Appendix C.

V. RELATED QUESTIONS FOR EXPLORATION

An interesting related question is the following: For an
arbitrary two-qubit state ρ and qubit projective measurements
performed by Alice and Bob corresponding to random Bloch
vectors separated by an angle θ , what are the maximum values
of the quantum correlations and anticorrelations Qρ(θ ) and
which states achieve them? We show that the maximum quan-
tum anticorrelations and correlations are Qρ(θ ) = − cos θ ,
achieved by the singlet state ρ = |�−〉〈�−|, and Qρ(θ ) =
1
3 cos θ , achieved by the other Bell states ρ = |�±〉〈�±| and
ρ = |�+〉〈�+|, respectively. This result follows because, as
we show in Appendix B, we have

− cos θ � Qρ(θ ) � 1
3 cos θ. (7)

Another related question that we do not explore further
here is the following: For a fixed given angle θ separating
Alice’s and Bob’s measurement axes, what are the maximum
correlations and anticorrelations if, in addition to the two-qubit
state ρ, Alice and Bob have other resources? For example,
Alice and Bob could have an arbitrary entangled state on
which they perform arbitrary local quantum operations and
measurements. In a different scenario, Alice and Bob could
have some amount of classical or quantum communication.
Another possibility is for Alice and Bob to share arbitrary

no-signaling resources, not necessarily quantum, with no com-
munication allowed. Different variations of the task described
above with continuous parameters can be investigated.

One might ask what constraints the no-signaling principle
places on the correlations and anticorrelations. A generalized
Popescu-Rohrlich box [19] gives the correlation C(θ ) =
sgn[π/2 − θ )], which in one natural sense defines the strongest
correlations consistent with Eq. (3). Another relevant obser-
vation is that the antipodal property (3), expressed in the
equivalent form C(π − θ ) = −C(θ ), together with a conti-
nuity assumption, implies that quantum nonlocal correlations
are not dominated [20]: If a correlation C(θ ) produces a
violation of the CHSH inequality stronger than the violation
given by the singlet-state quantum correlation Q(θ ) for a
given set of measurement axes then there exists another set
of measurement axes for which C(θ ) gives a violation (or
none) that is weaker than the violation given by Q(θ ). It
would be interesting to clarify further the relationship between
measures of nonlocality, including those investigated here, and
no signaling. Other related questions are given in Appendix B.

VI. DISCUSSION

We have explored here what can be learned by carrying
out local projective measurements about completely randomly
chosen axes, separated by an angle θ , on a pair of qubits. This
is not currently a standard way of testing for entanglement or
nonlocality, but we have shown that it distinguishes quantum
correlations from those predicted by local hidden variables for
a wide range of θ . In particular, we find Bell inequalities for θ ∈
(0, π

2 ), given by Theorem 1, which separate the singlet-state
quantum correlations from all LHV correlations for θ ∈ (0, π

3 ).
We have also explored hypotheses that would refine and

unify these results further: the weak and strong hemispherical
coloring maximality hypotheses. These state that the LHV
defined by the simplest spherical coloring, with opposite
hemispheres colored oppositely, maximizes the LHV anticor-
relations for a continuous range of θ > 0, either among LHVs
with perfect anticorrelation at θ = 0 (the weak case) or without
any restriction (the strong case).

We should note here that the intuition supporting the
WHCMH relates specifically to colorings in two or more
dimensions, where there seems no obvious way of constructing
colorings that vary over small scales in a way that is regular
enough to produce very strong (anti)correlations for small
θ . On the other hand, the one-dimensional analog of the
WHCMH, that the strongest anticorrelations for colorings on
the circle arise from coloring opposite half circles oppositely, is
easily seen to be false. For n odd, the coloring a(ε) = −b(ε) =
(−1)nε/π� with ε ∈ [0,2π ] is antipodal and is perfectly
anticorrelated for θ = 2π

n
.

Although it underlines that the hemispherical coloring
hypotheses are nontrivial, this distinction between one and
higher dimensions is consistent with what is known about
other coloring problems in geometric combinatorics [21,22].
The intuition that coloring 1 should be optimal, because it
solves the isoperimetric problem of finding the colored region
with half the area of the sphere that has the shortest boundary,
remains suggestive. Verifying the WHCMH and the SHCMH
look at first sight like simple classical problems in geometry
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and combinatorics that can be stated quite independently of
quantum theory. They have many interesting generalizations.2

Nonetheless, as far as we are aware, these questions have
not been seriously studied by pure mathematicians to date,
although some intriguing relatively recent results [21,22] on
colorings in Rn encourage hope that proof methods could
indeed be found. We thus simply state the WHCMH and the
SHCMH as interesting and seemingly plausible hypotheses to
be investigated further rather than offering them as conjectures,
preferring to reserve the latter terms for propositions for which
very compelling evidence has been amassed.

We would like to stress what we see as a key insight
deserving further exploration, namely, that stronger and more
general Bell inequalities could in principle be proven by results
about continuous colorings, rather than restricting the results
to colorings of discrete sets. While we have focused on the
simplest case of projective measurements of pairs of qubits,
this observation of course applies far more generally. We hope
our work will stimulate further investigation of the WHCMH
and the SHCMH and related coloring problems, which seem
very interesting in their own right, and in developing further
this intriguing link between natural questions in geometric
combinatorics and measures of quantum nonlocality.

We have considered here the ideal case in which Alice
and Bob share a maximally entangled pure state and are
able to carry out perfect projective measurements about axes
specified with perfect precision. For a range of nonzero θ ,
our results show a finite separation between the predictions
of quantum theory and LHVTs. As is the case for CHSH
and other Bell tests, they can thus also be applied (within
a certain parameter range) to realistic experiments in which
the entangled state is mixed and measurements can only be
approximately specified. In particular, they offer methods for
exploring the range of parameters for which the correlations
defined by rotationally symmetric Werner states can be
distinguished from those of any LHVT [23–26]. It would be
interesting to explore this further.

Finally, but importantly, we would like to note earlier work
on related questions. In a pioneering paper, Żukowski [27]
considered generalized Bell and Greenberger-Horne-Zeilinger
tests for maximally entangled quantum states that involve
all possible axis choices and gave an elegant proof that the
quantum correlations can be distinguished from all possible
LHVT correlations by a weighted average measure of corre-
lation functions. For the bipartite case, our work investigates
the gap between quantum and LHVT correlations at each axis
angle separation. This allows one to define infinitely many
generalized Bell tests corresponding to different weighted
averages of correlation functions. It would be interesting to
characterize the space of all such tests and its boundaries.

