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High-energy e+e− photoproduction in the field of a heavy atom accompanied by bremsstrahlung
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Helicity amplitudes and the differential cross section of high-energy e+e− photoproduction accompanied
by bremsstrahlung in the electric field of a heavy atom (i.e., the amplitudes of the process γ1Z → e+e−γ2Z)
are derived. The results are exact in the nuclear charge number and are obtained in the leading quasiclassical
approximation. They correspond to the leading high-energy small-angle asymptotics of the amplitude. It is shown
that, in general, accounting for the Coulomb corrections essentially modify the differential cross section, which
is different from the Born result. When the initial photon is circularly polarized, the Coulomb corrections lead to
the asymmetry in the distribution over the azimuth angles ϕi of produced particles with respect to the replacement
ϕi → −ϕi .
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I. INTRODUCTION

QED processes at high energy in the field of a heavy
nucleus or atom are the classical examples of the processes
in a strong field. They show up in many experimental setups,
including those designed for completely different purposes,
not connected with the observation of these processes. There-
fore, their investigation clearly has a practical value. From
the theoretical point of view, these processes are interesting
because they provide an important insight into the structure of
the higher-order effects of the perturbation theory.

The general approach to the strong-field calculations is the
use of the Furry representation. In this approach the wave
functions and propagators of particles are replaced by the
exact solutions and Green’s functions of the wave equations
in the external field. However, even for the pure Coulomb
field, these objects are very complicated, and their use for
practical calculations is limited. Fortunately, at high energies
of initial particles the final particle momenta usually have small
angles with respect to the incident direction. In this case typical
angular momenta, which provide the main contribution to the
amplitude, are large (l ∼ E/� � 1, where E is energy and
� is the momentum transfer). This is where the quasiclassical
approximation, based on the account of large angular momenta
contributions, comes into play. In this approximation, the wave
functions and propagators acquire remarkably simple forms
which allow for their effective use in specific calculations.
The quasiclassical Green’s function of the Dirac equation
in the external field has been derived for a number of field
configurations; see Ref. [1] for the case of a pure Coulomb
field, Ref. [2] for an arbitrary spherically symmetric field,
Ref. [3] for a localized field which generally possesses no
spherical symmetry, and Ref. [4] for combined strong laser
and atomic fields. Even more surprising is the fact that within
this approximation it appears to be possible to derive not only
the results in the leading order but also a first quasiclassical
correction to them.
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Basic processes in the field of heavy atoms are the
electron-positron pair photoproduction (PP) and electron
bremsstrahlung (BS). They both have a long history of
investigation; for the former process see reviews in Refs. [5,6].
For the total cross section of electron-positron pair photo-
production there is also a formal expression [7], exact in
the parameter η = Zα and the photon energy ω (here Z is
the atomic charge number, α is the fine-structure constant,
� = c = 1). It has the form of multiple slowly converging sums
containing the hypergeometric function of two arguments F2.
Due to these complications, the computation based on this
expression rapidly becomes intractable with the growth of
ω, and the numerical results have been obtained so far only
for ω < 12.5 MeV [8]. At high energy the quasiclassical
approximation is applicable, and the leading quasiclassical
term for both pair production and bremsstrahlung has been
obtained in [9–13]. The first quasiclassical corrections to
the spectra of both processes as well as to the total cross
section of pair production have been obtained in Refs. [14,15].
It is remarkable that the quasiclassical correction to the
total cross section of pair production cannot be obtained
by simply integrating the quasiclassical correction to the
spectrum. This is because of the contribution of the tip regions
of the spectrum, where only one particle can be considered
quasiclassically. A detailed investigation of this region was
made in Ref. [16]. The corresponding angular distribution
was derived in Ref. [17]. Recently, the first quasiclassical
correction to the fully differential cross section was obtained
in Ref. [18] for e+e− pair photoproduction and in Ref. [19] for
μ+μ− pair photoproduction. As a result, charge asymmetry in
these processes was predicted.

