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Appearance of Gibbs states in quantum-state tomography
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I investigate the extent to which the description of quantum systems by Gibbs states can be justified purely on
the basis of tomographic data, without recourse to theoretical concepts such as infinite ensembles, environments,
or information or to the systems’ dynamics. I show that the use of Gibbs states amounts to a relevance hypothesis,
which I spell out in detail. This hypothesis can be subjected to statistical hypothesis testing and hence assessed
on the basis of the experimental data.
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I. INTRODUCTION

To describe the static or dynamic properties of a macro-
scopic quantum system, typically only a few observables {Ga}
are deemed relevant—for example, the system’s constants
of the motion (if static), slow observables (if dynamic), or
observables pertaining to some subsystem of interest. In
statistical mechanics the system is then assigned that quantum
state which, while reproducing the observed values {ga} of the
relevant observables, maximizes the von Neumann entropy,

S[μ] := −tr(μ ln μ); (1)

i.e., its state—which I denote μg—is determined by the
maximization

μg := arg max
μ∈g

S[μ], (2)

where μ ∈ g is short for the constraints 〈Ga〉μ = ga∀a. It has
the Gibbs form

μg ∝ exp(−λaGa), (3)

with Lagrange parameters {λa} and a constant of propor-
tionality (the inverse of the partition function) chosen to
ensure state normalization, trμg = 1. For ease of notation I
adopt here the Einstein convention that identical upper and
lower indices are to be summed over. In the special case
where only the system’s energy is relevant, the set {Ga}
contains just the Hamiltonian, and the associated Lagrange
parameter is the inverse temperature; the Gibbs state is
then a canonical state. While they first arose in the context
of statistical mechanics, Gibbs states nowadays play an
important role also on smaller scales. For instance, they have
been employed successfully in nanoscale thermodynamics
[1–3], high-energy physics [4], and incomplete quantum-state
tomography [5–11].

Why entropy maximization, and hence the use of the Gibbs
form, should be the proper paradigm for constructing the
quantum state has been the subject of much debate. The
classic textbook argument in statistical mechanics relies on
an idealization, the thermodynamic limit: The system of
interest is viewed as but one member of a fictitious infinite
ensemble of identically prepared systems. If the global state
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of this fictitious ensemble is constrained by sharp values (not
expectation values) for the totals of the relevant observables,
then the reduced state of any single member of the ensemble
has the Gibbs form [12]. Recent research suggests that one
can do without such fictitious ensembles and derive the Gibbs
form just as well directly from a few generic assumptions, as
long as the state in question pertains to a subsystem coupled
to a sufficiently large environment [13,14]. Another popular
argument invokes the intimate connection between entropy
and information: By maximizing the entropy, Gibbs states
discard, to a maximal extent, all information (and thus retain
no spurious bias) as to irrelevant degrees of freedom; so
they carry information solely about the relevant ones. This
insight is at the heart of the information-theoretic approach to
statistical mechanics [15–18]. Yet another line of reasoning,
going back to Boltzmann’s H theorem [19], brings into play
the system’s effective dynamics on some coarse-grained level
of description, in particular, its tendency to increase entropy
[20–23]. Such arguments rely on the existence of disparate
time scales in the system [24]. Finally, some authors in both
the statistics [25,26] and the physics [27] communities have
argued (for the classical case only) that the maximum entropy
paradigm is mandated by logical consistency; but this point of
view remains controversial [28,29].

In the present paper I wish to add a different perspective.
State construction via maximum entropy is a special instance
of a much broader task: estimating a quantum state on the basis
of imperfect data. Experimental data are in fact never perfect,
not even for simple systems; because the investigated samples
have a finite size, measurement devices have limited accuracy,
and possibly—as is the case in statistical mechanics—the
observables measured are not informationally complete. So
in practice, data never specify a unique quantum state. Rather,
among the many states compatible with the data one must infer
the most probable one, using suitable statistical estimation
techniques. Such techniques have become an indispensable
tool for data analysis in modern quantum physics experiments
and are called quantum-state tomography [30,31].

If the maximum entropy paradigm may thus be subsumed
under the broader framework of quantum-state tomography,
then perhaps the latter can shed some light on the question
of when and how Gibbs states arise. Exploring the extent to
which this is indeed possible is the purpose of the present paper.
Consequently, I tackle the issue of Gibbs states solely with the
help of statistical methods from quantum-state tomography,
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and nothing else; in particular, without any recourse to the
thermodynamic limit, environments, the concept of informa-
tion, or dynamics.

