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Quantum theory of angle and relative-phase measurement
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The complementarity between time and energy, as well as between an angle and a component of angular
momentum, is described at three different layers of understanding. The phenomena of super-resolution are
readily apparent in the quantum phase representation which also reveals that entanglement is not required. We
modify Schwinger’s harmonic oscillator model of angular momentum to include the case of photons. Therein,
the quantum angle measurement is shown to be equivalent to the measurement of the relative phase between
the two oscillators. Two reasonable ways of dealing with degeneracy are shown to correspond to a conditional
measurement which takes a snapshot in absolute time (corresponding to adding probability amplitudes) and a
marginal measurement which takes an average in absolute time (corresponding to adding probabilities). The
sense in which distinguishability is a “matter of how long we look” is discussed and the meaning of the general
theory is illustrated by taking the two oscillators to be circularly polarized photons. It is shown that an odd
number of x-polarized photons will never have an angle in correspondence with the y axis, but an even number
of x-polarized photons always can! The behavior of an x-polarized coherent state is examined and the snapshot
angular distributions are seen to evolve into two counter-rotating peaks resulting in considerable correspondence
with the y axis at the time for which a classical linear polarization vector would shrink to zero length. We also
demonstrate how the probability distribution of absolute time (herein a measurable quantity, rather than just a
parameter) has an influence on how these snapshot angular distributions evolve into a quantum version of the
polarization ellipse.
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I. SINGLE-OSCILLATOR PHASE STATISTICS

A. Introduction

Dirac [1], in 1927, postulated the existence of a Hermitian
phase operator φ̂ as part of a polar decomposition of the
annihilation operator â = eiφ̂(â†â)1/2 for a single quantum
harmonic oscillator, where â†â = n̂ is the photon-number
operator, the eigenvalues of which correspond to the energy
levels of the oscillator. In this ordering, the operator eiφ̂ =
â(n̂)−1/2 lowers the photon number (like â but without any

√
n

factor)

eiφ̂|n〉 = |n − 1〉 (∀ n � 1), (1)

however, the action on the vacuum state is undefined. In
1964, Susskind and Glogower [2] demonstrated that no
such Hermitian operator exists on the denumerably infinite-
dimensional space [3] spanned by the number-kets {|n〉 :
n = 0,1,2, . . . ,∞}. They proposed, instead, the use of a
polar decomposition of â with the opposite ordering; the
Susskind-Glogower (SG) phase operator êiφ ≡ (ââ†)−1/2â, so
that the SG operator is a pure lowering operator which stops
(i.e., yields the null ket) at the vacuum:

Â|n〉 = |n − 1〉 (∀ n � 1) and Â|0〉 = 0, (2)

where to simplify the notation we let Â ≡ êiφ . Thus, the
SG operator has a number representation given by Â =∑∞

n=0 |n〉〈n + 1|. Due to the bound on photon-number eigen-
spectra (i.e., the absence of negative-energy eigenstates) this
translation, however, cannot be unitary. It can only be one-
sided unitary, i.e., ÂÂ† = Î but Â†Â = Î − V̂ where Î is
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the identity operator on the state space of a single harmonic
oscillator and V̂ ≡ |0〉〈0| is the vacuum projector. Thus,
pure translation on a bounded state space cannot be unitary;
therefore, it cannot be expressed as the power series of a
Hermitian (i.e., self-adjoint) operator.

In light of an ever-improving understanding of what it
means to associate a measurement with an operator which
does not commute with its adjoint, we [4,5] demonstrated a
connection between the SG operator and Helstrom’s maximum
likelihood (ML) quantum phase estimator [6]. Helstrom was
not concerned with polar decompositions of the annihilation
operator, nor with obtaining a description of a phase measure-
ment that is complementary to that of photon counting. The
ML measurement is based on the state-dependent kets

|φ,ψ〉 =
∞∑

n=0

ei(nφ+χn)|n〉, (3)

where the χn are the phases of the number-ket expansion
coefficients ψn ≡ 〈n|ψ〉. Thus, the ML phase estimation
procedure can be decomposed into two steps: the first being
to effectively remove the phases of the input quantum state’s
number-ket expansion coefficients ψn, i.e., these phases are
all effectively set to be equal to zero. This first step can
only be omitted if the ψn are already real. The second step
turns out to be equivalent to performing a relative phase
measurement between two oscillators (complementary to the
measurement of the difference in their photon numbers) when
one of those oscillators is in the vacuum state [7,8], resulting in
the single-oscillator (or single-mode) phase statistics, which
are fuzzy in a sense that we will elucidate herein. Thus, the
ML statistics correspond to the single-mode statistics for the
case of states with real ψn, as depicted in the Venn diagram
of Fig. 1.
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FIG. 1. (Color online) Hierarchy of some quantum phase
measurements.

Concurrently (with respect to [4,5]) and independently, an
alternate method for obtaining the single-oscillator statistics
was derived by Pegg and Barnett [9]. Their approach requires
the truncation of the infinite-dimensional state space of a
harmonic oscillator to one of finite but arbitrarily large
dimension. This subspace, denoted HT (s), is spanned by the
number-kets {|n〉 : 0 � n � s}. When s is finite, the resulting
Pegg-Barnett (PB) discrete-phase kets are an orthogonal subset
of the single-mode continuous phase-kets, as depicted in Fig. 1.
This approach is described in Appendix A but it is important
to note in passing that when s is finite the discrete-phase
measurement is “sharp” (i.e., it permits wave-function collapse
via projections onto the eigenkets of a Hermitian operator).
Yet, we also have that when instead the limit s → ∞ is taken,
these discrete-phase statistics converge (in distribution, i.e., in
as much as rational numbers can converge to real numbers)
to those of a fundamentally “fuzzy” measurement, the single-
mode continuous phase statistics (i.e., the continuous envelope
to which they converge cannot collapse to a delta function).
Thus, unless s is left to be finite, this is an alternate means of
calculating the same statistics via a limiting procedure. Note in
passing, upon review it was pointed out that a discrete-phase
operator on a truncated space was also described by Popov and
Yarunin in [10].

The connection to the SG operator is as follows. Although
the SG operator has other eigenkets (the coherent phase states
[11]) we restrict our attention to the infinite energy subset of
these, the continuous phase-kets, of number representation:

|φ〉 =
∞∑

n=0

einφ|n〉, (4)

which are normalizable in the continuous φ domain [12]. The
restriction to these was made not only to connect with the
essence of ML phase estimation, but (more significantly) to
obtain complementarity to the measurement of photon number.
These kets have been said [13] to be of fundamental importance
because they underlie ML phase estimation. It was also noted
[7,8], however, that these phase-kets are of even greater
significance because they provide the first of three layers of

understanding complementarity in a more general context.
Complementarity at the first layer corresponds to the fuzzy
single-mode case (depicted in Fig. 1, which generalizes the ML
measurement and to which the PB measurement can converge).
The second and third layers of understanding can only be
achieved when we extend beyond the fuzzy measurement by
working in a state space larger than that of a single oscillator,
as we will in the next section.

The SG operator does not commute with its adjoint, hence,
it is not comprised of a set of commuting Hermitian operators.
Therefore, the measurement statistics we associate with it
cannot be calculated via the familiar Hermitian operator rules
(e.g., moments calculated via 〈ψ |Âk|ψ〉 for k = 1,2, . . . do
not correspond to the single-mode statistics).

Quantum measurements can be described in terms of wave
functions (as well as operators) and perhaps the simplest path
to the single-mode statistics is to form the phase wave function

ψ(φ) ≡ 〈φ|ψ〉, (5)

from which the phase probability distribution P (φ) =
|ψ(φ)|2/(2π ) and its associated moments follow directly. This
will be formally justified below but it stems from the fact that
the (nonorthogonal) phase-kets are complete:∫ π

−π

dφ

2π
|φ〉〈φ| =

∞∑
n=0

|n〉〈n| = Î . (6)

The resolution of the identity by the phase-kets in (6)
permits the extremely useful phase representation of an
arbitrary quantum state:

|ψ〉 = Î |ψ〉 =
∫ π

−π

dφ

2π
〈φ|ψ〉 |φ〉, (7)

analogous to the familiar number-ket expansion of a state:

|ψ〉 = Î |ψ〉 =
∞∑

n=0

〈n|ψ〉 |n〉. (8)

Just as the number-ket expansion coefficients ψn ≡ 〈n|ψ〉 may
be viewed as a wave function in discrete n space, the inner
product ψ(φ) ≡ 〈φ|ψ〉 is a wave function in continuous φ

space. The Fourier transform between the number and phase
wave functions

ψ(φ) =
∞∑

n=0

ψne
−inφ ↔ ψn =

∫ π

−π

dφ

2π
ψ(φ)einφ (9)

demonstrates the complementarity of photon number and
quantum phase.

