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Landau-Zener transitions in a two-level system coupled to a
finite-temperature harmonic oscillator
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We consider the Landau-Zener problem for a two-level system (or qubit) when this system interacts with one
harmonic oscillator mode that is initially set to a finite-temperature thermal equilibrium state. The oscillator could
represent an external mode that is strongly coupled to the qubit, e.g., an ionic oscillation mode in a molecule,
or it could represent a prototypical uncontrolled environment. We analyze the qubit’s occupation probabilities
at the final time in a number of regimes, varying the qubit and oscillator frequencies, their coupling strength,
and the temperature. In particular, we find a surprising nonmonotonic dependence on the coupling strength and
temperature.
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I. INTRODUCTION

Landau-Zener (LZ) transitions occur when two energy
levels cross—or, more accurately, experience an avoided
crossing—as some external parameter is varied in time [1–4].
The system can then either stay in the same energy level that
it occupied before the crossing or undergo a transition to the
other level. Such a universal phenomenon is ubiquitous and
has applications in various areas of quantum physics. Among
the new areas in which the physics of LZ transitions can
play an important role are adiabatic quantum computation
(AQC) [5] and amplitude spectroscopy in nanoscale circuits
[6–8] and in nitrogen-vacancy centers in diamond [9]. It
could also play a role in intermolecular energy transfer in
biological light-harvesting systems. In AQC, the parameters
of a physical system (which can be called a quantum computer
or annealer) are varied slowly such that the system transforms
from an easy-to-prepare ground state into a ground state
that contains the answer to a physical problem (or even a
computational problem of a nonphysical nature). In biological
light-harvesting systems, energy transfer between different
parts of a molecule could be governed by molecular changes
that act as driving fields for electronic motion.

The LZ problem in a closed system was solved soon after
it was formulated over 80 years ago [1–4]. Physical systems,
however, invariably interact with a surrounding environment.
There have been numerous studies on the LZ problem in
the presence of an environment [10–25], and some methods
have produced accurate results in their regimes of validity.
However, there is no method that is valid and computationally
efficient for all parameter regimes. In particular, the different
methods typically have underlying assumptions justifying the
validity of their mathematical formulation based on physical
arguments. For example, one could make the assumption of a
very short correlation or memory time in the environment’s
degrees of freedom and use a Markovian approach. This
approach would, however, break down when the environment’s
correlation time is not short compared to the LZ time scale,
a situation that could occur when dealing with low-frequency
noise.
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Here we take a different approach. We numerically solve a
rather simple physical problem that involves a single two-level
system (to which we also refer as the qubit) coupled to a single
harmonic oscillator. We can therefore be confident that our
numerical calculations provide an accurate description of the
problem as formulated. After obtaining the numerical results
for the relatively simple problem, we comment on the physical
significance of these results and how they could apply for a
system where the single harmonic oscillator is replaced by an
environment with a large number of degrees of freedom.

The remainder of the paper is organized as follows: In
Sec. II we describe the basic setup and introduce the corre-
sponding Hamiltonian. In Sec. III we describe our numerical
calculations. In Sec. IV we present the results of these
calculations and discuss the interpretation of the results.
Section V contains some concluding remarks.

II. MODEL SYSTEM AND HAMILTONIAN

We consider the basic LZ problem where the system of
interest possesses only two quantum states. As such, it can be
described using the Pauli matrices σ̂α with α = x, y or z. We
use the basis states defined by the relations σ̂z |↑〉 = |↑〉 and
σ̂z |↓〉 = − |↓〉.

In an isolated system, the LZ Hamiltonian is given by

H = −vt

2
σ̂z − �

2
σ̂x, (1)

where the time variable t goes from −∞ to +∞, v is the sweep
rate, and � is the minimum energy gap between the ground and
the excited states, which occurs at t = 0. At long negative times
the ground and excited states asymptotically coincide with the
states |↓〉 and |↑〉, respectively. The roles of these states are
reversed at long positive times. At t = 0, the instantaneous
ground and excited states are equal superpositions of the states
|↑〉 and |↓〉. The LZ formula, which, for example, gives the
probability of a system prepared in its ground state at t →
−∞ ending up in the excited state at t → ∞, is given by
PLZ = exp{−π�2/(2v)}. In particular, for a slow sweep (i.e.,
v/�2 � 1), PLZ → 0 and a system that is initially prepared
in the ground state has a high probability of remaining in the
ground state.
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The LZ problem can be generalized in order to take into
account the effects of an uncontrolled external environment.
Early studies of this problem used somewhat ad hoc quantum
master equations in order to incorporate dissipative processes
in the dynamics [10]. Subsequent studies generally started
with a specific model of the environment and derived ap-
proximate equations of motion for the system under certain
approximations (see, e.g., Refs. [12,17,22], and [23]). Because
of computational convenience and physical relevance, the
environment is commonly modeled as a large set of harmonic
oscillators, even if the microscopic details of the environment
are not known. This approach has been applied successfully
to the study of the LZ problem in a number of regimes. It
is not possible, however, to obtain analytic results for this
problem, and approximations that are valid for specific regimes
are commonly made in order to numerically calculate the
effect of the large number of harmonic oscillators on the LZ
probability. The strong-coupling and low-temperature regimes
are particularly challenging for these methods.

