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Heisenberg uncertainty relation for three canonical observables
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Uncertainty relations provide fundamental limits on what can be said about the properties of quantum systems.
For a quantum particle, the commutation relation of position and momentum observables entails Heisenberg’s
uncertainty relation. A third observable is presented which satisfies canonical commutation relations with both
position and momentum. The resulting triple of pairwise canonical observables gives rise to a Heisenberg
uncertainty relation for the product of three standard deviations. We derive the smallest possible value of this
bound and determine the specific squeezed state which saturates the triple uncertainty relation. Quantum optical
experiments are proposed to verify our findings.
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I. INTRODUCTION

In quantum theory, two observables p̂ and q̂ are canonical
if they satisfy the commutation relation

[p̂,q̂] = �

i
, (1)

with the momentum and position of a particle being a well-
known and important example. The nonvanishing commutator
expresses the incompatibility of the Schrödinger pair (p̂,q̂) of
observables since it imposes a lower limit on the product of
their standard deviations, namely

�q�p � �

2
. (2)

In 1927, Heisenberg [1] analyzed the hypothetical observa-
tion of an individual electron with photons and concluded that
the product of the measurement errors should be governed by a
relation of the form (2). His proposal inspired Kennard [2] and
Weyl [3] to mathematically derive Heisenberg’s uncertainty
relation, thereby turning it into a constraint on measurement
outcomes for an ensemble of identically prepared systems.
Schrödinger’s [4] generalization of (2) included a correlation
term, and Robertson [5,6] derived a similar relation for any
two noncommuting Hermitian operators. Recently claimed
violations of (2) do not refer to Kennard and Weyl’s prepara-
tion uncertainty relation but to Heisenberg’s error-disturbance
relation (cf. [7–9]). However, these claims have been criticized
strongly [10,11].

Uncertainty relations are now understood to provide fun-
damental limits on what can be said about the properties of
quantum systems. Imagine measuring the standard deviations
�p and �q separately on two ensembles prepared in the same
quantum state. Then, the bound (2) does not allow one to
simultaneously attribute definite values to the observables p̂

and q̂.
In this paper, we will consider a Schrödinger triple (p̂,q̂,r̂)

consisting of three pairwise canonical observables [12], i.e.,

[p̂,q̂] = [q̂,r̂] = [r̂ ,p̂] = �

i
, (3)
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and derive a triple uncertainty relation. In a system of units
where both p̂ and q̂ carry physical dimensions of

√
�, the

observable r̂ is given by

r̂ = −q̂ − p̂, (4)

which corresponds to a suitably rotated and rescaled position
operator q̂. It is important to point out that any Schrödinger
triple for a quantum system with one degree of freedom is
unitarily equivalent to (p̂,q̂,r̂); furthermore, any such triple is
maximal in the sense that there are no four observables that
equicommute to �/i [13]. Therefore, the algebraic structure
defined by a Schrödinger triple (p̂,q̂,r̂) is unique up to unitary
transformations.

Given that (1) implies Heisenberg’s uncertainty relation (2),
we wish to determine the consequences of the commutation
relations (3) on the product of the three uncertainties associated
with a Schrödinger triple (p̂,q̂,r̂).

II. RESULTS

We will establish the triple uncertainty relation

�p�q�r �
(

τ
�

2

)3/2

, (5)

where the number τ is the triple constant with value

τ = csc

(
2π

3

)
≡

√
4

3
� 1.16. (6)

The bound (5) is found to be tight; the state of minimal triple
uncertainty is found to be a generalized squeezed state,

|�0〉 = Ŝ i
4 ln 3|0〉, (7)

being unique except for rigid translations in phase space. The
operator Ŝ i

4 ln 3, defined in Eq. (22) is a generalized squeezing
operator: it generates the state |�0〉 by contracting the standard
coherent state |0〉 (i.e., the ground state of a harmonic oscillator
with unit mass and unit frequency) along the main diagonal in
phase space by an amount characterized by ln 4

√
3 < 1, at the

expense of a dilation along the minor diagonal.
To visualize this result, let us determine the Wigner function

of the state |�0〉 with position representation (cf. [14])

〈q|�0〉 = 1
4
√

τπ
exp

(
−1

2
e−i π

6 q2

)
. (8)
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FIG. 1. Phase-space contour lines of the Wigner functions asso-
ciated with the states |�0〉 (full line) and a standard coherent state |0〉
(dashed), respectively; both lines enclose the same area.

Thus its Wigner function associated with the state |�0〉
minimizing the triple uncertainty relation is found to be

W�0 (q,p) = 1

π
exp

(
−τ

�
(q2 + p2 + qp)

)
, (9)

which is positive. Its phase-space contour line enclosing an
area of size �, shown in Fig. 1, confirms that we deal with a
squeezed state aligned with the minor diagonal.