Thus, to reveal the phase properties of an arbitrary state, we
can simply take the familiar number-ket expansion coefficients
ψn to be the Fourier series coefficients for ψ(φ), which
underlies the harmonic oscillator’s continuous and periodic
phase distribution. Several relations among ψn and ψ(φ)
are reminiscent of those encountered in Schrödinger’s wave
mechanics. Analogous to the position representation of the
momentum operator p̂ → −i� d

dx
, for example, we have a

phase representation of the number operator n̂ → −i d
dx

:

〈(n̂)k〉 =
∫ π

−π

dφ

2π
ψ∗(φ)

(
−i

d

dφ

)k

ψ(φ) (∀ integer k). (10)
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We note in passing, however, that differentiation with respect
to a discrete variable is an undefined operation.

Alternatively, we might have arrived at this, (4)–(10),
without any reference to the SG operator, via a general
theory of complementarity (as is done in Appendix B, and
as is required for the fuzzy description of the angle of a
particle of finite angular momentum since then there is also
an upper bound on the complementary eigenspectra and that
prohibits a lowering operator from having any eigenkets at
all). Historically, such an obvious approach (resulting in a
Fourier transform between complementary wave functions)
has been slow to gain acceptance, leading to a lack of time and
angle operators in quantum theory, due to the mathematical
subtleties which arise from our perfectly valid predilection for
Hermitian operators (and/or equivalently for wave functions
that can collapse). One might argue that these can now be
accepted as “fuzzy” measurements, i.e., nonprojection-valued
POMs (probability-operator measures) [14] so that, at layer 1,
this is a solution since these measurements do exist. The author,
however, views fuzzy measurements as “incomplete descrip-
tions” [7,8] of a realizable measurement, and would argue that
one still needs to achieve a (sharp) “complete description” of
such measurements in terms of sets of commuting Hermitian
operators and their associated collapsible wave functions to
fully understand the complementarity alluded to at this first
layer.

A nonprojection-valued POM is simply a resolution of the
identity operator by nonorthogonal eigenkets [14]. The bound
in their complementary eigenspectra prevents orthogonality
for the single-mode phase-kets of (4). Equivalently, (9)
describes a one-sided Fourier series, but it would take a two-
sided Fourier series to represent a delta function. The limited
dimensionality of the space in one domain cannot support
such sharp behavior in the complementary wave function. This
limitation does more than prohibit delta functions, it restricts
the class of single-mode phase statistics to those which must
satisfy a Paley-Weiner theorem [15] which can be expressed
as ∫ π

−π

dφ

2π
|ln|ψ(φ)|| < ∞. (11)

This theorem demonstrates, for example, that |ψ(φ)| cannot
vanish over an interval of nonzero width. The limited di-
mensionality of the underlying wave functions simply cannot
support such sharp behavior. Thus, the single-mode phase
distribution P (φ) can vanish (equal zero) only at isolated points
in φ.

B. Examples of Naimark’s extension theorem

The fact that nonprojection-valued POMs do correspond to
realizable quantum measurements can be made more palatable
via Naimark’s extension theorem [14] which (to paraphrase)
states that these correspond to the measurement of sets of
commuting Hermitian operators defined on a larger state
space when subsets of that larger space are not entangled
with the state of the original space prior to the measurement.
In this section, we describe two examples from quantum
optics in which the original space Hs is that of a single
mode (i.e., a single harmonic oscillator, the original system

of interest); the larger space is the product space Hs ⊗ Ha of
the original mode with some additional (a.k.a. auxiliary) mode
on Ha which fundamentally must be a part of the physical
apparatus which realizes the quantum measurement, and the
additional mode is “off” ( i.e., placed in the vacuum state)
prior to the measurement. It is important to note from the
onset, however, that Naimark’s extension theorem provides a
means of describing a measurement which is still fuzzy in the
aforementioned senses. It does not provide a general means
of extending to a sharp measurement (as we will in the next
section) although it can sometimes give clues as to how that
might proceed.

Clearly, the operator ô = x̂ + iŷ, where x̂ and ŷ are
the commuting (hence simultaneously measurable) x and y

position operators, is measurable in the sharp sense (since
it commutes with its adjoint [16]). For an operator such as
â = x̂ + ip̂, however, where p̂ is the x component of the
momentum operator, we certainly cannot directly associate
a sharp measurement since a perfectly precise simultaneous
measurement of its real and imaginary components would
constitute a violation of the uncertainty principle (i.e., â does
not commute with its adjoint). We can, however, associate
a quantum measurement with such an operator in a fuzzy
sense: a simultaneous measurement of its real and imaginary
components which is not perfectly precise in either. That such
a measurement exists stems from the fact that the eigenkets
of this annihilation operator (the coherent states |α〉 [17])
are complete, i.e., they resolve the identity operator, and
completeness alone is sufficient to guarantee that |〈α|ψ〉|2
is a perfectly valid PDF (probability distribution function)
which must therefore, in some sense, describe a realizable
quantum measurement. The fact that the coherent states are
not orthogonal is a reflection of the fact that this is a fuzzy
measurement.

Fundamental to the realizable measurement of any operator
which does not commute with its adjoint is the existence of
an auxiliary noise source. Zero-point fluctuations [18] from
this auxiliary mode prevent a perfectly precise simultaneous
measurement of the noncommuting real and imaginary parts
of the original operator (so that the uncertainty principle is
not violated). We can see this more clearly by extending the
operator of interest to a larger space. Any quantum measure-
ment described by a nonprojection-valued POM on Hs can
be represented by a collection of commuting observables on a
larger Hilbert space. The utility of this representation lies in
the identification of the aforementioned noise source. This
auxiliary system is an integral part of the physical apparatus
which realizes the quantum measurement.

Formally, the procedure is to find the Naimark extension, on
H = Hs ⊗ Ha , of the desired POM on Hs . For our purpose,
this amounts to finding an operator on H, say Ês⊗a , which
commutes with its adjoint such that its real and imaginary
parts form a pair of commuting observables (a.k.a. Hermitian
operators). Furthermore, we require that the measurement
statistics of Ês⊗a reproduce those of the original operator
on Hs (associated with the desired POM) when the auxiliary
system is in some appropriate quantum state.

We consider now a product space description of the
measurement associated with the annihilation operator âs , for
a single quantum harmonic oscillator, defined on the space
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Hs . When this oscillator is used to model a single mode of
the electromagnetic field, this measurement can be realized by
the heterodyne detection process and the noncommuting real
and imaginary parts of âs , denoted χ̂s and ρ̂s , respectively,
represent the in-phase and quadrature field components. It has
been shown [19] that one extension of âs ontoH = Hs ⊗ Ha is

ŷ ≡ âs ⊗ Îa + Îs ⊗ â†
a, (12)

where âa = χ̂a + iρ̂a is the annihilation operator for the aux-
iliary mode. Since operators on different spaces commute, we
have [ŷ,ŷ†] = 0 so that the real and imaginary parts of ŷ, de-
noted as X̂ and P̂ , comprise a pair of commuting observables.

Notice that when the auxiliary mode is in the vacuum state
the expected values of X̂ and P̂ , in this realizable measurement
of âs , are the same as those of two distinct measurements
of the noncommuting operators χ̂s and ρ̂s on two identically
prepared systems:

〈X̂〉s⊗a = s〈ψ |χ̂s |ψ〉s + a〈0|χ̂a|0〉a = s〈ψ |χ̂s |ψ〉s (13)

and

〈P̂ 〉s⊗a = s〈ψ |ρ̂s |ψ〉s − a〈0|ρ̂a|0〉a = s〈ψ |ρ̂s |ψ〉s , (14)

where we used X̂ ≡ (ŷ + ŷ†)/2 = χ̂s ⊗ Îa + Îs ⊗ χ̂a and P̂ ≡
(ŷ − ŷ†)/2i = ρ̂s ⊗ Îa − Îs ⊗ ρ̂a .

For the second moments, however, we find

〈X̂2〉s⊗a = s〈ψ |χ̂2
s |ψ〉s + a〈0|χ̂2

a |0〉a = s〈ψ |χ̂2
s |ψ〉s + 1/4

(15)

and

〈P̂ 2〉s⊗a = s〈ψ |ρ̂2
s |ψ〉s + a〈0|ρ̂2

a |0〉a = s〈ψ |ρ̂2
s |ψ〉s + 1/4.

(16)

The variance of a measurement of χ̂s on the original system
(of state space Hs) is 〈�χ̂2

s 〉 ≡ s〈ψ |χ̂2
s |ψ〉s − (s〈ψ |χ̂s |ψ〉s)2.

The variance of a separate or independent measurement of ρ̂s ,
on an identically prepared system, is 〈�ρ̂2

s 〉 ≡ s〈ψ |ρ̂2
s |ψ〉s −

(s〈ψ |ρ̂s |ψ〉s)2. Therefore, the variances of the outcomes X

and/or P , for the simultaneous measurement of X̂ and P̂ on H,
are larger than 〈�χ̂2

s 〉 and/or 〈�ρ̂2
s 〉 by 1

4 . The additive terms of
1
4 arise from the zero-point fluctuations of the auxiliary system.
Similar terms appeared in the Arthurs and Kelly derivation of
an uncertainty principle for the simultaneous measurement of
position and momentum [20].