Here we take a different approach to studying the effects
of the environment on the LZ problem. We consider an
environment composed of a single harmonic oscillator. Clearly
this simple model will not be able to capture all the effects
that occur in a complex environment. However, the simplicity
of the model allows us to have confidence in the results of
standard numerical simulations. Rather than having to make
assumptions concerning the behavior of the system at the
beginning of the calculation, the difficult task is then shifted
to the step of interpreting the numerical results and identifying
in these results patterns and tendencies that one can expect to
apply to a large environment. It is also worth mentioning here
that there can be cases where the largest environmental effects
are caused by a single mode in the environment, in which case
the results of this simple model become particularly relevant.
Another advantage of treating such a minimal model is the fact
that it allows us to discuss physical processes rather clearly.

We would like to note here that a related system, namely,
an LZ problem of a qubit coupled to a harmonic oscillator and
an environment, was recently considered in Ref. [26]. In that
work, however, there is no minimum-gap term in the qubit’s
Hamiltonian, and the avoided crossings arise as a result of the
coupling between the qubit and the oscillator, rendering the
system qualitatively different from the one that we consider in
this paper.

The Hamiltonian of the LZ problem with a single-mode
environment and linear coupling is given by

H = −vt

2
σ̂z − �

2
σ̂x + �ωâ†â + gσz ⊗ (â + â†), (2)

where ω is the characteristic frequency of the harmonic oscil-
lator, â and â† are, respectively, the oscillator’s annihilation
and creation operators, and g is the qubit-oscillator coupling
strength. The energy level diagram of this problem is illustrated
in Fig. 1.

We are interested, in particular, in the case of slow,
nearly adiabatic passage. This case corresponds to the desired
condition for obtaining a high transfer probability in adiabatic
passage protocols; it is also the relevant regime for maximizing
the success probability in an AQC.

FIG. 1. (Color online) Energy level diagram of a coupled qubit-
oscillator system with the qubit bias conditions varied according to
the LZ protocol.

III. NUMERICAL CALCULATIONS

We numerically solve the time-dependent Schrödinger
(or Liouville–von Neumann) equation using the Hamiltonian
given in Eq. (2). In these calculations we set the sweep rate
v to the value that gives PLZ = 0.1 (i.e., starting from the
ground state, the two-level system ends up in the ground state
with 90% probability). In other words, we choose a sweep
rate that is close to the adiabatic limit in the absence of
the coupling to the oscillator. We take three values of the
oscillator frequency: ω/� = 0.2 (low-frequency oscillator), 1
(intermediate regime), and 5 (high-frequency oscillator). We
vary the coupling strength from g/� = 0 to g/� = 2, and
we vary the temperature T from kBT /� = 0 to kBT /� = 5,
where kB is the Boltzmann constant.

In order to incorporate the finite temperature into the
calculation, the simulations are started in thermal equilibrium
at a large negative value for the time variable. In this limit, the
qubit and resonator are effectively decoupled from each other,
except for simple mean-field shifts that they induce on each
other. Furthermore, the qubit’s energy splitting is very large
in the limit t → −∞. As a result, the qubit starts initially
in its ground state |↓〉. The harmonic oscillator starts in a
mixed thermal state according to the Boltzmann probability
distribution with an average number of quanta kBT /(�ω)
for high temperatures. (Note that the Boltzmann probability
distribution extends up to several times this value.) This
estimate provides a minimum number of basis states that need
to be included in the simulations, and it also sets a limit to
the highest temperatures that can be reached in simulations
with a given size of the Hilbert space. In particular, for the
lowest oscillator frequency and highest temperature that we
consider, we use a Hilbert space with 1000 basis states. Note
that the initial state of the oscillator is the only part of the
calculation where the finite temperature of the environment
enters the calculation.