To appreciate the bound (5), let us evaluate the triple un-
certainty �p�q�r in two instructive cases. (i) Since the pairs
(p̂,q̂), (q̂,r̂), and (r̂ ,p̂) are canonical, the inequality (2)—as
well as its generalization due to Robertson and Schrödinger—
applies to each of them implying the lower bound

�p�q�r �
(

�

2

)3/2

. (10)

However, it remains open whether there is a state in which the
triple uncertainty saturates this bound. Our main result (5)
reveals that no such state exists. (ii) In the vacuum |0〉,
a coherent state with minimal pair uncertainty, the triple
uncertainty takes the value

�p�q�r =
√

2

(
�

2

)3/2

. (11)

The factor of
√

2 in comparison with (10) has an intuitive ex-
planation: while the vacuum state |0〉 successfully minimizes
the product �p�q, it does not simultaneously minimize the
uncertainty associated with the pairs (q̂,r̂) and (r̂ ,p̂). Thus the
minimum of the inequality (5) cannot be achieved by coherent
states.

The observations (i) and (ii) suggest that the bound (5)
on the triple uncertainty is not an immediate consequence of
Heisenberg’s inequality for canonical pairs, Eq. (2). Further-
more, the invariance groups of the triple uncertainty relation,
of Heisenberg’s uncertainty relation, and of the inequality by
Schrödinger and Robertson are different, because they depend
on two, three, and four (cf. [15]) continuous parameters,
respectively.

III. THREEFOLD SYMMETRY

The commutation relations (3) are invariant under the cyclic
shift p̂ → q̂ → r̂ → p̂, implemented by a unitary operator Ẑ,

Ẑp̂Ẑ† = q̂, Ẑq̂Ẑ† = r̂ , Ẑr̂Ẑ† = p̂. (12)

Note that the third equation follows from the other two
equations. The third power of Ẑ obviously commutes with
both p̂ and q̂ so it must be a scalar multiple of the identity,
Ẑ3 ∝ Î.

To determine the operator Ẑ we first note that its action
displayed in (12) is achieved by a clockwise rotation by π/2 in
phase space followed by a gauge transformation in the position
basis:

Ẑ = exp

(
− i

2�
q̂2

)
exp

(
− iπ

4�
(p̂2 + q̂2)

)
. (13)

A Baker-Campbell-Hausdorff (BCH) calculation reexpresses
this product in terms of a single exponential:

Ẑ = exp

(
−i

π

3�
√

3
(p̂2 + q̂2 + r̂2)

)
. (14)

The operator Ẑ cycles the elements of the Schrödinger triple
(p̂,q̂,r̂) just as a Fourier transform operator swaps position and
momentum of the Schrödinger pair (p̂,q̂) (apart from a sign).
If one introduces a unitarily equivalent symmetric form of the
Schrödinger triple with operators (P̂ ,Q̂,R̂) associated with an
equilateral triangle in phase space, the metaplectic operator Ẑ

simply acts as a rotation by 2π/3, i.e., as a fractional Fourier
transform.

Furthermore, denoting the factors of Ẑ in (13) by Â and
B̂ (with suitably chosen phase factors), respectively, we find
that B̂2 = Î and (ÂB̂)3 ≡ Ẑ3 = Î. These relations establish a
direct link between the threefold symmetry of the Schrödinger
triple (p̂,q̂,r̂) and the modular group SL2(Z)/{±1} which Â

and B̂ generate [16].

IV. EXPERIMENTS

To experimentally confirm the triple uncertainty rela-
tion (5), we propose an approach based on optical homodyne
detection. We exploit the fact that the state |�0〉 is a generalized
coherent state, also known as a correlated coherent state [17]:
such a state is obtained by squeezing the vacuum state |0〉
along the momentum axis followed by a suitable rotation in
phase space.

The basic scheme for homodyne detection consists of a
beam splitter, photodetectors, and a reference beam, called the
local oscillator, with which the signal is mixed; by adjusting
the phase of the local oscillator one can probe different
directions in phase space. If θ is the phase of the local oscillator,
a homodyne detector measures the probablity distribution of
the observable

x̂(θ ) = 1√
2

(a†eiθ + ae−iθ ) = q̂ cos θ + p̂ sin θ (15)

along a line in phase space defined by the angle θ ; here q̂ and p̂

denote the quadratures of the photon field while the operators
a† and a create and annihilate single photons [18]; note that
r̂ ≡ √

2x̂(5π/4).
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FIG. 2. Dimensionless pair and triple uncertainties for squeezed
states with γ = ln 4

√
3, rotated away from the position axis by an angle

ϕ ∈ [0,π ] . The pair uncertainty �p�q starts out at its minimum
value of 1/2 which is achieved again for ϕ = π/2 and ϕ = π (dashed
line). The triple uncertainty has period π , reaching its minimum for
ϕ = 3π/4 for the state |�0〉 (full line). The dotted lines (top to bottom)
represent the bounds (2), (5), and (10), with values 1/2, (τ/2)3/2, and
(1/2)3/2.