In the measurement apparatus of heterodyne detection, the
auxiliary noise source is the “image” electromagnetic mode
(characterized by annihilation operator âa) which resides at
the same frequency displacement from the classical local
oscillator (LO) frequency as does the original mode of interest
(characterized by annihilation operator âs) as in Fig. 2. Even a
classical treatment of heterodyning reveals that the beat of the
image band with the local oscillator is mapped onto the same
detector frequency as the beat of the local oscillator with the

FIG. 2. (Color online) Heterodyne detection.

original signal. Quantum mechanically, however, we note that
we cannot turn the image mode off in the sense that when it
is in the vacuum state we have zero-point fluctuations which
contribute noise to the detected signal. This noise (essential
for preventing the unrealizable perfectly precise measurement
of χ̂s and ρ̂s) is seen to be irrevocably imbedded in the
measurement apparatus of the heterodyne detection process.

Extensions of this type are not unique and Naimark’s
theorem is only meant to recover the fuzzy statistics (not go
beyond them). Algebraically, we see that for any operator Ôs

whose commutator with its adjoint is ζ̂s ≡ [Ôs,Ô
†
s ] one such

extension is Ê = Ôs ⊗ ζ̂a + ζ̂
†
s ⊗ Ô

†
a , provided that ζ̂ 2 = ζ̂

(as it does for â and Â).
Let Âs be the SG operator for the original system of interest;

an extension of this form onto H = Hs ⊗ Ha is

Ŷ ≡ Âs ⊗ V̂a + V̂s ⊗ Â†
a. (17)

We can also see explicitly from the number representations of
Â and Â†, and recalling the definition of the vacuum projector
V̂ = |0〉〈0|, we have

Â V̂ = 0 = V̂ Â† (18)

so that

[Ŷ ,Ŷ †] = [Âs,Â
†
s] ⊗ V̂a + V̂s ⊗ [Â†

a,Âa] = 0. (19)

Next, by solving for the eigenkets of Ŷ , we obtain the
Ŷ measurement statistics for an arbitrary state |ψ〉s⊗a ≡

ns,na

ψns,na
|ns,na〉 on H. Setting Ŷ |Y 〉 = Y |Y 〉 yields

|Y 〉 =
∞∑

ns=0

einsφ|ns,0〉 +
∞∑

na=1

e−inaφ|0,na〉, (20)

where Y = eiφ . The eigenvalue Y could also be zero, in which
case the corresponding eigenket can be any superposition of
“off-axis” number states, i.e., those which do not involve
|ns,0〉 or |0,na〉. When the auxiliary mode is in the vacuum
state |ψa〉a = |0〉a , the general result reduces to the following:
the outcome of the Ŷ measurement is a complex number of
unit magnitude Y = eiφ and the probability distribution for its
phase is

p(φ) = 1

2π
|s〈φ|ψ〉s |2, (21)

identical to that from the POM description of the measurement
associated with Â.

The single complex-valued outcome Y = eiφ of the Ŷ

measurement may also be viewed as a pair of real-valued
results Y1 and Y2, where Y = Y1 + iY2. The fact that Ŷ

commutes with its adjoint implies that its real and imaginary
parts Ŷ1 ≡ (Ŷ + Ŷ †)/2 and Ŷ2 ≡ (Ŷ − Ŷ †)/2i are commuting
observables. These can also be written in the form Ŷ1 =
Ĉs ⊗ V̂a + V̂s ⊗ Ĉa and Ŷ2 = Ŝs ⊗ V̂a − V̂s ⊗ Ŝa (where Ĉ

and Ŝ are the real and imaginary parts of Â [21]). The expected
values of these, from a single Ŷ measurement with the auxiliary
mode in the vacuum state, are identical to those of the two
distinct measurements of Ĉ and Ŝ, i.e.,

〈Ŷ1〉s⊗a = s〈ψ |Ĉs |ψ〉s a〈0|V̂a|0〉a + |ψ0|2 a〈0|Ĉa|0〉a
= s〈ψ |Ĉs |ψ〉s (22)
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and similarly

〈Ŷ2〉s⊗a = s〈ψ |Ŝs |ψ〉s . (23)

For the second moments, first note that

Ŷ 2
1 = Ĉ2

s ⊗ V̂a + V̂s ⊗ Ĉ2
a + Â

†
s V̂s

2
⊗ V̂aÂa

2
+ V̂sÂs

2
⊗ Â

†
aV̂a

2
(24)

and

Ŷ 2
2 = Ŝ2

s ⊗ V̂a + V̂s ⊗ Ŝ2
a − Â

†
s V̂s

2
⊗ V̂aÂa

2
− V̂sÂs

2
⊗ Â

†
aV̂a

2
.

(25)

Furthermore, since V̂ Â = |0〉〈1| and Â†V̂ = |1〉〈0|, the second
moments of Ŷ1 and Ŷ2 in a Ŷ measurement with the auxiliary
mode in the vacuum state are〈

Ŷ 2
1

〉
s⊗a

= s〈ψ |Ĉ2
s |ψ〉s + |ψ0|2 a〈0|Ĉ2

a |0〉a

= s〈ψ |Ĉ2
s |ψ〉s + |ψ0|2

4
(26)

and 〈
Ŷ 2

2

〉
s⊗a

= s〈ψ |Ŝ2
s |ψ〉s + |ψ0|2

4
. (27)

To interpret the real and imaginary components let us return
momentarily to the original notation of the SG operator Â →
êiφ . The fact that the SG operator does not commute with
its adjoint implies that its Hermitian real and imaginary parts
Ĉ ≡ (êiφ + ê−iφ)/2 and Ŝ ≡ (êiφ − ê−iφ)/2i do not commute:
[Ĉ,Ŝ] = iV̂ /2. Classically, we have the trigonometric identity

1 = (eiφ)(e−iφ) = (cos φ + i sin φ)(cos φ − i sin φ)

= cos2φ + sin2φ. (28)

Quantum mechanically, we have Î = (êiφ)(ê−iφ), so

1 = 〈(Ĉ + iŜ)(Ĉ − iŜ)〉 = 〈Ĉ2〉 + 〈Ŝ2〉 − i〈[Ĉ,Ŝ]〉

= 〈Ĉ2〉 + 〈Ŝ2〉 + |ψo|2
2

. (29)

The moments of Â, or equivalently those of Ĉ and Ŝ, do
not correspond to a realizable quantum measurement, but the
moments of Ŷ1 and Ŷ2 do and from (25), (26), and (29) we
obtain 〈

Ŷ 2
1

〉
s⊗a

+ 〈
Ŷ 2

2

〉
s⊗a

= 1 (30)

in accordance with the assertion that the outcome of the
Ŷ measurement is a complex number of unity magnitude:
Y = eiφ .

The physical apparatus which realizes the Ŷ measurement
has not yet been identified. The presence of the auxiliary mode,
however, must (on physical grounds) be an inextricable part
of this apparatus, as it is in heterodyne detection.

II. BEYOND NAIMARK: COMPLEMENTARY PHASE
AT THE SECOND LAYER OF UNDERSTANDING

In this section, we provide an example of how one can
extend the SG operator onto a subset of the two-mode space in
order to describe a sharp quantum phase measurement which

yields the next layer of understanding complementarity (be
it for phase, time, or an angle). There are an infinite number
of such subsets that can be defined on a two-mode space,
but a general theory (and final layer of understanding) on an
unrestricted two-mode space will be discussed in Sec. IV.

Historically, Ŷ was derived on physical (rather than
algebraic) grounds to achieve a sharp measurement, rather
than just recover the fuzzy statistics [7,8] as follows. Clearly,
the problems in formulating a time or angle operator stem
from the bounded eigenspectra of the complementary quantity
(energy or angular momentum). For example, for a phase
operator it is the absence of negative-energy states for the
quantum harmonic oscillator which leads to the SG operator
not commuting with its adjoint. The SG operator cannot lower
below the vacuum (2) since there are no “negative-number”
(negative-energy) states for the oscillator. The extension Ŷ ,
however, lowers the original system mode photon number

Ŷ |ns〉s |0〉a = |ns − 1〉s |0〉a (ns � 1), (31)

then continues through the vacuum

Ŷ |0〉s |0〉a = |0〉s |1〉a (32)

and raises the auxiliary mode photon number

Ŷ |0〉s |na〉a = |0〉s |na + 1〉a. (33)

Topologically, it is as if Ŷ continues to lower below
the vacuum into the auxiliary (negative-number) mode. The
visualization of this behavioral aspect can be facilitated by
simply relabeling the number states according to the value of
m = ns − na . One might anticipate that these translations in
energy difference will lead to complementarity between m and
the “relative phase” between the two oscillators. Indeed, let us
relabel the Ŷ eigenkets as

|φ〉′ =
∞∑

ns=0

einsφ |ns〉s |0〉a +
∞∑

na=1

e−inaφ| 0〉s |na〉a. (34)

These reside on a subset H′ of Hs ⊗ Ha which is spanned
by |ns〉s |na〉a : nsna = 0. When the auxiliary mode is in the
vacuum state (na = 0), the Ŷ measurement yields the single-
mode statistics and their attendant Paley-Wiener restriction.