2For example, among nonantipodal bipartite colorings of the sphere
in which the black region has area A < 2π , which coloring or
colorings produce maximal correlation? Alternatively, consider a
general region R of volume V in Rn and define pε(R) to be the
probability that, given a randomly chosen point x ∈ R and a randomly
chosen point y such that d(x,y) = ε, we find that y ∈ R. Do the balls
maximize this probability, for any given sufficiently small ε?

References [28–30] investigate inter alia Bell-CHSH ex-
periments in which the axes are initially chosen randomly
and the same axes are used repeatedly throughout a given
experimental run. Reference [28] shows that such experiments
lead to Bell inequality violations a significant fraction of the
time when pairs of random local measurements are chosen.
References [29,30] show that by considering triads of random
local measurements, constrained to be mutually unbiased,
for which Alice’s axes are not perfectly aligned to Bob’s
axes, the violation of a CHSH inequality is guaranteed on
a two-qubit maximally entangled state. Their scenarios are
significantly different from ours. In our scenario, the axes are
chosen randomly and independently for each measurement
and (in the ideal case) Alice and Bob have the ability to define
their axis choices precisely with respect to the same reference
frame. The goals are also different: References [28–30] show
that Bell inequality violation can be demonstrated even when
Alice and Bob do not have a shared reference frame; our
aim is to establish different Bell inequalities rather than to
exploit the power of known inequalities. It would be interesting
to explore possible connections, nonetheless. Recently, our
attention was also drawn to a related question considered in
[31]; see Appendix B for discussion.
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APPENDIX A: PROOFS OF THE THEOREM AND
LEMMAS

1. Proof of Lemma 1

From the CHSH inequality

|C(0,0) + C(1,1) + C(1,0) − C(0,1)| � 2, (A1)

in the case in which the measurements A = 0, A = 1, and
B = 0 correspond to projections on states with Bloch vectors
separated from each other by the same angle θ ∈ (0, 2π

3 ], Bob’s
measurement B = 1 is the same as Alice’s measurement A =
0, and the outcomes are described by the LHVTs satisfying (4),
we obtain after averaging over random rotations of the Bloch
sphere that |3Cx(θ ) − Cx(0)| � 2. Then the result follows be-
cause, as shown in the main text, we have Cx(0) = −1 + 2γ .�

2. Proof of Lemma 2

From the Braunstein-Caves inequality (1) we have that

IN =
∣∣∣∣∣
N−1∑
k=0

C(k,k) +
N−1∑
k=0

C(k + 1,k)

∣∣∣∣∣ � 2N − 2, (A2)
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FIG. 2. Diagram of the measurements performed by Alice and
Bob that are used in the proof of Lemma 2. Alice’s and Bob’s
measurements k are the same for k = 0,1, . . . ,N − 1 and N � 2;
these are projections onto the states |ξk〉 and correspond to points
in the Bloch sphere with label k. These points form a zigzag path
crossing the dashed great circle. The state |ξN 〉 is antipodal to |ξ0〉
and represents the measurement k = 0 with reversed outcomes. The
solid lines represent arcs of great circles with the same angle θ > π

N

that connect adjacent points. If θ = π

N
, all these points are on the

same great circle.

with the convention that measurement choice N is measure-
ment choice 0 with reversed outcomes. We consider the case
in which Alice’s and Bob’s measurements k are the same,
for k = 0,1, . . . ,N − 1 and N � 2, and their outcomes are
described by the LHVTs satisfying (4) and (5), which then
also satisfy Cx(0) = −1 + 2γ . If we take the measurement k

to be of the projection onto the state |ξk〉 so that the states
{|ξk〉}N−1

k=0 are along a great circle on the Bloch sphere with
a separation angle θ = π

N
between |ξk〉 and |ξk+1〉 for k =

0,1, . . . ,N − 2, for example, |ξk〉 = cos( kπ
2N

)|0〉 + sin( kπ
2N

)|1〉,
and average over random rotations of the Bloch sphere, this
gives

|NCx(0) + NCx(θ )| � 2N − 2. (A3)

Since Cx(0) = −1 + 2γ , it follows that Cx( π
N

) � −1 + 2
N

−
2γ = C1( π

N
) − 2γ . Similarly, if we take the states {|ξk〉}N−1

k=0
to be along a zigzag path crossing a great circle on the Bloch
sphere with a separation angle θ > π

N
between |ξk〉 and |ξk+1〉

for k = 0,1, . . . ,N − 2 in such a way that the angle separation
between |ξN−1〉 and the state with Bloch vector antiparallel to
that of |ξ0〉 is also θ (see Fig. 2), we obtain after averaging
over random rotations of the Bloch sphere that Cx(θ ) � −1 +
2
N

− 2γ = C1( π
N

) − 2γ . �

3. Proof of Theorem 1

Consider the Braunstein-Caves inequality (1) in the case in
which Alice’s and Bob’s measurement outcomes are described
by the LHVTs satisfying (4). Let Alice’s and Bob’s measure-
ments k correspond to the projections onto the states |ξk〉 and
|χk〉, respectively, for k = 0,1, . . . ,N − 1 and N � 2. Let the
angle along the great circle in the Bloch sphere passing through
the states |ξk〉 and |χk〉 be θ for k = 0,1, . . . ,N − 1. Similarly,

FIG. 3. Diagram of the measurements performed by Alice and
Bob that are used in the proof of Theorem 1. Alice’s and Bob’s
measurements A and B are projections onto the state |ξA〉 and |χB〉
and correspond to points in the Bloch sphere with labels A and B,
respectively, for A,B ∈ {0,1, . . . ,N − 1} and N � 2. These points
form a zigzag path crossing the dashed great circle. The state |ξN 〉
is antipodal to |ξ0〉 and represents Alice’s measurement A = 0 with
reversed outcomes. The solid lines represent arcs of great circles with
the same angle θ > π

2N
that connect adjacent points. If θ = π

2N
, all

these points are on the same great circle.

let the angle along the great circle passing through |χk〉
and |ξk+1〉 be θ for k = 0,1, . . . ,N − 1, with the convention
that the state |ξN 〉 has a Bloch vector antiparallel to that of
|ξ0〉. If θ = π