After setting the initial state according to the Boltzmann
distribution, we evolve the density matrix of the combined
system in time according to the Schrödinger equation. Note
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that this evolution is unitary, which is the reason why we can
say that, in contrast to most other methods, we do not make
any approximations or assumptions concerning the internal
dynamics of the environment. The evolution is stopped at a
sufficiently large and positive value of the time variable, such
that further evolution would not have any noticeable effect
on the occupation probabilities of the different states. At this
final time, we examine the occupation probabilities of the
different quantum states, from which we can easily calculate
the probability that the qubit remains in its ground state.

IV. RESULTS

The probability of the qubit’s ending up in the excited state
at the final time as a function of the temperature and coupling
strength is plotted in Figs. 2–4. As expected from known
results [17], the final excited-state occupation probability P

remains equal to 0.1 whenever the temperature or the coupling
strength is equal to 0. Otherwise, the coupling to the oscillator
causes this probability to increase. A common, and somewhat
surprising, trend for all values of �ω/� is the nonmonotonic
dependence on the coupling strength g. As the coupling
strength is increased from 0 to finite but small values, P

increases. But when the coupling strength is increased further,
P starts to decrease. Based on the results plotted in Figs. 2–4,
one can expect that in the limit of large g/� (and assuming
not very large values of kBT /�), the excited-state occupation
probability will go back to its value in the uncoupled case,
i.e., P = 0.1. This phenomenon is probably a manifestation
of the superradiance-like behavior in a strongly coupled qubit-
oscillator system [27]. In the superradiant regime (i.e., the
strong-coupling regime), the ground state is highly entangled
exactly at the symmetry point (which corresponds to the
bias conditions at t = 0 in the LZ problem), but even small
deviations from the symmetry point can lead to an effective
decoupling between the qubit and the resonator with the
exception of some state-dependent mean-field shifts. Indeed
the maximum values of P reached in Figs. 3 and 4 occur at
coupling strength values that are comparable to the expression
for the uncorrelated-to-correlated crossover value, namely,
g ∼ �ω (and we have verified that the near-linear increase in
peak location as a function of oscillator frequency continues
up to �ω/� = 20). This relation does not apply in the case
�ω/� = 0.2, shown in Fig. 2. In this case, the peak occurs
when the coupling strength g is comparable to the minimum
gap �. It is in fact quite surprising that the excitation peak in
the case �ω/� = 0.2 occurs at a coupling strength higher than
that obtained in the case �ω/� = 1. In order to investigate this
point further, we tried values close to �ω/� = 1 and found
that this value gives a minimum in the peak location (i.e., the
peak in P when plotted as a function of g/�).

Another feature worth noting is the temperature dependence
of P close to zero temperature. As shown clearly in Figs. 3
and 4, the initial increase in P with temperature is very slow,
indicating that it probably follows an exponential function
that corresponds to the probability of populating the excited
states in the harmonic oscillator (and the same dependence
is probably present but difficult to see because of the scale
of the x axis in Fig. 2). After this initial slow rise, and
in particular when kBT � �ω, we see a steady rise that,
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FIG. 2. (Color online) Top: Qubit’s final excited-state probability
P as a function of temperature kBT and coupling strength g, both
measured relative to the qubit’s minimum gap �. Middle: P as a
function of kBT /� for four values of g/�: 0.1 [solid (red) line],
0.3 [dashed (green) line], 1 [dotted (blue) line], and 2 [dash-dotted
(magenta) line]. Bottom: P as a function of g/� for three values
of kBT /�: 1 [solid (red) line], 3 [dashed (green) line], and 5
[dotted (blue) line]. In all panels, the harmonic oscillator frequency
is �ω/� = 0.2. The sweep rate was chosen such that PLZ = 0.1, and
this value is the baseline for all of the results plotted.

in the case of Fig. 2, can be approximated as a linear
increase in P with increasing T . Importantly, the slope of this
increase can be quite large for intermediate g values. From
the results shown in Figs. 2–4, we find that the maximum
slope [dP/d(kBT /�)]max = 0.18 × (�ω/�)−0.57 and results
for other parameter values extending up to �ω/� = 20 follow
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FIG. 3. (Color online) Same as Fig. 2, but for �ω/� = 1.