We can go beyond these fuzzy statistics by exciting the
auxiliary mode to create an arbitrary state on H′:

|ψ〉 =
∞∑

ns=0

ψns,0 |ns〉s |0〉a +
∞∑

na=1

ψ0,na
|0〉s |na〉a. (35)

Let ψm ≡ ψm,0 (∀ m � 0) and ψm ≡ ψ0,−m (∀ m < 0). The
generalized phase wave function

ψ ′(φ) ≡ ′〈φ|ψ〉 =
∞∑

m=−∞
ψme−imφ (36)

is a two-sided Fourier series. The Paley-Wiener restriction is
removed and the ψ ′(φ) can now “collapse” to a delta function.

Commensurate with its negative-number behavioral aspect,
the auxiliary mode can be interpreted as a phase-reversed mode
in the following sense. Consider the case of when the auxiliary
mode is in the vacuum state (na = 0) and denote an initial
state by |ψ〉0. The state (in the Schrödinger picture) after time
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evolution of an amount τ is

|ψτ 〉 = e−i(n̂s+n̂a )ωτ |ψ0〉|na=0 = e−in̂sωτ |ψ0〉 (37)

so that the relation between the generalized phase representa-
tions of the initial and delayed states is simply

ψ ′
τ (φ) = ψ ′

0(φ + ωτ ) (na = 0). (38)

Now, consider the case of the original system being in the
vacuum state (ns = 0). The Schrödinger picture of the delayed
version of an initial state |ψ〉0 is

|ψτ 〉 = e−i(n̂s+n̂a )ωτ |ψ0〉|ns=0 = e−in̂aωτ |ψ0〉. (39)

The initial and delayed generalized phase representations for
this case are related by

ψ ′
τ (φ) = ψ ′

0(φ − ωτ ) (ns = 0). (40)

Thus, the two modes are phase reversed in that, under time
evolution, the na � 1 portion of the generalized phase wave
function moves backwards with respect to the ns � 1 portion.

Of course, there is nothing mysterious about the fact that
the energy difference m can be negative. Nor does the phase-
reversed aspect of the auxiliary mode imply a violation of
temporal causality since φ (which is complementary to m)
turns out to be the relative phase between the two modes, as
we now demonstrate, which will also start to define what we
mean by “relative phase” which of course implies a quantum
measurement. In so doing we shall also set the stage for the
general two-mode relative phase representation (which does
not require restriction of the state to H′).

Generalizing complementarity to be viewed as Fourier
relations among wave functions, we anticipate that what might
be of use here is to start with the two-dimensional Fourier
transform of the {ψns,na

}. Indeed, (φs,φa) ≡ s〈φs | a〈φa|ψ〉
provides this:

(φs,φa) =
∞∑

ns=0

∞∑
na=0

ψns,na
e−insφs e−inaφa , (41)

where |ψ〉 is now an arbitrary state on Hs ⊗ Ha with
number-ket expansion coefficients ψns,na

≡ s〈ns | a〈na|ψ〉 and
|(φs,φa)|2/(2π )2 is the probability density function for the
simultaneous measurement of φs and φa .

Under the change of variables

�
 ≡ (φs + φa)/2, �� ≡ (φs − φa)/2, (42)

we map to a different wave function

ψ(�
,��) =
∞∑

j=0

j∑
m=−j

ψns,na
e−i(j�
 )e−i(m��), (43)

where j ≡ ns + na , so that ns → (j + m)/2 and na → (j −
m)/2 in the above. Notice that by making the change of
variables in the wave function (rather than in the PDF) we
have also changed the quantum measurement. If instead we
made a similar change of variables in the PDF, it would
correspond to measuring both φs and φa first and then adding
and/or subtracting the results; but, that is not what �
 and
�� represent in (43). Since j is bounded from below, the sum
phase �
 is not measurable in the sharp sense. In Sec. IV,
two reasonable ways of dealing with �
 and hence defining a

direct measurement of the relative phase φ� on Hs ⊗ Ha are
presented. For states restricted to H′, one of these ways can be
obtained from (43) and we find

ψ(�
 = 0,�� = φ)|onH′ = ψ ′(φ), (44)

which demonstrates that the argument in ψ ′(φ) is a relative
phase as asserted. We can define a relative phase measurement
between any two modes we wish. If, however, we choose
two modes which are already time or phase reversed in some
physical sense (e.g., an electromagnetic mode of wave vector
k̄ and another of wave vector −k̄), then the formalism can lead
to more physical insight. For example, if the two modes are
the right and left circular polarizations of an electromagnetic
plane wave, then the relative phase measurement is equal to
(not just isomorphic to) the quantum angle measurement.

As clarified in the next section, for such photons our
definitions of j and m and the change of variables in (42) are
appropriate. If instead of such photons our harmonic oscillators
(modeling angular momenta) are Schwinger’s [22] fermionic
primitives, then the factors of 1

2 should go elsewhere [we would
divide j and m by two in the above definitions and multiply
by two in (42) for the appropriate change of variables].

III. HARMONIC OSCILLATOR MODELS
OF ANGULAR MOMENTA

In 1952, Schwinger [22] demonstrated a connection be-
tween the algebra of two uncoupled harmonic oscillators
and the algebra of angular momenta. In quantum optics, this
connection has proved useful in the analysis of optical beam
splitters [23] although a beam splitter does not actually perform
a rotation in physical space, and the connection is merely
within the mathematics. This connection has also proved useful
in calculating the effects of actual rotations on systems, but
the oscillators (which behave like spin- 1

2 bosons) are deemed
unphysical [24]. We put more physics into this connection
by considering rotations of the electromagnetic field. This
leads to a subtle but surprisingly significant modification of
Schwinger’s model. Also, by describing the oscillator states
in the phase representation, we will be led to insights on the
angles themselves (rather than their conjugate momenta). We
begin with a brief summary of the key points of Schwinger’s
model. Let âu and âd denote the annihilation operators for two
harmonic oscillators which are uncoupled (i.e., independent)
so that

[âu,â
†
d ] = 0 = [âu,âd ]. (45)

Defining

Ĵ+ ≡ �â†
uâd , Ĵ− ≡ �â

†
d âu, and Ĵz ≡ �

2
(n̂u − n̂d ), (46)

it is easy to show that

[Ĵ+,Ĵ−] = 2�Ĵz and [Ĵ+,Ĵ−] = ±�Ĵ±, (47)

which are the fundamental communication relations of angular
momentum. The raising and lowering operators Ĵ± can of
course be alternatively expressed in terms of the x- and y-
component angular momentum operators as

Ĵ± = Ĵx ± iĴy . (48)
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Since, from (43), Ĵ± raise and lower the eigenvalue of Ĵz/�

(i.e., m) by one, it is as though we have one spin- 1
2 particle,

with spin up (or down) associated with each quanta of the u

(or d) oscillators. The z component of angular momentum is
then simply �/2 times the difference in the number of up and
down quanta, commensurate with (43). Therefore, in terms of
eigenvalues we have

m = (nu − nd )/2, (49)

from which we anticipate j = (nu + nd )/2, where �
2j (j + 1)

is the eigenvalue of Ĵ 2 ≡ Ĵ 2
x + Ĵ 2

y + Ĵ 2
z . Indeed,

Ĵ 2 = 1

2
(Ĵ+Ĵ− + Ĵ−Ĵ+) + Ĵ 2

z

= �
2

(
n̂u + n̂d

2

) (
n̂u + n̂d

2
+ 1

)
(50)

so that j = (nu + nd )/2 as expected.
In Schwinger’s scheme, however, a total of two up and down

quanta will always yield j = 1, i.e., the antisymmetric singlet
state (of j = 0) would never occur. As Sakurai [24] puts it as
follows: “Only totally symmetrical states are constructed by
this method. The primitive spin- 1

2 particles appearing here
are actually bosons! This method is quite adequate if our
purpose is to examine the properties under rotations of states
characterized by j and m without asking how such states are
built up initially.” Since spin- 1

2 particles must obey Fermi
statistics, we shall not attempt to make physical sense of
these spin- 1

2 primitives which act like bosons and shall instead
simply refer to them as fermionic primitives (mathematical
entities which need not be represented in the physical world).

The photon is a boson which nonetheless resembles a
fermion in the sense that its spin space is two dimensional, i.e.,
it is “spin-1 with m = 0 missing” [25]. Indeed, two harmonic
oscillator modes are sufficient to describe the polarization state
of a single k-vector component of an electromagnetic wave
since we need only consider the transverse components of its
vector potential. Therefore, it seems reasonable to attempt
to reconstruct the algebra of angular momenta from these
physically significant photonic primitives. We pursue this by
considering rotations of the electromagnetic field.