In the present paper we apply the quasiclassical approach
to the investigation of e+e− photoproduction in the field of
a heavy atom accompanied by bremsstrahlung. The cross
section of this process is a significant part of the radiative
corrections to e+e− photoproduction as well as noticeable
background to such processes as Delbrück scattering [20].
This process should be taken into account when considering
electromagnetic showers. In spite of its importance, there are
only few theoretical results related to this process [21,22].
In those papers the Born approximation was used, while
there are no theoretical results exact in the parameter η. The
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goal of the present paper is twofold. First, we would like
to fill the gap in the theoretical description of the process
and, in particular, determine the magnitude of the Coulomb
corrections for various kinematic regions. We show that, apart
from the region of very small momentum transfer, accounting
for the Coulomb corrections for heavy atoms drastically
change the result. Second, we would like to demonstrate
how smoothly the quasiclassical approach works for this
complicated case. We consider in detail the case of a pure
Coulomb field and then present the modification due to
screening by atomic electrons.

II. GENERAL DISCUSSION

The main contribution to the cross section of the process
γ1Z → e+e−γ2 Z is given by the region of small angles
between the momenta of the incoming and outgoing particles.
In this region

dσ = α2|M|2 d p⊥ dq⊥ dk2⊥dεpdεq

(2π )6ω1ω2
, (1)

where k1, k2, p, and q are the momenta of initial photon, final
photon, electron, and positron, respectively, εp =

√
p2 + m2,

εq =
√

q2 + m2, and ω2 = ω1 − εp − εq . We fix the coordi-
nate system so that ν = k1/ω1 is directed along the z axis
and k2 lies in the xz plane with k2x > 0; the notation X⊥ =
X − (X · ν)ν for any vector X is used.

The matrix element M has the form

M = M (1) + M (2) = −
∫

d r1 d r2 ū(−)
p (r1)

×{(γ · e∗
2)e−ik2·r1G(r1, r2|εp + ω2)eik1·r2 (γ · e1)

+ (γ · e1)eik1·r1G(r1, r2|−εq − ω2)e−ik2·r2 (γ · e∗
2)}

× v(+)
q (r2) . (2)

Here u
(−)
p (r) and v

(+)
q (r) are the positive- and negative-energy

solutions of the Dirac equation in the external field, e1 and
e2 are the polarization vectors of the initial and final photons,
respectively, γ μ are the Dirac matrices, and G(r1, r2|ε) is the
Green’s function of the Dirac equation in the external field.
The superscripts (−) and (+) remind us that the asymptotic
forms of u

(−)
p (r) and v

(+)
q (r) at large r contain, in addition to

the plane wave, the spherical convergent and divergent waves,
respectively. The first term in Eq. (2), M (1), corresponds to
radiation from the electron line, and the second term, M (2),
corresponds to that from the positron line; see Figs. 1(a)
and 1(b), respectively. It is convenient to write Eq. (2) in terms
of the Green’s function D(r1, r2|ε) of the “squared” Dirac
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FIG. 1. Diagrams of the process γ1Z → e+e−γ2Z. Thick solid
lines denote exact propagators in the nuclear field.

equation,

G(r1, r2|ε) = (P̂ + m)D(r1, r2|ε),
(3)

D(r1, r2|ε) = 〈r1| 1

P̂2 − m2 + i0
|r2〉,

where P̂ = γ μPμ, Pμ = (ε − V (r),i∇), and V (r) is the
atomic potential. Substituting Eq. (3) in Eq. (2), performing
integration by parts, and using the Dirac equation, we obtain

M = −
∫

d r1 d r2 ū(−)
p (r1){e−ik2·r1 [(γ · e∗

2)k̂2 + 2(e∗
2 · p1)]

×D(r1, r2|εp + ω2)eik1·r2 (γ · e1) + (γ · e1)eik1·r1

×D(r1, r2|−εq −ω2)e−ik2·r2 [(γ · e∗
2)k̂2 + 2(e∗

2 · p2)]}
× v(+)

q (r2) . (4)

Here p1 = −i∂/∂ r1, and p2 = −i∂/∂ r2. We first calculate
the term M (1) and then find M (2) by means of the C-parity
transformation.

As shown in Ref. [19], the wave functions and the Green’s
function can be represented in the form