this dependence. The implication of this result is clearly shown
in the middle panel in Fig. 2: Even when the temperature is
substantially smaller than the qubit’s minimum gap �, the
initial excitation of the low-frequency oscillator (stemming
from the finite temperature) can cause a large increase in
the qubit’s final excited-state probability. This result is in
contrast to the exact result in Ref. [17], stating that at zero
temperature the qubit’s final excited-state probability is given
by PLZ regardless of the value of g. The typical temperature
scale at which deviations from the LZ formula occur can
therefore be much lower than �/kB . This result is relevant
for adiabatic quantum computing, because it contradicts the
expectation that having a minimum gap that is large compared
to the temperature might provide automatic protection for the
ground-state population against thermal excitation. Another
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FIG. 4. (Color online) Same as Fig. 2, but for �ω/� = 5.

point worth noting here is that when �ω < �, there is no point
in time where the qubit and oscillator are resonant with each
other, yet the initial thermal excitation of the oscillator can
result in exciting the qubit at the final time. The excitations in
the oscillator are in some sense up-converted into excitations in
the qubit as a result of the sweep through the avoided crossing.

We can also see in Fig. 2 that for g/� � 1 the temperature
dependence is nonmonotonic. In particular, for low tempera-
tures we obtain the intuitively expected increase in excitation
probability with increasing temperature, but this trend reverses
for higher temperatures. In order to investigate this feature
further, we calculate the qubit’s final excited-state probability
as a function of the number n of excitation quanta present
in the initial state of the oscillator. (Note that this calculation
differs from those described above in that here we do not use
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FIG. 5. (Color online) Final excited-state probability P as a
function of the number of excitation quanta n present in the initial
state of the oscillator. Here we take �ω/� = 0.2. Different lines
correspond to different values of the coupling strength: g/� = 0.1
[solid (red) line], 0.5 [dashed (green) line], 1 [dotted (blue) line], and
2 [dash-dotted (magenta) line].

the Boltzmann distribution for the oscillator’s initial state.)
The results are plotted in Fig. 5. These results explain the
nonmonotonic dependence on temperature. For intermediate
values of g/� (e.g. for g/� = 1), there is a peak at a small but
finite excitation number followed by a steady decrease. As the
temperature is increased from 0, the qubit’s final excited-state
probability samples the probabilities for increasingly high
excitation numbers, and a peak at intermediate values of
temperature is obtained. Note that for large excitation numbers,
the increase in P as a function of n resumes, and this increase
will also be reflected in the temperature dependence.

We note in this context that recent theoretical studies [22,23]
have reported a nonmonotonic dependence of the excitation
probability as a function of the sweep rate v. However, this
dependence was generally oscillatory, and we suspect that its
origin is different from that of the behavior obtained in the
present study. We expect that a similar oscillatory behavior
would be obtained if we varied v in our calculations. As
mentioned in Sec. II, however, here we are mainly interested
in the almost-adiabatic regime, and we have therefore not
analyzed the v dependence in our calculations.

In addition to solving the Schrödinger equation, we have
performed semiclassical calculations where we assume that
there is no quantum coherence between the different LZ
processes. (Note here that when we replace the isolated qubit
with the coupled qubit-oscillator system the single avoided
crossing is replaced by a complex network of avoided cross-
ings.) Under this approximation, we only need to calculate
the occupation probabilities of the different states, and these
probabilities change (according to the LZ formula) only at the
points of avoided crossing. This approach greatly simplifies
the numerical calculations because the locations and gaps for
the different avoided crossings can be determined easily (see,
e.g., Fig. 1). The results are shown in Fig. 6. The results of this
calculation agree generally well with those obtained by solving
the Schrödinger equation when �ω/� = 1. For �ω/� = 5,
the semiclassical calculation consistently underestimates the
excited-state probability, but the overall dependence on the
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FIG. 6. (Color online) Qubit’s final excited-state probability P

obtained from the semiclassical calculation as a function of tem-
perature kBT and coupling strength g, both measured relative to
�. Different panels correspond to different values of the harmonic
oscillator frequency: �ω/� = 0.2 (top), 1 (middle), and 5 (bottom).

temperature and coupling strength is remarkably similar to
that shown in Fig. 4. We should note that higher values of
�ω (not shown) exhibit more pronounced deviations, with
side peaks appearing in the dependence of P on g/�.
The most striking deviation from the results of the fully
quantum calculation is seen in the case �ω/� = 0.2 (i.e.,
the case of a low-frequency oscillator). In the semiclassical
calculation, there is a rather high peak at a low value of the
coupling strength (and sufficiently high temperatures), and
the excited-state probability starts to decrease when the the
coupling strength g becomes higher than �ω. In the fully
quantum calculation, however, the peak is located at a much
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higher value, somewhere between 0.5 and 1. depending on the
temperature.