2N
, all these states are on the same great circle

beginning at |ξ0〉 and ending at |ξN 〉. If θ > π
2N

, the states
can be accommodated on a zigzag path crossing the great
circle that goes from |ξ0〉 to |ξN 〉 (see Fig. 3). Thus, from
the Braunstein-Caves inequality, after averaging over random
rotations of the Bloch sphere, we have C1( π

2N
) = −1 + 1

N
�

Cx(θ ) � 1 − 1
N

= −C1( π
2N

) for θ � π
2N

. �

4. Proof of Lemma 3

Consider a coloring x ∈ X and an angle θ ∈ ( π
M+1 , π

M
]

for an integer M � 2 such that Cx(θ ) < C1(θ ) or Cx(θ ) >

−C1(θ ). From Theorem 1 and the fact that Cx(π
2 ) = C1(π

2 ) =
0, it must be that θ �= π

M
if M is even. We define the angles

θj ≡ π
M+1−j

− θ with j = 1,2, . . . ,M − 1. Considering the
cases M even and M odd and using that θ �= π

M
if M is even,

it is straightforward to obtain that 0 � θj < θ if j < M
2 + 1

and π
2 > θj > θ if j � M

2 + 1. Now consider the Braunstein-
Caves inequality (1) in the case in which Alice’s and Bob’s
measurement outcomes are described by the LHVTs satisfying
(4). Let Alice’s and Bob’s measurements k correspond to the
projections onto the states |ξk〉 and |χk〉, respectively, for k =
0,1, . . . ,N − 1 and N ≡ M + 1 − j . Since 1 � j � M − 1,
we have 2 � N � M . Let all these states be on the great circle
in the Bloch sphere that passes through the states |ξ0〉 and
|ξN 〉, with the convention that the state |ξN 〉 has Bloch vector
antiparallel to that one of |ξ0〉. Let the angles between |ξk〉
and |χk〉 and between |χk〉 and |ξk+1〉 along this great circle
be θ and θj , respectively. For example, |ξk〉 = cos( kπ

2N
)|0〉 +

sin( kπ
2N

)|1〉 and |χk〉 = cos( kπ
2N

+ θ
2 )|0〉 + sin( kπ

2N
+ θ

2 )|1〉 for
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k = 0,1, . . . ,N − 1. From the Braunstein-Caves inequality,
after averaging over random rotations of the Bloch sphere, we
obtain −1 + 1

N
� 1

2 [Cx(θ ) + Cx(θj )] � 1 − 1
N

. Since the av-
erage angle θ̄j ≡ 1

2 (θ + θj ) satisfies θ̄j = π
2(M+1−j ) = π

2N
and

C1( π
2N

) = −1 + 1
N

, we have C1(θ̄j ) � 1
2 [Cx(θ ) + Cx(θj )] �

−C1(θ̄j ). Since C1(θ ) is a linear function of θ , it follows
that Cx(θj ) > C1(θj ) if Cx(θ ) < C1(θ ). Similarly, Cx(θj ) <

−C1(θj ) if Cx(θ ) > −C1(θ ). �

5. Proof of Lemma 4

Let x ∈ X be any coloring and θ ∈ (0, π
3 ). We first consider

the case θ ∈ [π
4 , π

3 ). From Theorem 1 we have C1(π
4 ) �

Cx(θ ) � −C1(π
4 ). The quantum correlation for the singlet

state is Q(θ ) = − cos θ . Since Q(θ ) is a strictly increasing
function of θ , we have Q(θ ) < Q(π

3 ) = − 1
2 = C1(π

4 ) for
θ < π

3 . Therefore, Q(θ ) < Cx(θ ) < −Q(θ ) for θ ∈ [π
4 , π

3 ).
Similarly, it is easy to see that Q(θ ) < Cx(θ ) < −Q(θ ) for
θ ∈ [π

6 , π
4 ). Now we consider the case θ ∈ (0, π

6 ). We define
N = � π

2θ
�. It follows that θ ∈ [ π

2N
, π

2(N−1) ) for an integer N �
4. From Theorem 1 we have −1 + 1

N
= C1( π

2N
) � Cx(θ ) �

−C1( π
2N

) = 1 − 1
N

. From the Taylor series Q(θ ) = −1 +
θ2

2 − θ4

4! + θ6

6! − · · · it is easy to see that Q(θ ) < −1 + θ2

2 for
0 < θ <

√
30. Thus, we have Q( π

2(N−1) ) < −1 + 1
2 ( π

2(N−1) )
2.

Since N2 > (π2

8 + 2)N − 1, it follows that (N − 1)2 > π2

8 N ,
which implies that −1 + 1

N
> −1 + 1

2 ( π
2(N−1) )

2. It follows
that Cx(θ ) > Q( π

2(N−1) ). Since Q(θ ) is a strictly increasing
function of θ and θ < π

2(N−1) , we have Q( π
2(N−1) ) > Q(θ ).

Thus, we have Cx(θ ) > Q(θ ). Similarly, we have Cx(θ ) <

−Q(θ ). �

APPENDIX B: RELATED QUESTIONS FOR
EXPLORATION

As mentioned in the main text, some interesting related
questions involving nonlocal games with continuous inputs
have been considered in [31]. In particular, in the third game
considered in [31], Alice and Bob are given uniformly dis-
tributed Bloch-sphere vectors �rA and �rB and aim to maximize
the probability of producing outputs that are anticorrelated if
�rA · �rB � 0 or correlated if �rA · �rB < 0. Aharon et al. suggest
that the LHV strategy defined by opposite hemispherical
colorings is optimal, though they give no argument. They
also suggest that the quantum strategy given by sharing a
singlet and carrying out measurements corresponding to the
input vectors is optimal, based on evidence from semidefinite
programming. Equation (7) shows that this is the case for all
θ and in particular for the average advantage in the game
considered, if Alice and Bob are restricted to outputs defined
by projective measurements on a shared pair of qubits. Our
earlier results also prove that there is a quantum advantage for
all θ in the range 0 < θ < π

3 and hence for many versions of
this game defined by a variety of probability distributions for
the inputs.

We show the derivation of Eq. (7) below. First, we compute
the average outcome probabilities when Alice and Bob apply
local projective measurements on a two-qubit state ρ for
measurement bases defined by Bloch vectors separated by an
angle θ . The average is taken over random rotations of these

vectors in the Bloch sphere, subject to the angle separation θ .
Then we compute the quantum correlations.