ū(−)
p (r1) = ū p[f0(r1, p) − α · f 1(r1, p) − � · f 2(r1, p)] ,

(5)
v(+)

q (r2) = [g0(r2,q) + α · g1(r2,q) + � · g2(r1,q)]vq,

D(r1, r2|ε) = [d0(r1,r2) + α · d1(r1,r2) + � · d2(r1,r2)],

(6)

where

u p =
√

εp + m

2εp

(
φ

σ · p
εp + m

φ

)
,

(7)

vq =
√

εq + m

2εq

( σ · q
εq + m

χ

χ

)
,

α = γ 0γ ; � = γ 0γ 5γ ; γ 5 = −iγ 0γ 1γ 2γ 3; f0, f 1,2, g0, g1,2,
d0, and d1,2 are some functions; and φ and χ are spinors. In the
quasiclassical approximation the relative magnitude of these
functions is different, so that

f0 ∼ lcf1 ∼ l2
c f2 , g0 ∼ lcg1 ∼ l2

c g2 , d0 ∼ lcd1 ∼ l2
c d2 ,

(8)

where lc ∼ ω/� � 1 is the characteristic value of the angular
momentum in the process and � = p + q + k2 − k1 is the
momentum transfer. Nevertheless, it appears that, due to
cancellations in the matrix element M , it is necessary to keep
not only the leading terms f0 , g0 , d0 but also the subleading
terms f 1 , g1 , d1, while the terms f 2 , g2 , d2 can be safely
omitted in the leading approximation. Thus, we can write the
term M (1) as follows:

M (1) = −
∫

d r1 d r2 Sp{(f0 − α · f 1)

× [(γ · e∗
2)k̂2 + 2(e∗

2 · p1)]e−ik2·r1

× (d0 + α · d1)eik1·r2 (γ · e1)(g0 + α · g1)vq ū p} . (9)
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In what follows we calculate the matrix element for definite helicities of the particles. Let λ1 , λ2 , μp, and μq be the signs of the
helicities of the initial photon, final photon, electron, and positron, respectively. Denoting helicities by the subscripts, we have

vqμq
ū pμp

= 1

8

(
aμpμq

+ � · bμpμq

)
[γ 0(Q + P ) + γ 0γ 5(1 + PQ) − (P − Q) − γ 5(1 − PQ)],

(10)
P = μpp

εp + m
, Q = − μqq

εq + m
,

where aμpμq
and bμpμq

are defined from

χμq
φ†

μp
= 1

2

(
aμpμq

+ σ · bμpμq

)
. (11)

Note that only the terms with (P + Q) and (1 + PQ) in Eq. (10) contribute to the matrix element (9) because it contains the odd
number of the γ matrices.

Let us fix the overall phase of the helicity amplitudes by choosing

φμp
= 1 + μpσ · np

4 cos(θp/2)

(
1 + μp

1 − μp

)
≈ 1

4

(
1 + θ2

p

8

)
(1 + μpσ · np)

(
1 + μp

1 − μp

)
,

χμq
= −1 − μqσ · nq

4 cos(θq/2)

(
μq − 1
μq + 1

)
≈ −1

4

(
1 + θ2

q

8

)
(1 − μqσ · nq)

(
μq − 1
μq + 1

)
, (12)

e1λ1 = eλ1 = 1√
2

(ex + iλ1ey) , e2λ2 = 1√
2

(e′
x + iλ2ey) ≈ 1√

2

(
ex + iλ2ey − θk2ν

)
,

where θp, θq , and θk2 are the polar angles of the vectors p, q, and k2. Within our approximation it is convenient to introduce the
vectors θp = p⊥/p an so on. We recall that the orts ex and ey are directed along k2⊥ and k1 × k2, respectively.

Using Eq. (12), we obtain

a+− = 1 − θ2
pq

8
+ i

4
ν · [θp × θq] , a−+ = −1 + θ2

pq

8
+ i

4
ν · [θp × θq] ,

a++ = − 1√
2

e− · θpq , a−− = − 1√
2

e+ · θpq ,

b+− =
[

1 − 1

8
(θp + θq)2 − i

4
ν · [θp × θq]

]
ν + 1

2
(θp + θq) + i

2
[ν × θpq] , (13)

b−+ =
[

1 − 1

8
(θp + θq)2 + i

4
ν · [θp × θq]

]
ν + 1

2
(θp + θq) − i

2
[ν × θpq] ,

b++ = 1√
2

(e−,θp + θq)ν −
√

2e− , b−− = − 1√
2

(e+,θp + θq)ν +
√

2e+ ,

where θpq = θp − θq .
The main contribution to the integrals in Eq. (9) is given by r1,2 ∼ ω1/m2 and by the impact parameters r1 ⊥ ∼ r2 ⊥ ∼ 1/�.

If � � m2/ω1, then the angle between vectors −r2 and k1 is small. The angle between vectors r1 and k1 may be either small
or close to π , and we will call M (1,1) and M (1,2) the corresponding contributions to M (1) = M (1,1) + M (1,2).