The remainder of the present paper is organized as follows.
In Sec. II, I review some basic concepts of quantum-state
tomography. In Sec. III, I focus on the situation where the
experimental data come in the form of sample means of some
informationally incomplete set of observables. I show that
in this case one can apply the quantum Sanov theorem to
find the asymptotics of the pertinent likelihood function. The
subsequent section, IV, is then crucial for the understanding
of Gibbs states: I argue that the use of the Gibbs form is
tantamount to a statistical “relevance hypothesis,” for which I
give a precise mathematical formulation. In Sec. V, I discuss
how the likelihood of this hypothesis and of possible rival
hypotheses may be assessed in the light of experimental data.
Finally, in Sec. VI, I conclude with a brief summary and a few
additional remarks.

II. QUANTUM-STATE TOMOGRAPHY

It is possible to know the precise state of an individual
quantum system after a measurement: For instance, if a
measurement of some observable returns one of its nonde-
generate eigenvalues, then after the measurement, the system
is known with certainty to be in the associated eigenstate.
(Precise knowledge of the postmeasurement state thus hinges
on precise knowledge of the observable. Strictly speaking,
the latter necessitates additional measurements.) Yet it is
impossible to reconstruct, based on measurements on the
individual system alone, its state before the measurement
[32]. Such a reconstruction instead requires measurements on
many identically prepared copies; and even then, due to the
always-finite number of copies (let alone the limited accuracy
of measurement devices), the reconstruction can never be
perfect. Thus in practice, measurements never yield a unique
quantum state. Indeed, current experiments that implement
quantum circuits or probe fundamental aspects of quantum
information in many-body systems work with typical sample
sizes of several hundreds or thousands, leading to statistical
errors of up to 10% [33]. Under these circumstances one can
only aspire to identify, among the many states compatible
with the data, the most probable one. This requires the use of
suitable statistical estimation techniques and is the subject of
quantum-state tomography [30,31].

Identical preparation of copies means that these form an
exchangeable sequence [34]. Such a sequence has finite length
L, which may be chosen freely. It can be thought of as being
drawn randomly from a fictitious infinite sequence of systems
whose order is irrelevant (Fig. 1). Exchangeability entails two
basic properties for the L-body state ρ(L) of the sequence:

FIG. 1. Exchangeable sequence of quantum systems. One obtains
a finite exchangeable sequence of L quantum systems by drawing
randomly L systems from a fictitious infinite symmetric sequence.

(i) it is symmetric under permutation of the constituents; and
(ii) since the exchangeable sequence of length L can always be
considered a subsequence of a longer, equally exchangeable
sequence of length L + 1, the state ρ(L) can be written as a
marginal of ρ(L+1).

Exchangeability is more than mere symmetry. For example,
the two-body density matrix ρAB = |ψAB〉〈ψAB | associated
with the Bell state |ψAB〉 = (1/

√
2)(|00〉 + |11〉) is invariant

under permutation of the constituents and hence meets the
symmetry criterion; yet it cannot be written as the marginal of
an equally symmetric three-body state and thus fails to meet
the second criterion for exchangeability. Being exchangeable
is also not the same as being independent and identically
distributed (i.i.d.): in general, it is ρ(L) �= ρ⊗L. Rather, by a
quantum generalization [34] of the classical de Finetti theorem
[35], the state of an exchangeable sequence can always be
represented as an incoherent mixture of i.i.d. sequences ρ⊗L,

ρ(L) =
∫

dρprob(ρ)ρ⊗L, (4)

with respective weights prob(ρ), where the integral is over
all normalized single-particle states. Conversely, any state of
this form describes an exchangeable sequence. The de Finetti
representation shows that an exchangeable sequence may
well exhibit classical correlations. However, it never exhibits
entanglement.

Exchangeable sequences are the “raw material” of
quantum-state tomography. The uncertainty about the state of
an individual constituent is reflected in the density function
prob(ρ); the latter may be considered (in somewhat loose
terminology [34]) the probability distribution for the unknown
single-constituent state. To learn more about this state, a
sample of size N (N < L) is taken from the exchangeable
sequence and a measurement performed on it, yielding data
D. Afterwards the remaining L − N systems (i.e., the original
sequence minus the sample) still form an exchangeable
sequence whose state has the above de Finetti representation;
yet the probability distribution featuring in this de Finetti
representation must be updated according to a quantum
generalization of Bayes’ rule [36],

prob(ρ|D) ∝ prob(D|ρ⊗N )prob(ρ), (5)

where the probabilities denote (from left to right) the posterior,
the likelihood function, and the prior, respectively, and the
constant of proportionality is independent of ρ. This Bayesian
update encapsulates the process of learning from sample data
(Fig. 2).