The probability distributions of the observables q̂, p̂, and
r̂ , corresponding to the angles θ = 0, π/2, and 5π/4, can be
measured upon preparing a large ensemble of the state |�0〉.
The resulting product of their variances may then be compared
with the value of the tight bound given in Eq. (5). Under rigid
phase-space rotations of the triple (q̂,p̂,r̂) by an angle ϕ the
triple uncertainty will vary as predicted in Fig. 2 (full line). A
related experiment has been carried out successfully in order to
directly verify other Heisenberg- and Schrödinger-Robertson-
type uncertainty relations [19,20].

V. MINIMAL TRIPLE UNCERTAINTY

To determine the states which minimize the left-hand-side
of Eq. (5), we need to evaluate it for all normalized states
|ψ〉 ∈ H of a quantum particle. To this end we introduce the
uncertainty functional (cf. [21]),

Jλ[ψ] = �p[ψ]�q[ψ]�r [ψ] − λ(〈ψ |ψ〉 − 1), (16)

using the standard deviations �x[ψ] ≡ �x ≡ (〈ψ |x̂2|ψ〉 −
〈ψ |x̂|ψ〉2)1/2, x = p,q,r , while the term with Lagrange mul-
tiplier λ takes care of normalization. In a first step, we
determine the extremals of the functional Jλ[ψ]. Changing
its argument from |ψ〉 to the state |ψ〉 + |ε〉, where |ε〉 = ε|e〉,
with a normalized state |e〉 ∈ H and a real parameter ε 
 1,
leads to

Jλ[ψ + ε] = Jλ[ψ] + εJ
(1)
λ [ψ] + O(ε2). (17)

The first-order variation J
(1)
λ [ψ] only vanishes if |ψ〉 is an

extremum of the functional Jλ[ψ] or, equivalently, if

1

3

(
(p̂ − 〈p̂〉)2

�2
p

+ (q̂ − 〈q̂〉)2

�2
q

+ (r̂ − 〈r̂〉)2

�2
r

)
|ψ〉 = |ψ〉

(18)

holds, which follows from generalizing a direct computation
which had been carried out in [22] to determine the extremals
of the product �p�q.

Equation (18) is nonlinear in the unknown state |ψ〉 due
to the expectation values 〈p̂〉,�2

p, etc. Its solutions can be
found by initially treating these expectation values as constants
to be determined only later in a self-consistent way. The
unitary operator Ûα,b,γ = T̂αĜbŜγ transforms the left-hand
side of (18), which is quadratic in p̂ and q̂, into a standard
harmonic-oscillator Hamiltonian,

1

2
(p̂2 + q̂2)|ψα,b,γ 〉 = 3

2c
|ψα,b,γ 〉, (19)

where |ψα,b,γ 〉 ≡ Û
†
α,b,γ |ψ〉, and c is a real constant. The

unitary Ûα,b,γ consists of a rigid phase-space translation by
α ≡ (q0 + ip0)/

√
2� ∈ C,

T̂α = exp[i(p0q̂ − q0p̂)/�], (20)

followed by a gauge transformation in the momentum basis

Ĝb = exp(ibp̂2/2�), b ∈ R, (21)

and a squeezing transformation,

Ŝγ ≡ exp[iγ (q̂p̂ + p̂q̂)/2�], γ ∈ R. (22)

According to (19), the states |ψα,b,γ 〉 coincide with the
eigenstates |n〉,n ∈ N0, of a harmonic oscillator with unit mass
and frequency,

|n; α,b,γ 〉 ≡ T̂αĜbŜγ |n〉, n ∈ N0, (23)

where we have suppressed irrelevant constant phase factors; for
consistency, the quantity 3/2c in (19) must only take the values
�(n + 1/2) for n ∈ N0, as a direct but lengthy calculation
confirms. The parameters b and γ must take specific values
for (19) to hold, namely

b = 1
2 and γ = 1

2 ln τ. (24)

We will denote the restricted set of states obtained from
Eq. (23) by |n; α〉. There are no constraints on the parameter
α, which means that we are free to displace the states |n〉 in
phase space without affecting the values of the variances. The
variances of the observables p̂, q̂, and r̂ are found to be equal,
taking the value

�2
x[n; α] = τ�

(
n + 1

2

)
, x = p,q,r, (25)

with the triple constant τ introduced in (6). Inserting these
results into Eq. (18) we find that