For a small angle between vectors r1 and k1 one can use the quasiclassical form of the Green’s function D(r1, r2|εp + ω2) of
the squared Dirac equation in the Coulomb field [14]:

D(r1, r2|ε) = iκ

8π2r1r2
eiκ(r1+r2)

∫
ds exp

{
iκ

[
(r1 + r2)

2r1r2
s2 + s · θ12

]} (
s2

4r1r2

)−iη [
1 − 1

2
α ·

(
r1 + r2

r1r2
s + θ12

)]
, (14)

where κ = √
ε2 − m2, s is the two-dimensional vector in the plane perpendicular to r1 − r2, and θ12 = r1/r1 + r2/r2. We can

also use the quasiclassical form of the wave function v
(+)
q (r2) and the eikonal form of the wave function ū

(−)
p (r1):

v(+)
q (r2) = q

2iπr2
eiqr2

∫
dτ exp

[
iq

(
τ 2

2r2
+ τ · θ2q

)] (
qτ 2

4r2

)iη [
1 + 1

2
α ·

(
τ

r2
+ θ2q

)]
vq,

(15)
ū(−)

p (r1) = ū pe
−i p·r1 (pr1)−iη.

Here θ2q = −r2/r2 − q/q, and τ is the two-dimensional vector in the plane perpendicular to q. For a small angle between
vectors −r1 and k1 one can use the eikonal form of the Green’s function D(r1, r2|εp + ω2) and the quasiclassical form of the
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wave function ū
(−)
p (r1) [14]:

D(r1, r2|ε) = − 1

4πr12
eiκr12

(
r2

r1

)iη

, r2 > r1 , r12 = |r1 − r2| ,
(16)

ū(−)
p (r1) = p

2iπr1
eipr1 ū p

∫
ds exp

[
ip

(
s2

2r1
+ s · θ1p

)] (
ps2

4r1

)−iη [
1 − 1

2
α ·

(
s
r1

+ θ1p

)]
,

where s is the two-dimensional vector in the plane perpendicular to p and θ1p = −r1/r1 − p/p. The quasiclassical wave
functions in (15) and (16) are the integral representations of the Furry-Sommerfeld-Maue wave functions [23,24] (see also [25]).
The simplest way to derive this integral representations is to use the relation between the wave functions and the Green’s function
D(r1, r2|ε) (see [19]).

III. CALCULATION OF THE MATRIX ELEMENT

To calculate the matrix element (9) at � � �min = m2(εp + εq)/2εpεq we substitute the wave functions and the Green’s
function into Eq. (9), take the trace, perform the expansion of the integrand in the phase and in the preexponent with respect to
small angles, taking into account the leading terms, and then take the integrals over θ1p and θ2q . These integrals have the form∫

dθ exp(iaθ2 + ib · θ), where a and b are some real constants and can be easily taken. Note that, within our accuracy, s, τ , θ12,
θ1p, and θ2q are perpendicular to k1. Then we pass from the variables s and τ (in the integral representation of the quasiclassical
Green’s function and the quasiclassical wave functions or two quasiclassical wave functions) to the variables T = τ + s and
ξ = τ − s. After that both contributions M

(1,1)
1 and M (1,2) have the form

M
(1,i)
λ1λ2μpμq

=
∫ ∞

0
dr2

∫ Li

0
dr1

∫
dT

∫
dξ

( |T + ξ |
|T − ξ |

)2iη

exp

[
− i

2
T · �⊥

]
Gi(r1,r2,ξ ) , (17)

where G1,2(r1,r2,ξ ) are some functions, L1 = ∞, and L2 = r2. To perform further integration we use the transformation [26]

∫
dT

( |T + ξ |
|T − ξ |

)2iη

exp

[
− i

2
T · �⊥

]

=
∫

dT
( |T + �⊥|

|T − �⊥|
)2iη

exp

[
− i

2
T · ξ

]
ξ 2

�2
⊥

= − 4

�2
⊥

∫
dT

( |T + �⊥|
|T − �⊥|

)2iη

∇2
T exp

[
− i

2
T · ξ

]
(18)

= 8iη

�2
⊥

∫
dT

( |T + �⊥|
|T − �⊥|

)2iη

χ · ∇T exp

[
− i

2
T · ξ

]
,

χ = T + �⊥
(T + �⊥)2

− T − �⊥
(T − �⊥)2

.