Let ˆ̄A be the vector potential operator for an electromagnetic
plane wave comprised of the two circularly polarized, z̄

propagating, same frequency modes. By requiring that the
expected value of this vector operator transforms like a
classical vector under rotation about z̄, we obtain the well-
known [25] results

R̂z(φ) â†
r R̂†

z(φ) = â†
r e

−iφ and R̂z(φ) â†
l R̂†

z(φ) = â
†
l e

iφ.

(51)
From this Heisenberg picture of a rotation about the z axis by
an amount φ, denoted by R̂z(φ), we have in the Schrödinger
picture that

e−iĴzφ/�|1〉r = e−iφ|1〉r , (52)

i.e., a right-handed circularly polarized photon is an eigenstate
of Ĵz/� with eigenvalue m = +1, where we used the assump-
tion that the vacuum is rotationally invariant R̂

†
z(φ)|0〉 = |0〉,

and |1〉r is |1,0〉 ≡ â
†
r |0,0〉 in |nr,nl〉 notation. Similarly, a

left-handed circularly polarized photon is associated with

m = −1 and therefore photons are said to be particles of spin
1 with m = 0 missing. Furthermore, from (51) we find that
the Schrödinger picture of a rotation about the z axis for an
arbitrarily polarized field (expressed in the circularly polarized
basis) is

R̂z(φ)|ψ〉 =
∑
nr ,nl

ψnr ,nl
e−i(nr−nl )φ|nr,nl〉, (53)

which we notice is physically indistinguishable from a differ-
ential phase shift of the two circularly polarized modes. There-
fore, when we utilize this rotation to derive its complementary
angle-kets, as in Appendix B, for this choice of modes we
would also obtain the relative phase-kets (similarly derivable
under differential phase shift). Thus, for this particular choice
of mode set, the angle and phase measurements are exactly
identical (rather than merely isomorphic). In any event, the
connection between angular momentum and these photonic
primitives is clearly

Ĵz = �(n̂r − n̂l). (54)

Note the absence of the factor of 1
2 which was present in the

case of fermionic primitives. As (54) leads to m = nr − nl , we
expect j = nr + nl . However, because we have scaled up Ĵz

(by 2) we find that we must also scale up Ĵx and Ĵy (by 2) in
order to make sense of Ĵ 2. We can introduce the scaling either
in the relation between Ĵx,y and Ĵ+,− or in the definitions of
Ĵ+ and Ĵ−. Choosing the latter,

Ĵ+ ≡ 2� â†
r âl and Ĵ− ≡ 2� â

†
l âr (55)

and (48) still holds. This leads to

Ĵ 2 = �
2(n̂r + n̂l)(n̂r + n̂l + 1) (56)

so that j = nr + nl as desired. An unavoidable consequence
of this scaling is the appearance of a factor of 2 in the
commutators

[Ĵi ,Ĵj ] = 2i� εijk Ĵk (i,j,k ε {x,y,z}). (57)

This, however, is still the same group (although the structure
constant has doubled), i.e., we have reproduced the algebra of
angular momenta with these physically interpretable photonic
primitives. What has happened is perhaps more clear when
viewed in terms of the commutators involving Ĵ±.

We now have

[Ĵ+,Ĵ−] = 4�Ĵz, (58)

where the 4 comes from scaling up the Ĵ±, but there is no way
to scale these to alter the fact that we now have

[Ĵz,Ĵ±] = ±2�Ĵ±. (59)

The factor of 2 that has to appear in (59) is a solution rather
than a problem, however, since it means that Ĵ± will raise
and lower the eigenvalue of Ĵz/� by two rather than one,
which is exactly what we want! We can also see this from
(55) which indicates that Ĵ− (for example) will annihilate one
right-handed photon (with z-component angular momentum
of �) and create one left-handed photon (with z-component
angular momentum of −�) thereby lowering the value of m

by two. Thus, Ĵ− lowers the m = +1 state immediately to the
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FIG. 3. (Color online) Harmonic oscillator models of angular
momentum.

m = −1 state while automatically skipping over the m = 0
case which does not exist for a (plane-wave) photon.

In Fig. 3, we indicate the allowed photonic states by points
(solid circles) in the nr,nl plane, which is also labeled by j and
m. Notice that for an odd (or even) total number of photons,
m must also be odd (or even). The so-called missing states are
indicated by empty circles. For ordinary bosons, we would use
all of the circles and as we can still use the angle representation
to describe their polarization state we maintain the connection
with harmonic oscillators, but then those would have to be
the presumed unphysical fermionic primitives (for which we
would then use the nu/2 and nd/2 axes).

In hindsight [26], we see why a similar factor of 2 has to
occur in the algebra of the Stokes operators:

Ŝ0 = â
†
H âH + â

†
V âV , Ŝ2 = â

†
H âV eiθ + â

†
V âH e−iθ ,

(60)
Ŝ1 = â

†
H âH − â

†
V âV , Ŝ3 = iâ

†
V âH e−iθ − iâ

†
H âV eiθ ,

presumably originating in [27] where H and V are the
two linear polarization modes of of relative phase shift θ .
These operators satisfy the commutation relations of angular
momentum ∀ θ “apart from a factor of 2” [27] yet, they are
not the three components of angular momentum for arbitrary
θ [28].

Returning to the issue of angle, consider for example the
quantum angle representation of the state of a single particle
(labeled “particle” in Fig. 3). Formally, the angle of a particle
requires a field for its measurement (else the finite-dimensional
state space would not permit wave function collapse [29]).
When the field (also labeled in Fig. 3) is comprised of
photons (rather than up down oscillators) the state space for
the complete, sharp, description of this measurement is a
composite of the state space of the particle and that of the
field (for which we could also include the vacuum state in
order to turn the field “off”). For this field-particle system

to go beyond the fuzzy statistics, the state of the field would
have to be entangled with that of the particle prior to the
measurement. Otherwise (e.g., if the field was “off” prior to
the measurement), the outcomes will be Paley-Weiner limited
and these “single-particle” fuzzy statistics can be obtained
via a simple Fourier transform ψ(ϕ) = ∑j

m=−j ψj,m e−imϕ ,
where ϕ is the angle about the z axis. The fact that the
quantum angle distribution cannot vanish over an interval of
nonzero width has some interesting physical consequences
such as spin up really does point up in [30]. These phenomena
and the necessity of a field, etc., would not be revealed if
we restricted our attention to a different measurement: the
discrete-angle measurement [31] which can be described by
a Hermitian operator on the space of a single-particle via
a wraparound term (depicted by the semicircle in Fig. 3)
akin to that of Pegg and Barnett et al. [9,10]. Unlike the
case of discrete-phase convergence to the fuzzy single-mode
phase statistics, however, the discrete-angle statistics cannot
converge to the fuzzy single-particle angle statistics since we
cannot just take the limit j → ∞ and still be referring to
a spin-j particle. Moreover, the discrete-angle statistics are
complementary to a periodically replicated version of the
angular momentum spectra. But, real angles are continuous,
just as real angular momenta are not periodic.

IV. A GENERAL QUANTUM THEORY OF ANGLE
AND RELATIVE PHASE MEASUREMENT

There are an infinite number of subsets such as H′, or
the field particle space in Fig. 3, that can be defined on a
two-mode space wherein each value of m also corresponds
to a single value of j . The general theory (and final layer of
understanding) on an unrestricted two-mode space, presented
herein, can cover all of those infinite number of possible
measurements and it demonstrates two reasonable ways of
dealing with degeneracy in j . These also correspond to the
two reasonable ways of dealing with the uncollapsible �
 and
hence defining a direct measurement of the relative phase φ�

on Hs ⊗ Ha .
In probability theory, to eliminate one variable from a

two-dimensional PDF, there are two reasonable choices: form
a conditional PDF or form a marginal PDF. Rather than doing
this on the PDF, we extrapolate and apply the concepts to
a POM to form either a “conditional measurement,” i.e., a
snapshot in absolute time of the relative phase, or a “marginal
measurement,” i.e., a time average of the relative phase
distribution.

In quantum theory, there are two reasonable alternatives:
if the final states of a measurement are distinguishable we
add probabilities; if the final states of a measurement are
indistinguishable we add probability amplitudes [32]. It is
perhaps initially surprising that these two things reasonably
(from two totally different perspectives) coincide, i.e., we will
show that taking a snapshot corresponds to adding amplitudes
and taking a time average corresponds to adding probabilities.