Consider a fixed pair of pure qubit states |0〉 and |χ〉 =
cos( θ

2 )|0〉 + sin( θ
2 )|1〉 for Alice’s and Bob’s measurements,

respectively, corresponding to outcome +1. A general state
for Bob’s measurement separated by an angle θ with respect
to a fixed state |0〉 for Alice’s measurement is obtained by
applying the unitary Rz(ω) that corresponds to a rotation of
an angle ω ∈ [0,2π ] around the z axis in the Bloch sphere,
which only adds a phase to the state |0〉. Then, after applying
Rz(ω), a general pure product state |ξ�a〉 ⊗ |χ�b〉 of two qubits
with Bloch vectors separated by an angle θ is obtained by
applying the unitary Rz(φ)Ry(ε) that rotates the Bloch sphere
around the y axis by an angle ε ∈ [0,π ] and then around the
z axis by an angle φ ∈ [0,2π ]. Thus, we have |ξ�a〉 ⊗ |χ�b〉 =
Uφ,ε,ω|0〉 ⊗ Uφ,ε,ω|χ〉, with Uφ,ε,ω = Rz(φ)Ry(ε)Rz(ω). This
is a general unitary acting on a qubit, up to a global phase.
Therefore, we can parametrize this unitary by the Haar measure
μ on SU(2), hence, we have |ξ�a〉 ⊗ |χ�b〉 = Uμ|0〉 ⊗ Uμ|χ〉.

After taking the average, the probability that both Alice and
Bob obtain the outcome +1 is

P (+ + |θ ) =
∫

dμ Tr[ρ(|ξ�a〉〈ξ�a| ⊗ |χ�b〉〈χ�b|)]

=
∫

dμ Tr[ρ(Uμ ⊗ Uμ)(|0〉〈0| ⊗ |χ〉〈χ |)

×(U †
μ ⊗ U †

μ)]

= Tr

(∫
dμ(U †

μ ⊗ U †
μ)ρ(Uμ ⊗ Uμ)

×(|0〉〈0| ⊗ |χ〉〈χ |)
)

= Tr[ρ̃(|0〉〈0| ⊗ |χ〉〈χ |)], (B1)

where in the third line we used the linearity and the cyclicity
of the trace and in the fourth line we used the definition ρ̃ ≡∫

dμ(U †
μ ⊗ U †

μ)ρ(Uμ ⊗ Uμ). The state ρ̃ is invariant under a
unitary transformation U ⊗ U for any U ∈ SU(2). The only
states with this symmetry are the Werner states [23], which for
the two-qubit case have the general form

ρ̃ = r|�−〉〈�−| + 1 − r

3
(|�+〉〈�+| + |�+〉〈�+|

+ |�−〉〈�−|), (B2)

with 0 � r � 1. Thus, from Eqs. (B1) and (B2) we obtain

P (+ + |θ ) = 1 − r

3
+ 4r − 1

6
sin2

(
θ

2

)
. (B3)

Since the projectors corresponding to Alice and Bob ob-
taining outcomes −1 are obtained by a unitary transformation
of the form U ⊗ U on |0〉 ⊗ |χ〉, with U ∈ SU(2), then from
Eq. (B1) we see that after integrating over the Haar measure on
SU(2), we obtain P (− − |θ ) = P (+ + |θ ). Thus, the average
quantum correlation is Qρ(θ ) = 4P (+ + |θ ) − 1, which from
Eq. (B3) gives

Qρ(θ ) = −
(

4r − 1

3

)
cos θ. (B4)

Then Eq. (7) follows because 0 � r � 1.
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APPENDIX C: NUMERICAL RESULTS

We investigated the WHCMH numerically by computing
the correlation Cx(θ ) for various coloring functions that satisfy
the antipodal property (2) and the condition (6) and have
azimuthal symmetry. These colorings are illustrated in Fig.
1 and are defined in Appendix C 1.

We define (ε,φ) as the spherical coordinates of �a and (α,β)
as those of �b, where ε,α ∈ [0,π ] are angles from the north pole
and φ,β ∈ [0,2π ] are azimuthal angles. The vectors �a and �b
are separated by a fixed angle θ . The set of possible values
of �b around the fixed axis �a generate a circle parametrized by
an angle ω (see Fig. 4). The spherical coordinates (α,β) for a
point �b with angular coordinate ω on this circle are

α = arccos(cos θ cos ε − sin θ sin ε cos ω), (C1)

β =
[
φ + kω arccos

(
cos ε sin θ cos ω + sin ε cos θ

sin α

)]
× mod 2π, (C2)

where kω = 1 if 0 � ω � π and kω = −1 if π < ω � 2π .
Notice that β is undefined for α ∈ {0,π}.

Equations (C1) and (C2) were used to compute the double
integral in (4). The integral with respect to the angle ω was
performed analytically. Thus, the correlations Cx(θ ) were
reduced to a sum of terms that include single integrals with
respect to the polar angle ε; the obtained expressions are
given in Appendix C 2. The single integrals with respect to ε

were computed numerically with a program using the software
Mathematica, which we provide in Ref. [32].

Our results are plotted in Fig. 5; they are consistent with
the WHCMH. They also show that θw

max < π
2 , because they

show that there exists a coloring x with Cx(θ ) < C1(θ ) for
some angles θ ∈ (0, π

2 ), namely, coloring 3 for angles θ ∈
[0.405π,π

2 ).

FIG. 4. Alice’s and Bob’s measurement axes �a and �b form an
angle θ . The spherical coordinates of �a and �b are (ε,φ) and (α,β),
respectively, related by Eqs. (C1) and (C2). Equation (4) computes
the correlation Cx(θ ) by (i) integrating the coloring function bx(�b)
over the circle on the sphere generated by �b [parametrized by the
angle ω in Eqs. (C1) and (C2)] and (ii) integrating the coloring
function ax(�a) over the sphere generated by �a. A general correla-
tion C(θ ) = ∫

X dx μ(x)Cx(θ ) is computed by integrating over the
probability distribution μ(x) of the colorings satisfying the antipodal
property (2).

FIG. 5. (Color online) Correlations computed with (4), subject to
the constraint (6), for the coloring functions ax shown schematically
in Fig. 1 and defined in Appendix C 1. The correlations for coloring 2,
3, and 4 are blue long-dash–short-dashed, red solid, and green long-
dashed curves, respectively. The black long-dash–short-dashed curve
represents the singlet-state quantum correlation Q(θ ). The dark red
short-dashed and dark green long-dash–short-dashed curves show the
coloring 1 correlation C1(θ ) and anticorrelation −C1(θ ), respectively.
The gray solid straight lines show the bounds given by Theorem 1 for
θ � π

12 .