Upon the investigation of additional samples, Bayes’ rule
is iterated, leading to consecutive updates of the posterior.
As more and more data accumulate—by investigating more
samples or increasing their sizes—the posterior narrows until
eventually its width falls below some desired error bound.
Then within this error, the location of the posterior peak is
the best estimate for the unknown quantum state. In the hypo-
thetical limit of infinite sample size, informationally complete
measurements, and perfectly accurate measurement devices,
the posterior converges towards the likelihood function, which
in turn approaches a δ function. The state estimate is then
determined—to perfect accuracy—by experimental data only
and becomes independent of the prior. (It is the fact that this is
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FIG. 2. Learning from sample data. (1) Before the experiment an
exchangeable sequence is characterized by some prior probability
distribution prob(ρ) in single-constituent state space. If, say, on
theoretical grounds one expects the members of the sequence to be
in a state close to σ , then this prior will be peaked around σ . It has a
finite width reflecting the finite degree of confidence in this prior bias.
(2) Investigation of a sample yields data D. Associated with these data
is the likelihood function prob(D|ρ⊗N ), typically peaked around some
other state which might be close to, but is usually not equal to, σ . The
likelihood function, too, has a finite width, reflecting the finite size N

of the sample (and possibly other sources of error). (3) According to
Bayes’ rule, multiplying the prior by the likelihood function yields the
posterior prob(ρ|D). The latter is typically narrower than the prior,
reflecting the growing confidence in the state estimate as experimental
data accumulate. The center of the posterior has shifted from the
original bias σ to a new state interpolating between σ and the center
of the likelihood function.

possible, at least in principle, that gives operational meaning
to the notion of “state.”) Against this backdrop many state
estimation techniques focus from the outset on the likelihood
function, equating the location of its peak with the most
plausible state estimate; such techniques fall into the class of
maximum likelihood methods [37–39]. In contrast, methods
that take into account the residual influence of the prior (which,
in practice, is always present and, for small samples, may be
quite significant) are termed Bayesian [40–42].

Strictly speaking, even in the above hypothetical limit the
posterior coincides with the likelihood function only if the
prior has support in the entire state space. The prior reflects
any theoretical constraint or bias that one may have, prior to
measurement, as to the parametric form or parameter values
of the quantum state. As long as one knows nothing or little
about the state a priori, this prior is broad and indeed has
full support. But as soon as one has advance knowledge
that constrains the quantum state to some region or proper
submanifold of state space, the prior has support in this region
or submanifold only; and so will the posterior, regardless
of the data [43]. In Sec. IV, I argue that such a priori
restrictions play an important role in the understanding of
Gibbs states.

FIG. 3. Relating data to sample means. The set �ε(D) contains
all states compatible (up to some error ε) with the observed data D

(shaded area). In order to encompass sample means {fb} this set must
contain all states yielding 〈Fb〉 = fb∀b (solid line). In this example,
�ε(D) is so large that it also encompasses other values {f ′

b} for the
sample means (dashed line).

III. SANOV LIKELIHOOD

I suppose that the experimental data consist of a set
of sample means {fb} gleaned from a sample of large but
finite size N . These sample means may have been obtained
directly by measurement of the pertinent observables {Fb} or
inferred indirectly from other data D—a possibility which
is particularly relevant when the sample means pertain to
observables that do not commute. In the latter case I say that
the observed data D “encompass” sample means {fb} if and
only if the set of states compatible with the data,

�ε(D) := {μ|prob(D|μ⊗N ) � 1 − ε} (6)

(up to some finite error parameter ε, 0 < ε < 1, which is
independent of sample size), contains the set of states yielding
expectation values 〈Fb〉μ = fb∀b; in short, f ⊆ �ε(D). When
the set �ε(D) is large, the data might encompass not just {fb}
but also different values {f ′

b} for the sample means (Fig. 3).
On the other hand, if the set �ε(D) contains only f , and no
other f ′, and is, moreover, the smallest set to do so, then I say
that the data amount to having measured the sample means f .
With this understanding, the likelihood of measuring sample
means f reads

probε({fb}|ρ⊗N ) := inf
D

{prob(D|ρ⊗N )|f ⊆ �ε(D)}. (7)