The fact that the semiclassical calculation generally gives
results different from those given by the fully quantum
calculation is an indication that quantum coherence and
interference between multiple LZ processes play a role in
determining the final occupation probabilities. In this context
we note that the avoided crossings occur at instances separated
by time intervals τseparation = �ω/v (with an infinite number of
avoided crossings occurring simultaneously at each one of
these instances), and the time duration over which an LZ
mixing process occurs (in the almost-adiabatic regime) is
given by τLZ ∼ �/v [7,28]. The ratio between these two time
scales is then given by τseparation/τLZ ∼ �ω/�. In other words,
when �ω/� is low the different LZ processes will overlap
in time, and it is not very surprising that the semiclassical
calculation gives incorrect predictions in this case. It is
somewhat surprising, however, that when �ω/� = 1 the two
calculations agree quite well, and then in the regime �ω/� > 1
the effect of quantum interference between the LZ processes
can again be seen in the final occupation probabilities.

We now take another look at our results presented above
from the point of view of how they might apply in the
case of a large environment containing a large number of
degrees of freedom with no single dominant environmental
mode. Note here that the coupling between the qubit and the
environment can in principle be strong, even if the coupling
to each individual mode in the environment is weak. We first
consider our results in the regime of strong qubit-environment
coupling. We have found that strong coupling to a single
mode results in a reduced effect of that mode on the final
occupation probabilities. It is unlikely that this result will
apply to the case where the qubit is coupled strongly to
an uncontrolled environment containing a large number of
independent modes, with the coupling to each individual
mode in the environment being weak. The weakening of the
environmental effects with increased coupling strength in the
case of a single mode is most likely related to the energy
level structure and the possible paths that the system can
follow while it traverses the network of avoided crossings.
The energy level structure and the possible paths are vastly
different when the strong coupling to the environment is caused
by the large number of modes in the environment. It would be
more plausible that in this case one could make statements
concerning large environments using the following approach:
Focus on the small-g/� region of the results discussed above,
take the contributions of the individual environment modes,
and add up these small contributions. In this case an increase
in the coupling strength would result in an increase in the
excited state probability, as would be intuitively expected. We
therefore expect that the result of nonmonotonic behavior with
increasing coupling strength should be thought of as a result
pertaining to the case with a single dominant mode in the
environment. Another area where we can try to extract from

our results statements concerning a large environment occurs
in the regime of low temperatures, which can be particularly
relevant in the context of AQC. As a side note, we mention
here that one of the central questions in the field of AQC
is the scaling of the minimum gap with the system size. It is
known that the minimum gap decreases with increasing system
size, and there are ongoing studies on the exact scaling law.
This minimum-gap scaling is typically discussed in relation to
the time needed to ensure adiabatic evolution of the quantum
annealer, and the minimum running time is calculated based on
the well-known LZ formula given in Sec. II. An independent
question is the resistance of the AQC success probability to
environmental noise. The facts that at finite temperatures the
excitation probability increases above the base value PLZ and
that the excitation probability can be substantially higher than
PLZ even at temperatures much lower than the minimum gap
mean that the coupling to the low-frequency modes in the
environment needs to be considered with extra care in the
low-temperature regime. In a previous work [18], we discussed
the scaling of the noise amplitude with the system size, with
the main message being that the noise amplitude increases
with increasing system size. The present work complements
our earlier work in that it provides a quantitative analysis of the
effect of the environment on a system driven using an adiabatic
passage protocol, as is the case in AQC.

V. CONCLUSION

We have investigated the problem of a two-level system
undergoing an LZ passage through an avoided crossing while
it interacts with a finite-temperature harmonic oscillator. We
have found a number of counterintuitive results, including
a nonmonotonic dependence of the final-time excitation
probability as a function of the temperature or qubit-oscillator
coupling strength. We have provided physical explanations for
these phenomena. The physical mechanisms at play include
modifications to the avoided crossing structure related to the
formation of highly correlated energy eigenstates as well as
quantum coherence between multiple LZ processes.

Our original motivation for analyzing a system with a single
qubit and a single additional degree of freedom was to use the
obtained results in order to make statements relevant for a large
environment, and we have indeed attempted to make such an
extrapolation of the results. We emphasize, however, that our
results are of interest even in relation to the single-oscillator
case, both because they pertain to a model system that allows
a clear discussion of the physical mechanisms involved and
because certain systems in nature are accurately described
by the model of a single qubit coupled to a single oscillator.
In other words, in addition to the general principles that we
have deduced concerning general environments, our results
can have direct applicability to qubit-oscillator systems such
as cavity electrodynamics and some molecular systems.
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