Another interesting result is that there exist colorings
that produce correlations Cx(θ ) < Q(θ ) for θ close to π

2 :
coloring 3 for angles θ ∈ [0.467π,π

2 ). It is interesting to find
other colorings whose correlations satisfy Cx(θ ) < C1(θ ) and
Cx(θ ) < Q(θ ) for angles θ closer to zero. For this purpose,
we consider coloring 3δ , which is defined in Appendix C 1
and consists of a small variation of coloring 3 in terms of
the parameter δ. Coloring 3δ reduces to coloring 3 if δ = 0.
For values of δ in the range [− π

18 , π
24 ], we obtained that the

smallest angle θ for which C3δ
(θ ) < C1(θ ) is achieved for δ =

−0.038π , in which case we have that C3−0.038π
(θ ) < C1(θ ) for

θ ∈ [0.386π,π
2 ). We also obtained that the smallest angle θ for

which C3δ
(θ ) < Q(θ ) is achieved for δ = −0.046π , in which

case we have that C3−0.046π
(θ ) < Q(θ ) for θ ∈ [0.431π,π

2 ) (see
Fig. 6).

Our numerical results imply the bound θw
max � 0.386π .

They also imply that θ s
max � 0.375π , because C2(θ ) > −C1(θ )

for θ ∈ (0.375π,π
2 ) and C1(θ ) � Cx(θ ) � −C1(θ ) for x =

2,3,4,3δ and θ ∈ [0,0.375π ]. The slightly improved bound
θ s

max � 0.345π was obtained in [18] from a variation of
coloring 2, coloring 2�, in which the polar angle defining the
boundary between the black and white regions in the northern
hemisphere (see Fig. 1) is reduced by the angle � ∈ [0, π

12 ].
In order to confirm analytically the numerical observation

that there exist coloring functions x ∈ X such that Cx(θ ) <

Q(θ ) for θ close to π
2 , we computed C3(π

2 − τ ) for 0 � τ � 1
to O(τ 2). The computation is presented in Appendix C 3. We
obtain

C3

(
π

2
− τ

)
= −1.5τ + O(τ 2). (C3)

On the other hand, the quantum correlation gives Q(π
2 − τ ) =

− cos(π
2 − τ ) = −τ + O(τ 3). Thus, we see that for τ small

enough, indeed C3(π
2 − τ ) < Q(π

2 − τ ).
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FIG. 6. (Color online) Correlations obtained for coloring 3δ , de-
fined in Appendix C 1, for δ = −0.038π (a, green dashed curve)
and δ = −0.046π (b, blue long-dash–short-dashed curve) and for
colorings 3, 1, and the singlet-state quantum correlation Q(θ )
(red solid, dark red short-dashed, and black long-dash–short-dashed
curves, respectively).

Further numerical investigations of the WHCMH and
SHCMH might shed further light on the questions we explore
here. For example, one could define an antipodal coloring
function x as the sign of a sum of spherical harmonics
sgn[

∑l
m=−l

∑L
l=0 almYlm(ε,φ)], where the coefficients alm are

variable parameters, and then search for the minimum value of
Cx(θ ), for any given θ , among such functions by optimizing
with respect to the alm. As an ansatz, one might assume
that components corresponding to spherical harmonics that
oscillate rapidly compared to θ are relatively negligible, given
that the colorings defined by such functions contain black and
white areas small compared to θ everywhere on the sphere,
giving a contribution to the correlation very close to zero. This
would allow searches over a finite set of parameters, for any
given θ , while the ansatz itself can be tested by finding how
the maximum changes with increasing L.

1. Definitions of the coloring functions

In general, a coloring function ax with azimuthal symmetry
can be defined in terms of the set Ex in which it takes the value
1 as follows:

ax(ε) ≡
{

1 if ε ∈ Ex

−1 if ε ∈ [0,π ]/Ex,
(C4)

where ε ∈ [0,π ] is the polar angle in the sphere. For the
colorings that we have considered here x = 1,2,3,4,3δ , we

define

E1 ≡
[

0,
π

2

]
, E2 ≡

[
0,

π

4

]⋃ [
π

2
,
3π

4

]
,

E3 ≡
2⋃

k=0

[
k
π

3
,(2k + 1)

π

6

]
, E4 ≡

3⋃
k=0

[
k
π

4
,(2k + 1)

π

8

]
,

E3δ
≡

[
0,

π

6
+ δ

] ⋃ [
π

3
,
π

2

] ⋃[
2π

3
,
5π

6
− δ

]
, (C5)

where − π
18 � δ � π

24 . Notice that coloring 3δ reduces to
coloring 3 if δ = 0.

2. Expressions for the correlations

We use the azimuthal symmetry of the colorings x =
2,3,4,3δ defined in Appendix C 1, the antipodal property (2),
and the constraint (6) to reduce the correlation given by (4) to

Cx(θ ) = − 1

π

∫ π/2

0
dε sin εax(ε)

∫ π

0
dω ax[α(θ,ε,ω)], (C6)

where α(θ,ε,ω) is given by Eq. (C1). We computed the integral
with respect to ω in the previous expression. We define the
function

χ (θ,a,b,α) ≡ 2

π

∫ b

a

dε sin ε arccos

(
cos θ cos ε − cos α

sin θ sin ε

)
,

(C7)

where a,b,α ∈ [0,π ] and θ ∈ [0, π
2 ]. We obtained the follow-

ing expressions for the correlations Cx(θ ):