Defined in the above way, the likelihood generally depends
on the error parameter ε. For large sample sizes N , however,
the infimum on the right-hand side behaves asymptotically as

inf
D

{. . .} ∼ exp
[−N min

μ∈f
S(μ‖ρ)

]
(8)

and hence loses its dependence on ε; this follows from the
quantum generalization [44–46] of the classical Sanov theorem
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[47–49]. Here

S(μ‖ρ) :=
{

tr(μ ln μ − μ ln ρ), suppμ ⊆ suppρ,

+∞ otherwise
(9)

denotes the relative entropy of the two states μ and ρ [50–53].
In other words, for large N the likelihood function behaves as

prob({fb}|ρ⊗N ) ∼ exp
[ − NS

(
μ

ρ

f ‖ρ)]
, (10)

with

μ
ρ

f := arg min
μ∈f

S(μ‖ρ), (11)

independently of ε. Due to its close connection to the quantum
Sanov theorem, I call this asymptotic likelihood the Sanov
likelihood. The state μ

ρ

f , which, under given constraints on
the expectation values {〈Fb〉}, minimizes the relative entropy
with respect to the “reference state” ρ, has the generalized
Gibbs form [54]

μ
ρ

f ∝ exp[(ln ρ − 〈ln ρ〉ρ) − κbFb], (12)

with Lagrange parameters {κb} and the constant of proportion-
ality again chosen to ensure trμρ

f = 1.
There is the special case where the sample means {fb}

are informationally complete. In this case the data determine
a unique tomographic image (i.e., center of the likelihood
function) μ, the sole state to yield 〈Fb〉μ = fb∀b. The quantum
Sanov theorem then reduces to the quantum Stein lemma
[55–57], and the asymptotic likelihood function becomes

prob(μ|ρ⊗N ) ∼ exp[−NS(μ‖ρ)]. (13)

I call this the Stein likelihood. Thanks to a mixing rule for the
relative entropy [58], the Stein likelihood satisfies

prob(μ|ρ⊗N ) · prob(μ′|ρ⊗N ′
)

∝ prob

(
N

N + N ′ μ + N ′

N + N ′ μ
′|ρ⊗(N+N ′)

)
, (14)

with a constant of proportionality that does not depend on
the state ρ. So for the purposes of Bayesian updating via
Eq. (5), obtaining, first, a tomographic image μ from a sample
of size N and, subsequently, a tomographic image μ′ from
another sample of size N ′ is tantamount to obtaining the
weighted average of μ and μ′ from the combined sample
of size N + N ′; sequential or joint processing of the data
yields the same posterior. In other words, in the asymptotic
limit considered here it does not matter how the system copies
under investigation are grouped into samples.

IV. RELEVANCE HYPOTHESIS

The statement, “The observables {Ga} are relevant,” entails
two distinct assertions: (i) The expectation values of the {Ga}
completely determine the state estimate (and all predictions
following from it); and (ii) any update of this state estimate is
determined by additional data pertaining to the {Ga} only, and
not by any other data. (This notion of “relevance” is similar to
the notion of “consistency” invoked—in the classical case and
for one special set of observables only—in Ref. [27].) In this
section, I prove that the relevance hypothesis imposes on the
state estimate the Gibbs form, (3).

FIG. 4. States (filled circles) and sets of states (lines) featuring
in the discussion of the relevance hypothesis. A tomographic
measurement on a large but finite sample comes in two versions,
one complete and the other incomplete. The complete version returns
a unique tomographic image μ, whereas the incomplete version
merely returns sample means g for the informationally incomplete
set of observables {Ga}. State μ is one of the many states yielding
〈Ga〉 = ga (left solid black line). An arbitrary state ρ yields instead
expectation values g(ρ), as do all other states that lie on the right
solid black line. States which minimize the relative entropy with
respect to ρ, while satisfying given constraints on the expectation
values {〈Ga〉}, form a proper submanifold of state space (upper solid
gray line); for 〈Ga〉 = ga , the pertinent state is μρ

g . According to
Bayes’ rule, the posterior state estimate depends not only on the data
but also on the prior. In particular, any estimate must be among the
states with a nonvanishing prior probability (dotted gray line). Let
the latter include some specific state σ . States which minimize the
relative entropy with respect to this σ , while satisfying constraints
on the {〈Ga〉}, form another submanifold (lower solid gray line);
for 〈Ga〉 = ga and 〈Ga〉 = ga(ρ), the pertinent states are μσ

g and
μσ

g(ρ), respectively. If the relevance hypothesis holds, then the latter
submanifold contains all states with nonvanishing prior probability;
so then the lower solid gray line in fact covers the dotted gray line.