After this transformation the integrals over ξ , r1, and r2 can be easily taken, and we obtain for the total amplitude Mλ1λ2μpμq
=

M
(1)
λ1λ2μpμq

+ M
(2)
λ1λ2μpμq

:

Mλ1λ2μpμq
= 32η

ω1ω2�2

∫
dT

( |T + �⊥|
|T − �⊥|

)2iη

χ · ∇TFλ1λ2μpμq
(T ) ,

(19)
Fλ1λ2μpμq

(T ) = Fλ1λ2μpμq
( p,q,T ) − Fλ1λ2μqμp

(q, p,−T ),

where χ is defined in (18) and the functions Fλ1λ2μpμq
( p,q,T ) are

F+++− = −(εp + ω2)2e+ · (T − δq)(e− · A) , F+−+− = −εp(εp + ω2)e+ · (T − δq)(e+ · A) ,

F++−+ = εpεq e+ · (T − δq)(e− · A) + 2m2ω1ω2B − εqεpω1ω2

2(εp + ω2)D2
,

F+−−+ = εq(εp + ω2)e+ · (T − δq)(e+ · A) , F++++ =
√

2m(εp + ω2)ω1(e− · A) , (20)

F++−− = −
√

2m(εp + ω2)ω2e+ · (T − δq)B ,

F+−++ =
√

2mεpω1(e+ · A) −
√

2mεqω2e+ · (T − δq)B, F+−−− = 0 , Fλ1λ2μpμq
= −μpμq

(
Fλ1λ2μpμq

)∗
.
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Here μp,q = −μp,q , λ1,2 = −λ1,2, and

A = 1

D1

[
εpθpk2

2
(
m2 + ε2

pθ2
pk2

) + ω2εq(T + �⊥ − 2εpθpk2 )

(εp + ω2)D2

]
,

B = 1

D1

[
1

4
(
m2 + ε2

pθ2
pk2

) − ω2εq

(εp + ω2)D2

]
, (21)

D1 = 4m2 + (T − δq)2 , δq = �⊥ − 2εqθq , θpk2 = θp − θ k2 ,

D2 = 4ω1ω2εpεq

εp + εq

θ2
k2

+ (εp + εq)

[(
T − εpθp + εqθq − εp − εq

εp + εq

ω2θ k2

)2

+ 4m2

]
. (22)

In Eq. (19) we have omitted for convenience the inessential factor (q/p)iη and have replaced �2
⊥ by �2 in the coefficient of

Eq. (19). After such replacement Eq. (19) can be used not only at �⊥ � �z ∼ m2/ω1 but also at �⊥ ∼ �z (see [26]). We recall
that dT = dTx dTy .

In Ref. [27] the impact-factor approach has been suggested. In this approach contributions of higher-order terms with respect
to the external field are accumulated in the so-called impact factors. It is not quite clear what the accuracy and the region of
applicability of this approach are. On the other hand, the quasiclassical approach, used in our paper, is much more established
and systematic since it allows one to calculate not only the leading term but also the next-to-leading quasiclassical corrections.
Therefore, it is interesting to check the validity of the impact-factor approach for the process under consideration. We have
derived the amplitudes of the process within the impact-factor approach and have obtained the result, which is in agreement with
our result (19).

For ω2  p, q expression (19) is essentially simplified,

Mλ1λ2μpμq
= 16η

ω1ω2�2

[
ε2
p

(
e∗
λ2

· θp

)
m2 + ε2

pθ2
p

− ε2
q

(
e∗
λ2

· θq

)
m2 + ε2

qθ
2
q

] ∫
dT

( |T + �⊥|
|T − �⊥|

)2iη

χ · ∇T
1

4m2 + (δ0 − T )2

×[
δμp,−μq

(
εpδμp,λ1 − εqδμq,λ1

)(
eλ1 ,δ0 − T

) +
√

2mω1λ1δμq,λ1δμp,λ1

]
, (23)

where δ0 = εpθp − εqθq . This result can also be obtained directly within the soft-photon-emission approximation [25].