C2(θ ) =
{

h1
2(θ ) if θ ∈ [0,π/4]

h2
2(θ ) if θ ∈ (π/4,π/2],

C3(θ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h1
3(θ ) if θ ∈ [0,π/6]

h2
3(θ ) if θ ∈ (π/6,π/4]

h3
3(θ ) if θ ∈ (π/4,π/3]

h4
3(θ ) if θ ∈ (π/3,π/2],

C4(θ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h1
4(θ ) if θ ∈ [0,π/8]

h2
4(θ ) if θ ∈ (π/8,π/4]

h3
4(θ ) if θ ∈ (π/4,3π/8]

h4
4(θ ) if θ ∈ (3π/8,π/2],

C3δ
(θ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1
δ (θ ) if δ ∈ [ − π

18 ,0
]
, θ ∈ [

π
3 , π

3 − δ
]

r2
δ (θ ) if δ ∈ [ − π

18 ,0
]
, θ ∈ (

π
3 − δ,π

2 + δ
]

r3
δ (θ ) if δ ∈ [ − π

18 ,0
]
, θ ∈ (

π
2 + δ,π

2

]
r4
δ (θ ) if δ ∈ (

0, π
24

]
, θ ∈ [

π
3 , π

3 + 2δ
]

r2
δ (θ ) if δ ∈ (

0, π
24

]
, θ ∈ (

π
3 + 2δ,π

2 − δ
]

r5
δ (θ ) if δ ∈ (

0, π
24

]
, θ ∈ (

π
2 − δ,π

2

]
,

(C8)

where

h1
2(θ ) ≡ −1 + 2

[
cos

(
π

4

)
− cos

(
π

4
+ θ

)]
+ χ

(
θ,

π

4
− θ,

π

4
,
π

4

)
− χ

(
θ,

π

4
,
π

4
+ θ,

π

4

)
+ χ

(
θ,

π

2
− θ,

π

2
,
π

2

)
,
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h2
2(θ ) ≡ 1 + 2

[
cos

(
π

4

)
− cos

(
θ − π

4

)]
+ χ

(
θ,θ − π

4
,
π

4
,
π

4

)
− χ

(
θ,

π

2
− θ,

π

4
,
π

2

)
+ χ

(
θ,

π

4
,
π

2
,
π

2

)

−χ

(
θ,

π

4
,
π

2
,
π

4

)
− χ

(
θ,

3π

4
− θ,

π

2
,
3π

4

)
;

h1
3(θ ) ≡ −1 + 2

[
cos

(
π

6

)
− cos

(
π

6
+ θ

)
+ cos

(
π

3

)
− cos

(
π

3
+ θ

)]
+ χ

(
θ,

π

6
− θ,

π

6
,
π

6

)
− χ

(
θ,

π

6
,
π

6
+ θ,

π

6

)

+χ

(
θ,

π

3
− θ,

π

3
,
π

3

)
− χ

(
θ,

π

3
,
π

3
+ θ,

π

3

)
+ χ

(
θ,

π

2
− θ,

π

2
,
π

2

)
,

h2
3(θ ) ≡ 1 + 2

[
cos

(
π

6

)
− cos

(
θ − π

6

)
+ cos

(
π

6
+ θ

)
− cos

(
π

3

)]
+ χ

(
θ,θ − π

6
,
π

6
,
π

6

)
− χ

(
θ,

π

3
− θ,

π

6
,
π

3

)

+χ

(
θ,

π

6
,
π

2
− θ,

π

3

)
− χ

(
θ,

π

6
,
π

3
,
π

6

)
+ χ

(
θ,

π

2
− θ,

π

3
,
π

3

)
− χ

(
θ,

π

2
− θ,

π

3
,
π

2

)
+ χ

(
θ,

π

3
,
π

6
+ θ,

π

6

)

+χ

(
θ,

π

3
,
π

2
,
π

2

)
− χ

(
θ,

π

3
,
π

2
,
π

3

)
− χ

(
θ,

2π

3
− θ,

π

2
,
2π

3

)
,

h3
3(θ ) ≡ 1 + 2

[
cos

(
π

6

)
− cos

(
θ − π

6

)
+ cos

(
π

6
+ θ

)
− cos

(
π

3

)]
− χ

(
θ,

π

3
− θ,

π

6
,
π

3

)
+ χ

(
θ,θ − π

6
,
π

6
,
π

6

)

+χ

(
θ,

π

6
,
π

3
,
π

3

)
− χ

(
θ,

π

6
,
π

3
,
π

6

)
− χ

(
θ,

π

2
− θ,

π

3
,
π

2

)
+ χ

(
θ,

π

3
,
π

2
,
π

2

)
− χ

(
θ,

π

3
,
π

2
,
π

3

)

+χ

(
θ,

π

3
,
π

6
+ θ,

π

6

)
− χ

(
θ,

2π

3
− θ,

π

2
,
2π

3

)
,

h4
3(θ ) ≡ −1 + 2

[
cos

(
θ − π

3

)
− cos

(
π

6

)
+ cos

(
θ − π

6

)
− cos

(
π

3

)]
− χ

(
θ,θ − π

3
,
π

6
,
π

3

)
+ χ

(
θ,

π

2
− θ,

π

6
,
π

2

)

+χ

(
θ,

π

6
,
π

3
,
π

3

)
− χ

(
θ,

π

6
,
π

3
,
π

2

)
− χ

(
θ,θ − π

6
,
π

3
,
π

6

)
+ χ

(
θ,

2π

3
− θ,

π

3
,
2π

3

)

−χ

(
θ,

π

3
,
π

2
,
2π

3

)
+ χ

(
θ,

π

3
,
π

2
,
π

2

)
− χ

(
θ,

π

3
,
π

2
,
π

3

)
+ χ

(
θ,

π

3
,
π

2
,
π

6

)
+ χ

(
θ,

5π

6
− θ,

π

2
,
5π

6

)
;

h1
4(θ ) ≡ −1 + 2

[
cos

(
π

8

)
− cos

(
π

8
+ θ

)
+ cos

(
π

4

)
− cos

(
π

4
+ θ

)
+ cos

(
3π

8

)
− cos

(
3π

8
+ θ

)]

+χ

(
θ,

π

8
− θ,

π

8
,
π

8

)
− χ

(
θ,

π

8
,
π

8
+ θ,

π

8

)
+ χ

(
θ,

π

4
− θ,

π

4
,
π

4

)
− χ

(
θ,

π

4
,
π

4
+ θ,

π

4

)

+χ

(
θ,

3π

8
− θ,

3π

8
,
3π

8

)
− χ

(
θ,

3π

8
,
3π

8
+ θ,

3π

8

)
+ χ

(
θ,

π

2
− θ,

π

2
,
π

2

)
,

h2
4(θ ) ≡ 1 + 2

[
cos

(
π

8

)
− cos

(
θ − π

8

)
+ cos

(
θ + π

8

)
− cos

(
π

4

)
+ cos

(
θ + π

4

)
− cos

(
3π

8

)]

+χ

(
θ,θ − π

8
,
π

8
,
π

8

)
− χ

(
θ,

π

4
− θ,

π

8
,
π

4

)
+ χ

(
θ,

π

8
,
π

4
,
π

4

)
− χ

(
θ,

π

8
,
π

4
,
π

8

)
− χ

(
θ,

3π

8
− θ,

π

4
,
3π

8

)