The first assertion implies that there must exist an algorithm
{ga} �→ ρ assigning to any set of expectation values {ga} ≡
{〈Ga〉} a unique state ρ. This algorithm need not necessarily
be the maximum entropy algorithm. More generally, when
the expectation values {ga} are not known exactly, but only
their probability distribution prob(g), then there must exist an
algorithm assigning to this probability distribution a unique
probability distribution of states, prob(g) �→ prob(ρ).

I now show that the second, logically independent, assertion
singles out the maximum entropy algorithm and, hence, the
Gibbs form, (3). In my proof I invoke various states and sets
of states which are illustrated in Fig. 4. Let a tomographic
measurement on a sample of large but finite size N come
in two versions, one informationally complete and the other
informationally incomplete. Whereas the complete version
returns a unique tomographic image μ, the incomplete version
merely returns sample means {ga} for the observables {Ga}.
The latter are consistent with the former, ga = 〈Ga〉μ. If indeed
the observables {Ga} are the relevant ones, then by the second
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assertion, it must not make a difference which of the two data
sets, complete or incomplete, is processed in the Bayesian
update, (5). Both must yield the same posterior, and so it must
hold that

prob(μ|ρ⊗N )prob(ρ) ∝ prob({ga}|ρ⊗N )prob(ρ), (15)

with a constant of proportionality that does not depend on ρ.
This requirement can only be met if either the prior prob(ρ)
vanishes or, by Eqs. (10) (with f = g) and (13), the difference
in relative entropies [S(μ‖ρ) − S(μρ

g‖ρ)] is independent of ρ.
By the law of Pythagoras for the relative entropy [59], this
difference is itself a relative entropy:

S
(
μ

∥∥μρ
g

) = S(μ‖ρ) − S
(
μρ

g

∥∥ρ
)
. (16)

It ought to have the same value for all ρ that have a
nonvanishing prior probability. Let σ be one specific such
state with nonvanishing prior probability. Then for all other ρ,
it must hold that

S
(
μ

∥∥μρ
g

) = S
(
μ

∥∥μσ
g

) ∀μ,ρ : prob(ρ) �= 0. (17)

In the special case μ = ρ it is ga = 〈Ga〉ρ =: ga(ρ) and hence
also μ

ρ
g = ρ, so the left-hand side vanishes. Then so must the

right-hand side, and therefore

ρ = μσ
g(ρ) ∀ ρ : prob(ρ) �= 0. (18)

Regardless of the experimental data, the admissible states
(prob(ρ) �= 0) are restricted a priori to Gibbs states of
the generalized form, (12), with reference state σ and
{Fb} = {Ga}.

The reference state σ may be any state that has a nonvan-
ishing prior probability. Among the states with nonvanishing
prior probability there is usually (albeit not necessarily always)
the totally mixed state. If so, it will be most convenient to
choose σ to be the totally mixed state. With the totally mixed
state as the reference state, minimizing the relative entropy
becomes equivalent to maximizing the ordinary von Neumann
entropy; and then the generalized Gibbs form, (12), reduces to
the ordinary Gibbs form, (3). QED.

The relevance hypothesis has significant implications for
quantum-state tomography. It affects both the location (in
state space) and the accuracy of the posterior state estimate:
Given the same data, different choices for the set of relevant
observables generally lead to different state estimates with
different degrees of confidence. This can be illustrated with
the simple example of state tomography on an exchangeable
sequence of qubits. The state space of a single qubit is the
Bloch sphere, with the totally mixed state at its origin. Let
an incomplete tomographic measurement probe the Pauli spin
component X, yielding sample mean x̄. Associated with these
data is a likelihood function on the Bloch sphere. It is broad
on the two-dimensional plane containing states that yield
〈X〉 = x̄ and narrowly peaked in the direction perpendicular to
this plane, the latter width decreasing with increasing sample
size. Considering solely this likelihood function would lead
to a maximum likelihood state estimate equal or close to
ρml = (1 + x̄X)/2. However, as discussed in Sec. II, one must
take into account also the prior; in particular, whether the prior
has support in the entire Bloch sphere or in some subspace only.