If states of different j correspond to different (distinguish-
able) particles, then we could impose the “add probabilities”
constraint and equivalently argue that the snapshot measure-
ment cannot be realized for such a system. Otherwise, we could
argue that as designers of quantum measurements we are free
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to choose to do a measurement that yields final states which
are distinguishable (in j ) or not. Specifically, let the system be
right and left circularly polarized photons so that the oscillators
have physical significance and the relative phase measurement
is equivalent to the quantum angle measurement. In a snapshot
measurement of this angular distribution (say at �
 = 0), how
are we to tell which j branch contributed a result? The snapshot
measurement has a connection to (43) from which we see that
information on j vanishes when we take �
 = 0. It is as if “we
do not take enough time” to distinguish the different j . On the
other hand, the time-average measurement is a marginal POM
(rather than a marginal PDF) so the connection with (43) is not
as direct but one can see that when �
 varies, the differences
in j can have an effect, making them distinguishable (even if
the entire system is comprised of indistinguishable photons)
and so it is palatable that we end up adding probabilities. It
is as if “distinguishability is a matter of how long we look.”
Examples will clarify this after we first present the details of
the formalism.

Let

|�
,��〉 ≡
∞∑

j=0

j∑
m=−j

|ns,na〉 ei(j�
 )ei(m��), (61)

where for photons ns → (j + m)/2 and na → (j − m)/2 in
the above and m increments by two in the sum. We can
eliminate �
 to obtain a marginal measurement of ��

on Hs ⊗ Ha by applying an “absolute time average” to
|��,�
〉〈��,�
|, resulting in the marginal POM:

(2π ) d�̂M (��)

≡
∫ +π

−π

d�


2π
|��,�
〉〈��,�
|

=
∞∑

j=0

⎡
⎣

⎛
⎝ +j∑

m=−j

|j,m〉 eim��

⎞
⎠

⎛
⎝ +j∑

m′=−j

〈j,m′| e−im′��

⎞
⎠

⎤
⎦ .

(62)

Because both of the inner sums use the same value of j ,
interference among states of different j is excluded and we
have (for pure states) the following probability distribution
function:

PM (��) = Tr[ρ̂ d�̂M (��)] =
(

1

2π

) ∞∑
j=0

|(j )(��)|2,

(63)
where Tr denotes trace; ρ̂ is the density matrix; and

(j )(��) ≡
+j∑

m=−j

j,m e−im�� (64)

is the quantum angle representation for each j branch of
expansion coefficients j,m = 〈j,m|ψ〉. Thus, in this marginal
or time-averaged measurement of ��, the results from states
of different j are distinguishable and we are led to adding
probabilities in (63).

We also might eliminate �
 to obtain a conditional
measurement of �� on Hs ⊗ Ha by taking “snapshot in
absolute time” via conditioning |��,�
〉〈��,�
| to �
 = 0

(for example) resulting in the conditional POM:

(2πC) d�̂C(��)

≡ |��,�
 = 0〉〈��,�
 = 0|

=
⎛
⎝ ∞∑

j=0

+j∑
m=−j

|j,m〉 eim��

⎞
⎠

⎛
⎝ ∞∑

j ′=0

+j ′∑
m′=−j ′

〈j ′,m′| e−im′��

⎞
⎠ ,

(65)

where the renormalization constant C is

C ≡ P (�
 = 0) =
∞∑

m=−∞

⎧⎪⎨
⎪⎩

∣∣∣∣∣∣
⎛
⎝ ∞∑

j=0

j,m

⎞
⎠

∣∣∣∣∣∣
2
⎫⎪⎬
⎪⎭ (66)

the probability of the conditioning event.
In contrast to the case in (62), the sums over m in (65)

now use different values of j , thereby permitting interference
among the states of different j . Therefore, we have (for pure
states) the probability distribution function

PC(��) = Tr[ρ̂ d�̂C(��)] =
(

1

2πC

) ∣∣∣∣∣∣
∞∑

j=0

(j )(��)

∣∣∣∣∣∣
2

(67)

so that in this conditional “snapshot” measurement of ��

we are adding amplitudes, the (j )(��), before taking the
magnitude square in (67).

Note that the snapshot measurement recovers the Ŷ mea-
surement onH′, or any other of the infinite number of operators
that could be defined on subsets of Hs ⊗ Ha in which each
value of m corresponds to a unique value of j (for these
nondegenerate cases C = 1 so that renormalization would not
be required). For the degenerate cases, we could equivalently
form an amplitude for being in a state of m, independent of
j via m ≡ ∑

j j,m and Fourier transform these to form
the wave function underlying the snapshot PDF of (67). We
could similarly define a conditional measurement of �� by
taking a snapshot at some other value of �
 but that would be
equivalent to applying the above procedure to a state that has
undergone time evolution of that same (conditioning) amount
�
/ω = t — which is computationally easier (where ω is the
radian frequency of our oscillator, which we now set equal to
one for simplicity and to emphasize that �
 corresponds to
absolute time).

V. QUANTUM ANGLE REPRESENTATIONS
OF OPTICAL POLARIZATION

Applying the general formalism to a case that can naturally
support a time-reversal symmetry (as in Sec. II) should yield
more physical insights. Herein, we take the original system
(s) and the auxiliary mode (a) to be the right (R) and left (L)
circularly polarized modes of a single k-vector z-propagating
plane wave so that the relative phase measurement is the
quantum angle measurement in a system comprised of physi-
cally realizable primitives. The conditional measurement now
corresponds to taking a snapshot of the angular distribution of
the electric field about the z axis (at some angle φ = �� with
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respect to the x axis) taken at some time t = �
 . The marginal
measurement forms a properly weighted time average of these
angular snapshots which trace out, and thereby result in, a
quantum version of the polarization ellipse.

When the state of the field is comprised of a single value
of total angular momentum (i.e., when the only nonzero prob-
ability amplitudes have one unique value of j = nR + nL),
the polarization ellipse is the same distribution as a snapshot
taken at any point in absolute time. Moreover, in the case of
an x-polarized number state, with the y-polarized mode in the
vacuum state, one would expect these identical distributions
to peak at both φ = 0 and ±π . For example, one x-polarized
photon, or two x-polarized photons, should have a polarization
ellipse along the x axis with “up along x” and “down along x”
being equally most likely; the identical snapshot distribution at
any time must follow suit. Indeed, this physically reasonable
result holds in the quantum angle representation.

However, if we have a superposition of one x-polarized
photon and two x-polarized photons, then the value of j is not
unique and the snapshot distributions are not identical to the
polarization ellipse. For example, the superposition
√

2 |ψ〉 = |1〉x |0〉y + |2〉x |0〉y = (|1〉R|0〉L + |0〉R|1〉L)/
√

2

+ (|2〉R|0〉L + |0〉R|2〉L +
√

2|1〉R|1〉L)/2 (68)

has an angle representation comprised of j = 1 and 2
components given by

√
2 ψ(φ) = (1)(φ) + (2)(φ) where

(1)(φ) =
√

2 cos(φ) and (2)(φ) = cos(2φ) + 1/
√

2.

(69)

If we magnitude square either of these it will have a peak
at φ = π and the sum of those probabilities would yield
the polarization ellipse. If we add amplitudes instead, then
although both j components have an amplitude for being
“down along x” at this time (when �
 = 0), those amplitudes
are out of phase at this time so they cancel and the snapshot
distribution (when �
 = 0) is only “up along x” (i.e., peaks
only at φ = 0) as shown in Fig. 4, where the x axis is absolute
time (�
 from 0 to π ); the y axis is the angle (φ from −π to π );
and the contours indicate the angular probability density (from
0.1 to 0.8), i.e., each “slice in x” is a (normalized) snapshot
PDF. Later (when �
 = π ), the snapshot distribution must
reflect an angular distribution of electric field vectors that is
primarily “down along x” (i.e., the snapshot distribution, when
�
 = π , must peak at φ = ±π , as it does).

Consider now how “up along x” can evolve into “down
along x.” Classically, the two (right- and left-handed) circular
polarization vectors counter-rotate in time and their sum
creates a linearly polarized vector that shrinks to zero halfway
between the time it is “up along x” and the time it is “down
along x.” Quantum mechanically, the renormalized snapshot
PDFs cannot vanish (although without renormalization these
can shrink towards zero, reflecting an unlikelihood of taking a
snapshot at that time). Moreover, these PDFs are Paley-Weiner
restricted in shape (for finite j ) so delta functions are not
allowed and the PDFs cannot equal zero over angular intervals
of nonzero length. It is analogous to considering how one
might deform a balloon from one pointing up to one pointing
down without breaking the balloon, while also maintaining
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FIG. 4. (Color online) A sequence (at times t) of snapshot PDFs
(along y) for a superposition of one and two x-polarized photons.

symmetry in φ. Two possibilities are to have a peak at φ = 0
come down and spread out into a more uniform shape while the
peak at φ = ±π comes up or the peak at φ = 0 can come down
and spread out into two or more discernible counter-rotating
peaks, which then recombine into a peak at φ = ±π . The
superposition of one and two x-polarized photons of (68) gives
an example of the former in Fig. 4, and an x-polarized coherent
state of N = 1 gives an example of the latter in Fig. 5.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

3

2

1

0

1

2

3

t

P
Φ

FIG. 5. (Color online) A sequence (at times t) of snapshot PDFs
(along y) for a coherent State of N = 1.
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FIG. 6. (Color online) A sequence (at times t) of snapshot PDFs
(along y) for a coherent state of N = 4.