+χ

(
θ,

π

4
,
π

8
+ θ,

π

8

)
+ χ

(
θ,

π

4
,
3π

8
,
3π

8

)
− χ

(
θ,

π

4
,
3π

8
,
π

4

)
− χ

(
θ,

π

2
− θ,

3π

8
,
π

2

)
+ χ

(
θ,

3π

8
,
π

4
+ θ,

π

4

)

+χ

(
θ,

3π

8
,
π

2
,
π

2

)
− χ

(
θ,

3π

8
,
π

2
,
3π

8

)
− χ

(
θ,

5π

8
− θ,

π

2
,
5π

8

)
,

h3
4(θ ) ≡ −1 + 2

[
cos

(
θ − π

4

)
− cos

(
π

8

)
+ cos

(
θ − π

8

)
− cos

(
π

4

)
+ cos

(
3π

8

)
− cos

(
θ + π

8

)]

−χ

(
θ,θ − π

4
,
π

8
,
π

4

)
+ χ

(
θ,

3π

8
− θ,

π

8
,
3π

8

)
− χ

(
θ,

π

8
,
π

4
,
3π

8

)
+ χ

(
θ,

π

8
,
π

4
,
π

4

)
− χ

(
θ,θ − π

8
,
π

4
,
π

8

)
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+χ

(
θ,

π

2
− θ,

π

4
,
π

2

)
− χ

(
θ,

π

4
,
3π

8
,
π

2

)
+ χ

(
θ,

π

4
,
3π

8
,
3π

8

)
− χ

(
θ,

π

4
,
3π

8
,
π

4

)
+ χ

(
θ,

π

4
,
3π

8
,
π

8

)

+χ

(
θ,

5π

8
− θ,

3π

8
,
5π

8

)
− χ

(
θ,

3π

8
,
π

2
,
5π

8

)
+ χ

(
θ,

3π

8
,
π

2
,
π

2

)
− χ

(
θ,

3π

8
,
π

2
,
3π

8

)

+χ

(
θ,

3π

8
,
π

2
,
π

4

)
− χ

(
θ,

3π

8
,
π

8
+ θ,

π

8

)
+ χ

(
θ,

3π

4
− θ,

π

2
,
3π

4

)
,

h4
4(θ ) ≡ 1 + 2

[
cos

(
π

8

)
− cos

(
θ − 3π

8

)
+ cos

(
π

4

)
− cos

(
θ − π

4

)
+ cos

(
3π

8

)
− cos

(
θ − π

8

)]

+χ

(
θ,θ − 3π

8
,
π

8
,
3π

8

)
− χ

(
θ,

π

2
− θ,

π

8
,
π

2

)
+ χ

(
θ,

π

8
,
π

4
,
π

2

)
− χ

(
θ,

π

8
,
π

4
,
3π

8

)

+χ

(
θ,θ − π

4
,
π

4
,
π

4

)
− χ

(
θ,

5π

8
− θ,

π

4
,
5π

8

)
+ χ

(
θ,

π

4
,
3π

8
,
5π

8

)
− χ

(
θ,

π

4
,
3π

8
,
π

2

)

+χ

(
θ,

π

4
,
3π

8
,
3π

8

)
− χ

(
θ,

π

4
,
3π

8
,
π

4

)
+ χ

(
θ,θ − π

8
,
3π

8
,
π

8

)
− χ

(
θ,

3π

4
− θ,

3π

8
,
3π

4

)

+χ

(
θ,

3π

8
,
π

2
,
3π

4

)
− χ

(
θ,

3π

8
,
π

2
,
5π

8

)
+ χ

(
θ,

3π

8
,
π

2
,
π

2

)
− χ

(
θ,

3π

8
,
π

2
,
3π

8

)

+χ

(
θ,

3π

8
,
π

2
,
π

4

)
− χ

(
θ,

3π

8
,
π

2
,
π

8

)
− χ

(
θ,

7π

8
− θ,

π

2
,
7π

8

)
;

r1
δ (θ ) ≡ −1 + 2

[
cos

(
θ − π

3

)
− cos

(
π

6
+ δ

)
+ cos

(
θ − π

6
− δ

)
− cos

(
π

3

)
+ cos

(
θ + π

6
+ δ

)]

−χ

(
θ,θ − π

3
,
π

6
+ δ,

π

3

)
+ χ

(
θ,

π

6
+ δ,

π

3
,
π

3

)
− χ

(
θ,

π

2
− θ,

π

3
,
π

2

)
− χ

(
θ,θ − π

6
− δ,

π

3
,
π

6
+ δ

)

+χ

(
θ,

2π

3
− θ,

π

3
,
2π

3

)
− χ

(
θ,

π

3
,
π

2
,
2π

3

)
+ χ

(
θ,

π

3
,
π

2
,
π

2

)
− χ

(
θ,

π

3
,
π

2
,
π

3

)
+ χ

(
θ,

π

3
,θ + π

6
+ δ,

π

6
+ δ

)
,

r2
δ (θ ) ≡ −1 + 2

[
cos

(
θ − π

3

)
− cos

(
π

6
+ δ

)
+ cos

(
θ − π

6
− δ

)
− cos

(
π

3

)]
− χ

(
θ,θ − π

3
,
π

6
+ δ,

π

3

)

+χ

(
θ,

π

2
− θ,

π

6
+ δ,

π

2

)
− χ

(
θ,

π

6
+ δ,

π

3
,
π

2

)
+ χ

(
θ,

π

6
+ δ,

π

3
,
π

3

)
− χ

(
θ,θ − π

6
− δ,

π

3
,
π

6
+ δ

)

+χ

(
θ,

2π

3
− θ,

π

3
,
2π

3

)
− χ

(
θ,

π

3
,
π

2
,
2π

3

)
+ χ

(
θ,

π

3
,
π

2
,
π

2

)
− χ

(
θ,

π

3
,
π

2
,
π

3

)
+ χ

(
θ,

π

3
,
π

2
,
π

6
+ δ

)

+χ

(
θ,

5π

6
− δ − θ,

π

2
,
5π

6
− δ

)
,

r3
δ (θ ) ≡ −1 + 2

[
cos

(
π

6
+ δ

)
− cos

(
θ − π

3

)
+ cos

(
π

3

)
− cos

(
θ − π

6
− δ

)]
+ χ

(
θ,

π

2
− θ,

π

6
+ δ,

π

2

)