1
3 (p̂2 + q̂2 + r̂2)|n; α〉 = τ�

(
n + 1

2

) |n; α〉, (26)

where

|n; α〉 = T̂αĜ 1
2
Ŝ 1

2 ln τ |n〉, n ∈ N0,α ∈ C. (27)

For each value of α, the extremals of the uncertainty func-
tional (16) form a complete set of orthonormal states,

∞∑
n=0

|n; α〉〈n; α| = I, (28)

since the set of states {|n〉} has this property.
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At its extremals the uncertainty functional (16) takes the
values

Jλ[n; α] = [
τ�

(
n + 1

2

)]3/2
, n ∈ N0, (29)

according to Eq. (25), with the minimum occurring for n = 0.
Thus the two-parameter family of states |0; α〉,α ∈ C, which
we will denote by

|�α〉 = T̂α

(
Ĝ 1

2
Ŝ 1

2 ln τ |0〉), (30)

minimizes the triple uncertainty relation (5).
The states |�α〉 are displaced generalized squeezed states,

with a squeezing direction along a line different from the
position or momentum axes. To show this, it is sufficient to
consider the state |�0〉, which satisfies (26) with n ≡ 0 and
α ≡ 0. The product of unitaries in (30) acting on the vacuum
|0〉 is easily understood if one rewrites it using the identity

ĜbŜγ = Ŝξ R̂ϕ, (31)

where the unitary R̂ϕ = exp(iϕa†a) is a counterclockwise
rotation by ϕ in phase space, while the operator

Ŝξ = exp[(ξa2 − ξa†2)/2], ξ = γ eiθ , γ > 0, (32)

generalizes Ŝγ in (22) by allowing for squeezing along a line
with inclination θ/2; the annihilation operator and its adjoint
a† are defined by a = (q̂ + ip̂) /

√
2�. Another standard BCH

calculation (using the result from Sec. 6 of [23]) reveals that
the values ξ = (i/4) ln 3 and ϕ = −π/12 turn Eq. (31) into an
identity for the values of b and γ given in (24). This confirms
that the state of minimal triple uncertainty is the generalized
squeezed state given in (7).

VI. SUMMARY AND DISCUSSION

We have established a tight inequality (5) for the triple
uncertainty associated with a Schrödinger triple (p̂,q̂,r̂) of
pairwise canonical observables. Ignoring rigid translations in
phase space, there is only one state |�0〉 which minimizes
the triple uncertainty, shown in Eq. (30). The state |�0〉 is
an eigenstate of the operator Ẑ in (14) which describes the
fundamental threefold cyclic symmetry of the Schrödinger
triple (p̂,q̂,r̂). Conceptually, the triple uncertainty and the
one derived by Schrödinger and Robertson are linked because
both incorporate the correlation operator (p̂q̂ + q̂p̂)/2, be it
explicitly or indirectly via the expression r̂2.

The smallest possible value of the product �p�q�r is
noticeably larger than the unachievable value (�/2)3/2, which
follows from inequality (2) applied to each of the Schrödinger

pairs (p̂,q̂), (q̂,r̂), and (r̂ ,p̂). At the same time, the true
minimum undercuts the value of the triple uncertainty in
the vacuum state |0〉 by more than 10% [cf. Eq. (11)]. The
experimental verification of these results is within reach of
current quantum optical technology.

The results obtained in this paper add another dimension to
the problem of earlier attempts to obtain uncertainty relations
for more than two observables. In 1934, Robertson studied
constraints which follow from the positive semidefiniteness of
the covariance matrix for N observables [6], but the resulting
inequality trivializes for an odd number of observables.
Shirokov obtained another inequality [24] which contains little
information about the canonical triple considered here.

The result for a Schrödinger triple obtained here suggests
conceptually important generalizations. A tight bound for an
additive uncertainty relation associated with the operators
(p̂,q̂,r̂) is easily established by a similar approach: the
inequality

(�p)2 + (�q)2 + (�r)2 � τ
3�

2
(33)

is saturated only by the state |�0〉 in (30), ignoring irrelevant
rigid phase-space translations. This observation clashes with
the relation between the additive and the multiplicative
uncertainty relations for Schrödinger pairs (p̂,q̂). According
to [15] the states saturating the inequality (�p)2 + (�q)2 � �

are a proper subset of those minimizing Heisenberg’s product
inequality (2).

Finally, an uncertainty relation for pairs of canonical
observables also exists for the Shannon entropies Sp and
Sq of their probability distributions [25,26]. We conjecture
that the relation Sp + Sq + Sr � (3/2) ln(τeπ ) holds for the
Schrödinger triple (p̂,q̂,r̂), the minimum being achieved by
the state |�0〉. This bound is tighter than (3/2) ln(eπ ), the value
which follows from applying the bound ln(eπ ) for pairwise
entropies to the triple.
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