Figures 6 and 7 similarly depict the evolution of the
snapshot PDFs for x-polarized coherent states of N = 4 and 9,
respectively. Both demonstrate again the splitting of the initial
“up along x” peak into two discernible peaks (which would
be counter-rotating in a polar plot) which then again have to
recombine into a single “down along x” peak (at φ = ±π )
when �
 → π . For N = 9, Fig. 7 also reveals that when �
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FIG. 7. (Color online) A sequence (at times t) of snapshot PDFs
(along y) for a coherent state of N = 9.
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FIG. 8. (Color online) Three snapshot PDFs from Fig. 7:
presented in a polar plot on a linear scale.

is near π/2, two more peaks or side lobes (at φ = 0 and at
φ = ±π ) become visible.

Before taking up the issue of the behavior at φ = π/2, it is
useful to consider the role that the probability of �
 plays in
the relation between a sequence of snapshots and the quantum
polarization ellipse. For example, the snapshot PDF for an
x-polarized coherent state of N = 9 reveals an appreciable
P (φ = π/2) when the sum phase is near π/2, as shown in
Fig. 8 which presents three snapshot PDFs in a polar plot on
a linear scale. The peak of the snapshot PDF at time t = π/2
is down from the peak of the snapshot PDF at time t = 0 by
less than a factor of 4. However, the probability of taking a
snapshot at time t = π/2 is over three orders of magnitude
smaller than the probability of taking a snapshot at time t = 0.
Thus, when we take the time average inherent in forming the
polarization ellipse the influence of the t = π/2 snapshot is
greatly diminished.

The renormalization constant C is the probability of the
conditioning event, i.e., the constant is itself also a PDF,
the PDF for the measurement of absolute phase which (like
absolute time) is measurable in the fuzzy, albeit not in the
sharp, sense. In considering a sequence of snapshot PDFs for
various �
 we should dispense with the notion of absolute
time marching along uniformly (as it has historically, as a
parameter in quantum theory rather than an operator). Instead,
when we realize that the probability of the conditioning event is
telling us that taking a snapshot at one time is not as probable
as at some other time, then we see more clearly how these
snapshots turn into the quantum polarization ellipse. It is as if
the polarization vectors spend more time in snapshots where
P (�
) is large and zip past (or even skip) snapshots taken at
�
 of small (or even zero) P (�
). The time averaging inher-
ent in the marginal POM naturally incorporates this weighting.

The quantum polarization ellipses for an x-polarized
coherent state of N = 1, 4, and 9 are presented on a dB scale
in the polar plots of Fig. 9. To better reveal the side-lobe
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FIG. 9. (Color online) Quantum polarization ellipses on a dB
scale for x-polarized coherent states of N = 1, 4, and 9.

structure it is preferable to plot the log of probability (rather
than the probability itself) and to avoid a negative radius in
a polar plot we add a scaling constant. In the graphics, we
arbitrarily scale each of these so that the peak of each of
the PDFs corresponds to 60 dB (setting the peaks to some
fixed reference level facilitates comparison of the underlying
shapes). We see, for N = 9, the probability of being “up along
the y axis” is almost 40 dB below the probability of being “up
along the x axis.” For N = 4 we see this ratio is over 20 dB and
for N = 1 we are approaching the N = 0 case of a uniform
distribution (a circular polarization ellipse) since the vacuum
state is rotationally invariant.

Of course, an x-polarized coherent state is not exactly
orthogonal to a y-polarized coherent state since they share the
same vacuum state. But, an x-polarized number state can also
have an appreciable P (φ = π/2) although these are exactly
orthogonal to any y-polarized number state (when that number
is not zero). More generally, within the phase representation
one can readily see that only terms of the form cos(mφ) will
arise for states of ψj,m that are symmetric under m → −m

[33–35]. Any state for which the y-polarization mode is in the
vacuum state will have this symmetry. For photons, m will
be odd when j is odd (m increments by two for photons,
see Fig. 3) and in that case the probability of φ = ±π/2
vanishes (for all �
). Thus, a single x-polarized photon will
never have an electric field pointing along the y axis [i.e.,
P (φ = ±π/2) = 0] when its quantum angle is measured, but
a two-photon x-polarized field can! Indeed, any x-polarized
field with nonvanishing components of even j (such as a
coherent state) will exhibit such behavior. In the classical
limit P (φ = π/2) rapidly diminishes (even for N only equal
to 9 it is already less than 0.0002) but for a weak coherent
state of N = 1 it is slightly over 6%. Since weak coherent
states are sometimes used in polarization-based quantum
communication systems to mimic single-photon states, such
an effect might merit consideration [36].

VI. CONCLUDING REMARKS

The complementarity between time and energy, as well as
between an angle and a component of angular momentum, was
described at three layers of understanding complementarity
in a more general context. The first layer, comprised of a
simple Fourier transform of the complementary wave function,
amounts to a nonprojection-valued probability-operator mea-
sure and we elucidated ways in which these can be interpreted
as fuzzy measurements. The phase of a single harmonic
oscillator and the angle of a single particle are examples in
which the limited dimensionality of the state space was shown
to prevent wave-function collapse in the phase or angle wave
functions and further restrict the class of their realizable fuzzy
measurement statistics. Such measurements can, however, be
described via sets of commuting observables on a larger state
space which includes an auxiliary system (which must be a
part of the apparatus which realizes the measurement) when
the auxiliary and original systems are not entangled prior to
the measurement.

Therein, the auxiliary system is shown to function as a
noise source and the fuzzy statistics manifest. Such extensions
to larger state spaces are not unique and are only intended to
recover the fuzzy statistics. To go beyond these, we must also
extend the meaning of what it is that we wish to measure.
Clearly, no general way of doing that can exist but using
complementarity as a guide we were led to the conclusion that
formally only relative phase can be measured and the angle of
a particle will require a field for its measurement. The meaning
of relative phase gleaned at the second layer of understanding
was achieved on an important subspace of the more general
two-mode (two-oscillator) state space. This subspace has some
interesting physical properties (automatically entangling the
two modes) which are also useful for quantum noise reduction
and it is the space in which the celebrated NOON states reside.
The phenomena of super-resolution are readily apparent in
the quantum phase representation which also reveals that
entanglement is not required and the NOON state performance
can be identically reproduced on the single-mode space:
simply notice that the periodicity of the magnitude square
of a Fourier series is set by the minimal distance in m between
nonvanishing Fourier coefficients.

In preparation for the final layer of understanding comple-
mentarity, Schwinger’s harmonic oscillator model of angular
momentum was modified to include the case of photons (in-
stead of only the unrealizable fermionic primitives). Therein,
the quantum angle measurement (complementary to the
measurement of a component of angular momentum) was
shown to be equivalent to the relative phase measurement
between those two oscillators.

The meaning of relative phase was finalized at the third
layer. At the second layer, there are an infinite number of
subspaces that could be defined on a two-mode space wherein
each value of photon-number difference also corresponds to
a unique value of number sum. The general theory (and final
layer of understanding) on an unrestricted two-mode space can
cover all of those infinite number of possible measurements
and it demonstrates two reasonable ways of dealing with
the degeneracy in number sum. These also correspond to
two reasonable ways of eliminating absolute time (which
is measurable in a fuzzy albeit not in a sharp sense) in
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order to define a direct measurement of the relative phase:
a conditional measurement which takes a snapshot in absolute
time (corresponding to adding probability amplitudes); and a
marginal measurement which takes an average in absolute
time (corresponding to adding probabilities). The sense in
which distinguishability is a “matter of how long we look”
was discussed and the meaning of the general theory was
illustrated by taking the two oscillators to model the right and
left circularly polarized modes of an electromagnetic plane
wave so that the conditional measurement reveals a snapshot
of the angular distribution of the electric field vector and the
marginal measurement corresponds to a quantum version of
the polarization ellipse.

The quantum angle representation demonstrated that any
excitation of an odd number of x-polarized photons will never
have an angle in correspondence with the y axis, but that
of an even number of x-polarized photons always can! The
behavior of an x-polarized coherent state was examined and
the snapshot angular distributions were seen to evolve into
two counter-rotating peaks resulting in considerable corre-
spondence with the y axis (particularly for weaker coherent
states) at the time for which a classical linear polarization
vector would shrink to zero length. Such an effect could be of
significance for polarization-based quantum communication
systems since weak coherent states are sometimes used to
mimic single-photon states. We also demonstrated how the
probability distribution of absolute time (now treated as a
measurable quantity, rather than just a parameter) has an
influence on how these snapshot angular distributions trace
out and evolve into the quantum polarization ellipse.
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APPENDIX A: ALTERNATE PATH
TO THE SINGLE-MODE STATISTICS

Concurrent to (and independent of) the development of
the continuous single-mode phase representation, an alternate
method for obtaining the single-oscillator statistics was de-
rived by Pegg and Barnett [9] (see also [10]). Their approach
requires the truncation of the infinite-dimensional state space
of a harmonic oscillator to one of finite but arbitrarily large
dimension. This subspace, denoted HT (s), is spanned by the
number-kets {|n〉 : 0 � n � s}. Furthermore, their formalism
relies on an ordering of terms, in a polar decomposition of
the annihilation operator, which is akin to Dirac’s ordering [1]
rather than Susskind and Glogower’s [2]. This ordering permits
them to impose an “additional condition,” which specifies the
action on the vacuum state, whereas the action of the SG
operator on the vacuum state is uniquely determined by that
of â, as mentioned.