For the present example I consider three cases: (i) all
observables are relevant in the sense defined above; (ii) only

FIG. 5. Two-dimensional section (z = 0) of the Bloch sphere.
The dashed vertical line at x = x̄ indicates states yielding 〈X〉 =
x̄, the observed sample mean. Shaded areas indicate the location
and width of the posterior when the relevant observables comprise
(1) all observables, (2) only X, or (3) only Y . In the first two cases
the resultant state estimate (center of the posterior) lies somewhere
between the initial bias (totally mixed state) and the data, the precise
location depending on the size of the sample. The two cases differ in
the degree of confidence regarding the unmeasured observable Y . In
the third case the posterior equals the prior because the data carry no
information about the then relevant observable Y .

X is relevant (say, because the physical qubit is a spin in a
ferromagnet which is strongly anisotropic in the x direction);
and (iii) only Y is relevant. Whereas in the first case the prior
has support in the entire Bloch sphere, in the other two cases
it has support only in the x or y axis, respectively. On the
respective support, in the absence of further information, the
prior is some broad symmetric distribution around the origin
of the Bloch sphere. Multiplying the respective priors by
the likelihood function yields the respective posteriors. These
posteriors vary strongly from case to case; they are depicted
schematically in Fig. 5.

V. MODEL SELECTION

In the preceding section I have shown how the relevance
hypothesis constrains state estimates a priori to the Gibbs
form, (3), and how this affects quantum-state estimation. One
may wonder what in turn justifies the relevance hypothesis,
and to which set of observables it should apply.

First, it is important to note that the relevant observables
do not necessarily coincide with the observables which are
being measured in an experiment; an observable is not relevant
simply because one happens to measure it. In the above
example the observable X was measured. And if the physical
qubit was a spin in a strongly anisotropic ferromagnet with
the preferred direction along the x axis, then indeed, the
observable X would also be the relevant one. But if the
preferred direction of the ferromagnet was along the y axis,
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the relevant observable would be Y rather than X—even
though X was measured. Rather than the experimental setup,
the relevance hypothesis reflects prior knowledge about the
physics of the system. As is familiar from statistical mechanics,
the choice of relevant observables is usually linked to time
scales: If the system is in equilibrium, then the relevant
observables comprise the system’s constants of the motion; or
else, provided that the system’s degrees of freedom evolve on
disparate time scales, they comprise the slow observables [24].

The above warning notwithstanding, identifying measured
with relevant observables is precisely what is being done—
implicitly—in maximum entropy quantum-state estimation:
State estimates are effectively constrained to the Gibbs
form with the measured observables in the exponent [5–11].
Actually, this identification is often a useful shortcut (albeit
not usually spelled out as such) because, for an observable to
be measurable in practice, it must vary slowly; and as long as
the system exhibits a clear hierarchy of time scales, “slow”
means indeed “relevant.”

Yet when one investigates a hitherto unknown substance,
a hierarchy of time scales or other clues as to the relevant
observables are not available a priori; nor is there any
assurance that the shortcut “measured = relevant” is
warranted. In this situation one can only formulate conjectures
as to the set of relevant observables. The relevance hypothesis
then becomes truly a hypothesis in the statistical sense, subject
to experimental scrutiny and possibly refutation. There might
be several competing hypotheses, perhaps even including
the hypothesis that the system cannot be described by Gibbs
states at all—that is, unless the set of relevant observables
is extended to become informationally complete, in which
case all observables would be relevant. Every proposal as
to the set of relevant observables constitutes a statistical
model, in the sense that state estimates are constrained to a
certain parametric form (Gibbs form) with a certain number
of adjustable parameters (Lagrange parameters). Choosing
among rival proposals in the light of the experimental data
then becomes an instance of statistical model selection. It is
this scenario on which I focus in the present section.