−χ

(
θ,

π

6
+ δ,

π

3
,
π

2

)
+ χ

(
θ,θ − π

3
,
π

3
,
π

3

)
+ χ

(
θ,

2π

3
− θ,

π

3
,
2π

3

)
− χ

(
θ,

π

3
,
π

2
,
2π

3

)

+χ

(
θ,

π

3
,
π

2
,
π

2

)
− χ

(
θ,

π

3
,
π

2
,
π

3

)
+ χ

(
θ,θ − π

6
− δ,

π

2
,
π

6
+ δ

)
+ χ

(
θ,

5π

6
− δ − θ,

π

2
,
5π

6
− δ

)
,

r4
δ (θ ) ≡ −1 + 2

[
cos

(
θ − π

3

)
− cos

(
θ − π

6
− δ

)
+ cos

(
π

6
+ δ

)
− cos

(
π

3

)]
− χ

(
θ,θ − π

3
,
π

6
+ δ,

π

3

)

+χ

(
θ,θ − π

6
− δ,

π

6
+ δ,

π

6
+ δ

)
+ χ

(
θ,

π

2
− θ,

π

6
+ δ,

π

2

)
− χ

(
θ,

π

6
+ δ,

π

3
,
π

2

)
+ χ

(
θ,

π

6
+ δ,

π

3
,
π

3

)

−χ

(
θ,

π

6
+ δ,

π

3
,
π

6
+ δ

)
+ χ

(
θ,

2π

3
− θ,

π

3
,
2π

3

)
− χ

(
θ,

π

3
,
π

2
,
2π

3

)

+χ

(
θ,

π

3
,
π

2
,
π

2

)
− χ

(
θ,

π

3
,
π

2
,
π

3

)
+ χ

(
θ,

π

3
,
π

2
,
π

6
+ δ

)
+ χ

(
θ,

5π

6
− δ − θ,

π

2
,
5π

6
− δ

)
,
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r5
δ (θ ) ≡ −1 + 2

[
cos

(
θ − π

3

)
− cos

(
π

6
+ δ

)
+ cos

(
θ − π

6
− δ

)
− cos

(
π

3

)]
+ χ

(
θ,

π

2
− θ,

π

6
+ δ,

π

2

)

−χ

(
θ,θ − π

3
,
π

6
+ δ,

π

3

)
− χ

(
θ,

2π

3
− θ,

π

6
+ δ,

2π

3

)
+ χ

(
θ,

π

6
+ δ,

π

3
,
2π

3

)
− χ

(
θ,

π

6
+ δ,

π

3
,
π

2

)

+χ

(
θ,

π

6
+ δ,

π

3
,
π

3

)
− χ

(
θ,θ − π

6
− δ,

π

3
,
π

6
+ δ

)
− χ

(
θ,

5π

6
− δ − θ,

π

3
,
5π

6
− δ

)
+ χ

(
θ,

π

3
,
π

2
,
5π

6
− δ

)

−χ

(
θ,

π

3
,
π

2
,
2π

3

)
+ χ

(
θ,

π

3
,
π

2
,
π

2

)
− χ

(
θ,

π

3
,
π

2
,
π

3

)
+ χ

(
θ,

π

3
,
π

2
,
π

6
+ δ

)
.

3. Proof of Eq. (C3)

Let 0 � τ � 1. To show Eq. (C3), we expand C3(π
2 − τ )

in its Taylor series to obtain

C3

(
π

2
− τ

)
= C3

(
π

2

)
+ τ

[
d

dτ
C3

(
π

2
− τ

)]
τ=0

+ O(τ 2).

(C9)

As shown in the main text, the correlation satisfies Cx(π
2 ) =

0 for any pair of colorings labeled by x that we consider.
Thus, we have that C3(π

2 ) = 0. From Eq. (C8) we have that
C3(π

2 − τ ) = h4
3(π

2 − τ ) for 0 � τ � 1. Thus, we only need
to show that [

d

dθ
h4

3(θ )

]
θ=π/2

= 1.5. (C10)

The function h4
3(θ ) has terms of the form

χ (θ,a,b,α) ≡
∫ b

a

dε ξ (θ,ε,α), (C11)

where

ξ (θ,ε,α) ≡ 2

π
sin ε arccos

(
cos θ cos ε − cos α

sin θ sin ε

)
, (C12)

as defined by Eq. (C7). Differentiating the function χ , we
obtain

d

dθ
χ (θ,a,b,α) = ξ (θ,b,α)

db

dθ
− ξ (θ,a,α)

da

dθ

+
∫ b

a

dε
∂

∂θ
ξ (θ,ε,α). (C13)

We have that[
∂

∂θ
ξ (θ,ε,α)

]
θ=π/2

= 2 cos ε

π
√

1 − (cos α/sin ε)2
. (C14)

We obtain that

2

π

∫ b

a

dε cos ε√
1 − (cos α/sin ε)2

= μ(a,b,α), (C15)

where

μ(a,b,α) ≡ 2

π
(
√

sin2 b − cos2 α −
√

sin2 a − cos2 α)

(C16)

for cos2 α � sin2 b and cos2 α � sin2 a. We define

ν(ε,α) ≡ ξ

(
π

2
,ε,α

)
. (C17)

From the definition of h4
3(θ ) given in Appendix C 2 and

Eqs. (C13)–(C17), it is straightforward to obtain that[
d

dθ
h4

3(θ )

]
θ=π/2

= −2

[
sin

(
π

6

)
+ sin

(
π

3

)]
+ ν

(
0,

π

2

)
+ ν

(
π

6
,
π

3

)

+ ν

(
π

6
,
2π

3

)
+ ν

(
π

3
,
π

6

)
+ ν

(
π

3
,
5π

6

)

+μ

(
0,

π

6
,
π

2

)
− μ

(
π

6
,
π

6
,
π

3

)

+μ

(
π

6
,
π

3
,
π

3

)
− μ

(
π

6
,
π

3
,
π

2

)
+ μ

(
π

6
,
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(C18)

We use Eqs. (C12), (C16), and (C17) and notice that ν(0, π
2 ) =

0 in order to evaluate the previous expression. We obtain[
d

dθ
h4

3(θ )

]
θ=π/2

= 1

π
[6 − 4(

√
3 −

√
2)] = 1.5, (C19)

as claimed.
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