For any number state |n〉, with n ∈ {1,2, . . . ,s} but n �= 0,
the unitary power series of Pegg and Barnett’s operator,
exp(iφ̂PB ) defined onHT (s), is a lowering operator. The action
of this operator on the vacuum state is then defined to be a

“wraparound” term

eiφ̂
PB|0〉 ≡ ei(s+1)θ0 |s〉, (A1)

where θ0 is the location of the branch cut for phase (which is
−π in our formalism). This cyclic behavior, possible only
in a truncated space such as HT (s), is essential for their
definition of a Hermitian phase operator on HT (s). Unitarity
is accomplished by not having to “stop” at the vacuum state,
but the “wraparound to the top of the stack” term causes
the discrete-phase wave functions to be complementary to
a periodically replicated (and hence truncated) version of
the {ψn}.

This operator can be expressed in terms of an orthogonal
subset {|θm〉} of truncated phase-kets as

φ̂PB =
s∑

m=0

θm|θm〉〈θm|, (A2)

where

|θm〉≡ (s +1)−1/2
s∑

n=0

einθm |n〉 and θm ≡ θ0 + 2π

(
m

s +1

)
.

(A3)

A measurement of φ̂PB on HT (s) will yield one of its discrete
eigenvalues θm, which are rational multiples of 2π plus θ0,
with probability

Pr (θm) = |〈θm|ψ〉T |2, (A4)

where |ψ〉T is a truncated state
∑s

n=0 ψn|n〉 on HT (s).
As the truncation point s goes to infinity, Pegg and

Barnett’s discrete phase eigenspectra converge to our phase
continuum (in as much as rational numbers can converge to real
numbers), i.e., their probability mass function (A4) converges
in distribution to our probability density. It is this s→∞
limit in which they argue that the discrete phase statistics
make physical sense. It should be emphasized that although
Pegg and Barnett indeed have a Hermitian phase operator
on HT (s) with s finite, when s→∞ this is an alternative
means of calculating the fuzzy single-mode continuous phase
measurement statistics via a limiting procedure. If s is left
to be finite, then their discrete phase statistics correspond to
a discrete Fourier transform, complementary to a truncated
(and periodically replicated) version of the {ψn}. In the limit
s→∞ these converge (in distribution) to the continuous
phase statistics which we can obtain directly via the Fourier
transform of the actual {ψn}. Note that by accepting the
non-Hermitian nature of phase, we were led to the necessity
of a larger state space which emphasizes the existence of an
auxiliary noise source.

APPENDIX B: GENERAL THEORY
OF COMPLEMENTARITY

Herein, we analyze complementarity at the first (fuzzy)
layer, which is general in the sense that it can cover an angle,
phase, or time (in the case of a time-independent Hamiltonian)
when there is no degeneracy in the complementary eigenspec-
tra. To cover cases of degenerate eigenspectra, one must use
procedures akin to (62) and/or (65). At layer one, the proof
can be made to follow (almost verbatim) the case which stems
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from linear momentum being the generator of translations in
space [24].

Postulate the existence of a set of eigenstates |χ〉 which
resolve the identity operator so that these correspond to a
realizable measurement. Furthermore, let the eigenvalues χ

be continuous, nondegenerate, and real valued. Denote the op-
erator which effects an infinitesimal translation in χ by T̂ (dχ ):

T̂ (dχ )|χ〉 = |χ + dχ〉. (B1)

The following physically reasonable properties

T̂ †(dχ ) T̂ (dχ ) = Î , (B2)

T̂ (dχ1) T̂ (dχ2) = T̂ (dχ1 + dχ2), (B3)

T̂ (−dχ ) = T̂ −1(dχ ) and lim
dχ→0

T̂ (dχ ) = Î (B4)

are obtained (for infinitesimal dχ ) when

T̂ (dχ ) = Î − iĜdχ, (B5)

where Ĝ is said to be the generator of translations in χ . An
example of this is when χ is space and Ĝ is proportional to
linear momentum with Planck’s constant incorporated into its
definition so that (B5) is dimensionless. To progress from this
to the Fourier transform between representations (and hence
achieve complementarity) we will assume that Ĝ is Hermitian
(self-adjoint) so that its eigenspectra are real. If however, we
try to take Ĝ to be an angle operator, for example, generating
finite (not infinitesimal) translations in m then complications
arise (differentiation not being defined for a discrete parameter
being the least of them) and indeed these complications are
trying to tell us something “is wrong” here which then forces
us to a higher-dimensional state space in order to achieve a
complete description (i.e., a sharp measurement) in terms of
sets of commuting observables. We can, however, remain at the
first layer and obtain an incomplete description (i.e., a fuzzy
measurement) if instead we take an angle to be χ . Note, how-
ever, that in (B1) there can be no “stopping,” as in the sense of
the SG operator stopping at the vacuum, i.e., the eigenspectra
of χ must range from −∞ to ∞ else (B1) cannot hold ∀ dχ

and ∀ χ , which would preclude the definition of a derivative
in what follows, i.e., (B7). Later, when we find the angle
distribution to be periodic mod 2π (although clearly fermions
can exhibit mod 4π behavior the observation of such requires
their interference with another system) then we can restrict our
attention to one of these identically distributed 2π intervals.

To be sure, avoidance of stopping is what leads us to (at
the second layer) extend the SG operator to one on H′, or to
define a lowering of m on a field or particle system. Rather
than taking a phase operator to generate translations in photon
number, we can take n̂ as the generator of translations in φ (as
indeed it is already accepted that the Hermitian Hamiltonian

generates translations in time, and Ĵz generates translations in
the angle about the z axis, etc.) and therein we can remain
at the first layer and simply justify the Fourier transform that
leads to the fuzzy complementary measurement statistics.

Let ψ(χ ) ≡ 〈χ |ψ〉, from (B1) and (B5) we have

〈χ |T̂ †(dχ )|ψ〉 = ψ(χ + dχ ) = ψ(χ ) + i〈χ |Ĝ†|ψ〉dχ (B6)

so that
dψ

dχ
= i〈χ |Ĝ|ψ〉 → d

dχ
〈χ |G〉 = i G 〈χ |G〉 (B7)

when we take |ψ〉 to be an eigenket of Ĝ (and we used
Ĝ† = Ĝ.) The solution to this differential equation is 〈χ |G〉 =
NeiGχ , the kernel of the Fourier transform, where N is a
normalization constant. The presumed completeness of the
|χ〉 then leads to

〈G|ψ〉 =
∫

dχ 〈G|χ〉〈χ |ψ〉, (B8)

i.e., with ψG(G) ≡ 〈G|ψ〉 we have

ψG(G) = N

∫
dχ e−iGχ ψ(χ ) (B9)

from which the inverse Fourier transform follows. Then,
Rayleigh’s energy theorem (or Parseval’s power theorem) [15]
proves that a normalized distribution in one domain will have
a complementary distribution which is also normalized (in
the complementary domain). Thus, if the eigenkets of the
generator |G〉 are complete in some space, then the eigenkets
|χ〉 are complete in that same space, proving the assumption,
which concludes the proof (at the first layer).

If the original distribution, i.e., that of the Hermitian
generator of translations, such as a Hamiltonian, is continuous
and aperiodic (i.e., not periodic), then the complementary
distribution is also continuous and aperiodic, and the two
wave functions are related by the Fourier integral trans-
form. If the original distribution is “rationally discrete” (i.e.,
in correspondence with numbers whose ratios are rational
numbers) and aperiodic, then the complementary distribution
will be continuous and periodic (the Fourier series transform
relationship). If the original distribution is aperiodic and in
correspondence with a discrete set of numbers whose ratios
are not rational numbers, then the complementary distribution
will be continuous and “quasiperiodic.” Lastly, if the original
distribution is discrete and periodic, then the complementary
distribution will be also (the discrete Fourier transform). Thus,
for any system with a rationally discrete energy spectrum,
the temporal distribution will be periodic. Likewise, the only
system which exhibits truly discrete temporal behavior is one
in which the energy distribution is truly periodic. Similarly, the
quantization of angular momentum (projected onto an axis) is
the simple and immediate consequence of the periodicity of
the angle about that axis.
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