First, some general remarks about statistical model
selection may be in order. In general, rival statistical models
for the same experimental data differ in the number and
type of adjustable parameters. On the one hand, a model
ought to be in good agreement with the data, which is best
achieved with a large number of adjustable parameters; yet
on the other hand, excessive complexity must be avoided
(“Occam’s razor”). The purpose of model selection is to
render this trade-off quantitative. How this works in practice
can be illustrated with a simple textbook example [60,61].
Let A be a simple model without an adjustable parameter
and B a more complex model with one adjustable parameter
λ. Which model is to be preferred on the basis of data D

will be determined by the ratio of their respective posterior
probabilities. Due to Bayes’ rule, this ratio is given by

prob(A|D)

prob(B|D)
= prob(D|A)

prob(D|B)

prob(A)

prob(B)
. (19)

As long as one does not have any strong a priori preference
for either of the models the right-hand side will be dominated
by the first factor, the ratio of likelihoods. By the law of total

probability, the likelihood function of model B reads

prob(D|B) =
∫

dλprob(D|λ,B)prob(λ|B). (20)

Let λ0 be the value of the adjustable parameter that yields the
best fit with the experimental data. Then the first factor in the
integral, considered as a function of λ, will be peaked around
a maximum at λ0; a typical shape is a Gaussian

prob(D|λ,B) = prob(D|λ0,B) exp

[
− (λ − λ0)2

2(δλ)2

]
(21)

of some width δλ. This width indicates the accuracy to which
the parameter λ is known after processing the experimental
data. In contrast, the second factor in the integral describes
the distribution of λ prior to processing the data; this a priori
distribution has a larger width, 
λ > δλ. Provided that the
best fit λ0 lies within the a priori expected range, the ratio of
likelihoods will scale as

prob(D|A)

prob(D|B)
∼ prob(D|A)

prob(D|λ0,B)


λ

δλ
. (22)

The first ratio on the right-hand side is typically <1, favoring
the more complex model B, because thanks to its adjustable
parameter, B can achieve a better fit with the data. In contrast,
the second ratio (
λ/δλ) is >1, favoring the simpler model
A; this is the quantitative manifestation of Occam’s razor. It
is thus the relative value of these two ratios which will tip the
balance in favor of one specific model.

The same logic applies to the identification of the most plau-
sible set of relevant observables on the basis of experimental
data. Details of the pertinent statistical analysis have been
spelled out by the author (in a different context) in previous
publications for two basic scenarios. In the first scenario [42],
different hypotheses as to the set of relevant observables
are formulated prior to experiment, and subsequently the
experiment is performed on a single sample only. In the second
scenario [58], which resembles more closely the way an un-
known substance is investigated in practice, measurements are
performed first, before formulating any hypotheses. Moreover,
measurements are performed not just on a single sample but
on multiple samples of the same unknown substance. These
samples need not—in fact, ought not—be in the same state;
yet it is hypothesized that for all these samples the same set of
observables is relevant. Their respective states should therefore
all lie in the same submanifold of Gibbs states, possibly with
varying values for the associated Lagrange parameters. It is
this second scenario on which I focus here.

For instance, the samples might all have been brought
into contact with heat baths at different temperatures. Then
one hypothesis might say that they are now all in canonical
states, the Hamiltonian (identical for all samples) being the
sole relevant observable, with only the temperature varying
across samples. Another hypothesis might say that beyond the
Hamiltonian there are further constants of the motion (again,
identical for all samples) which need to be added to the set
of relevant observables, increasing the number of adjustable
Lagrange parameters. And a third, extreme hypothesis might
claim that the samples have not thermalized fully and that,
hence, a Gibbs form is not justified and all observables remain
relevant. As in the textbook example above, increasing thus the
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FIG. 6. Modeling the data with Gibbs states. Filled circles
represent tomographic images for various samples of the same
substance. Gray concentric circles around them symbolize the
associated likelihood functions, whose widths are an indicator of the
measurement uncertainties. These uncertainties vary by sample and
typically scale as 1/

√
Ni . The relevance hypothesis, which is to be

tested, claims that all data can be modeled on a joint manifold of Gibbs
states (thick gray line) with reference state σ . If so, the Gibbs state
closest to a tomographic image μ(i) is state π (i) (open circle). Both
states yield, for the relevant observables, the same expectation values
{g(i)

a }; i.e., they both belong to the set of states yielding 〈Ga〉 = g(i)
a

(solid black line).

number of adjustable parameters will lead to a successively
better fit with the experimental data, yet at the expense of
simplicity. Again, goodness-of-fit has to be traded off against
simplicity in a quantitative fashion. The optimal trade-off
yields the most plausible set of relevant observables.

Here I briefly summarize the key findings of the quantitative
analysis; details are reported in Ref. [58]. Various differently
prepared samples are subjected to the same tomography,
which, if not complete, must encompass at least all candidates
for relevancy. Let the ith sample have a large but finite size
Ni , and let tomography on this sample render the tomographic
image μ(i). (If the tomography is not complete, the image μ(i) is
constructed via ordinary maximum entropy state estimation.)
Assuming that the finite sample size is the principal source of
noise, error bars on the measurements are of the order 1/

√
Ni .

As before, let σ be a reference state (usually the totally mixed
state) with nonvanishing prior probability, and let G denote
the hypothesis that for all samples the p observables {Ga}pa=1
are the relevant ones in the sense defined above. Given this
hypothesis, states are constrained a priori to Gibbs states
of the generalized form μσ

g . For a tomographic image μ(i)

the closest such state is π (i) := μσ
g(i) , where g(i)

a := 〈Ga〉μ(i)

(Fig. 6). In terms of these variables, and under certain
reasonable additional assumptions spelled out in Ref. [58], the
log-likelihood of the hypothesis G behaves asymptotically as

ln prob(D|G) ∼ −
∑

i

NiS(μ(i)‖π (i)) − p

2

∑
i

ln Ni (23)

modulo additive constants that do not depend on the choice
of relevant observables. Here D is short for the totality
of experimental data. As long as there is no strong a
priori preference for a specific set of relevant observables, the
difference in the log-likelihoods of rival hypotheses dominates
their relative posterior probabilities.

The above formula for the log-likelihood reflects in
a quantitative fashion the expected trade-off between
goodness-of-fit and simplicity. On the right-hand side there
are two contributions, both with a negative sign and thus
“penalizing”—in terms of likelihood—hypothesis G. The first
contribution penalizes a bad fit to the data: The farther away
the Gibbs states π (i) are from the original tomographic images
μ(i), the higher the relative entropies S(μ(i)‖π (i)) and, hence,
the larger the penalty. To avoid this penalty, the set of relevant
observables should be chosen sufficiently large. In contrast,
the second contribution embodies Occam’s razor, penalizing
excessive complexity: The larger the number p of relevant
observables, the larger the penalty. In order to avoid the latter
penalty, the set of relevant observables should be kept as small
as possible. So in line with our general considerations, one
must trade off these two penalties in order to find the most
likely set of relevant observables.

In sum, the relevance of observables reflects underlying
physics and is independent of their being measured. For a
hitherto unknown substance, whose underlying physics is yet
to be explored, the relevant observables must be inferred from
the data. This is achieved via the above statistical analysis.
The analysis yields the set of relevant observables that is most
likely, which, if informationally incomplete, in turn implies
a corresponding Gibbs form. In this sense, the use of Gibbs
states is corroborated solely by the data.

VI. CONCLUSIONS

In the preceding sections I have explored the extent to
which the use of Gibbs states can be understood with the help
of methods from quantum-state tomography. These methods
apply to systems that are finite and isolated; hence they
require neither the limit N → ∞ nor auxiliary concepts such
as infinite ensembles or large environments. (However, I did
assume that sample sizes are large enough to justify the use of
the asymptotic Sanov likelihood to good accuracy.) Moreover,
they refrain from invoking information-theoretical arguments
or exploiting the system’s dynamics.

Without any knowledge of the system’s dynamics or other
clues as to the relevant observables, of course, it is impossible
to derive a Gibbs form from first principles. Rather, in this situ-
ation the Gibbs form constitutes a statistical hypothesis that can
be supported or refuted only by data. In Sec. IV, I gave a precise
formulation of the relevance hypothesis which is behind the use
of the Gibbs form. And in Sec. V, I outlined the statistical tools
needed to test this hypothesis in the light of experimental data.

Taken together, the statistical methods discussed in this
paper comprise a toolbox which can be used to ascertain
(i) whether a hitherto unknown substance, for which, in
particular, the dynamics and the constants of the motion are
not known, can be described by a Gibbs state at all; and
(ii) if it can, which observables are most likely the relevant
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ones. The pertinent statistical analysis is based entirely on
the tomographic data gleaned from a collection of differently
prepared, finite samples. It focuses on the relative likelihoods
rather than the posterior probabilities of rival hypotheses. The
former are a good proxy for the latter as long as there is no
prior knowledge and, hence, no a priori bias in favor of any
particular hypothesis.

Once the set of relevant observables, valid for the entire
collection of samples, has been established, there remains

the statistical task of estimating the values of the pertinent
Lagrange parameters for any given individual sample. This
is an interesting subject in itself, which has been dealt with
elsewhere [41,42].
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