IV. BORN AMPLITUDES AND COULOMB CORRECTIONS

Let us represent the amplitude M as

M = MB + MC , (24)

where MB is linear in the η term (Born amplitude) and MC is the contribution of the higher-order terms (Coulomb corrections).
In order to find the Born term we omit the factor (|T + �⊥|/|T − �⊥|)2iη and perform the integration by parts using the relation

∇T · χ = 2π [δ(T + �⊥) − δ(T − �⊥)] . (25)

As a result we obtain

MB
λ1λ2μpμq

= 64πη

ω1ω2�2

[
Fλ1λ2μpμq

(�⊥) − Fλ1λ2μpμq
(−�⊥)

]
. (26)

In order to derive the explicit expression for the Coulomb corrections we write

χ · ∇TF(T ) = (T + �⊥)

(T + �⊥)2
· ∇T [F(T ) − F(−�⊥)] − (T − �⊥)

(T − �⊥)2
· ∇T [F(T ) − F(�⊥)] (27)

and perform integration by parts over T in Eq. (19). The surface term gives the Born amplitude (26), and the Coulomb corrections
read

MC
λ1λ2μpμq

= − 128iη2

ω1ω2�2

∫
dT

(T + �⊥)2(T − �⊥)2

( |T + �⊥|
|T − �⊥|

)2iη {
(�2

⊥ + T · �⊥)
[
Fλ1λ2μpμq

(T ) − Fλ1λ2μpμq
(�⊥)

]
+ (�2

⊥ − T · �⊥)
[
Fλ1λ2μpμq

(T ) − Fλ1λ2μpμq
(−�⊥)

]}
. (28)

Note that it is possible to reduce expression (28) to a onefold integral using the trick from Ref. [28]. However, the resulting
formulas are very cumbersome, and we do not present them here.
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FIG. 2. The quantity S [the differential cross section in units of
σ0, averaged over the polarization of the initial photon and summed
over polarizations of the final particles; see Eq. (29)] as a function of
k2x/m for εp = 0.4ω1, εq = 0.25ω1, px = 4.7m, qx = −0.8m, py =
qy = k2y = 0: Born result (dotted curve), Z = 47 (Ag, dash-dotted
curve), Z = 82 (Pb, dashed curve), and Z = 92 (U, solid curve). The
quantity S, calculated for the Coulomb field, is independent of ω1.
Accounting for screening, where the dependence on ω1 still exists due
to the atomic form factor, modifies S only in the narrow vicinity of the
point �⊥ = 0 (k2x = −3.9 m here), where the Coulomb corrections
are unimportant.

V. RESULTS AND DISCUSSION

Let us discuss the effect of screening. This effect is
important only for small � � r−1

scr  m, where rscr ∼ mαZ1/3

is the screening radius. For such small � the amplitude (19)
coincides with the Born amplitude at small �, where the
effect of screening may be accounted for by multiplying the
amplitude MB

λ1λ2μpμq
by an atomic form factor [1 − Fe(�2)].

This form factor vanishes at � = 0 and tends to unity at
� → ∞. A simple parametrization of this form factor can
be found in Ref. [29]. Thus, if we multiply the amplitude (19)
for the case of a pure Coulomb field by the atomic form factor
[1 − Fe(�2)], we obtain a result which is valid in the atomic
field for any �.

In order to demonstrate the importance of the Coulomb
corrections in the process, we plot in Figs. 2 and 3 the
quantity S (the differential cross section in units of σ0, averaged
over the polarization of the initial photon and summed over
polarizations of the final particles),

S = 1

2

∑
λ1λ2μpμq

σ−1
0 dσλ1λ2μpμq

d p⊥ dq⊥ dk2⊥dεpdεq

,

(29)

σ0 = α2η2�2
⊥

(2π )6m6ω1ω2�4
,

as a function of k2x at fixed p⊥, q⊥, εp, εq , k2y = 0 and
different values of the atomic charge number Z. For numerical
calculations we used the twofold integral representation (28).
In the vicinity of the point �⊥ = 0 (k2x = −3.9m in Fig. 2
and k2x = −3.03m in Fig. 3), the Born result dominates over
the Coulomb corrections, as it should. However, it is seen that,
in general, the Coulomb corrections significantly modify the

−4 −2 0 2 4 6 8
0

20

40

60

80

k2 x/m

S

FIG. 3. Same as Fig. 2, but for px = 0.7m, qx = 2.33m.

cross section. Note that the quantity S for the Coulomb field
is independent of ω1 for given values of εp/ω1, εq/ω1, p⊥/m,
q⊥/m, and k2⊥/m. For the atomic field, the dependence on
ω1 still exists via the dependence of the atomic form factor on
�. However, this form factor is important only in the narrow
vicinity of the point �⊥ = 0, where the Coulomb corrections
are unimportant.

There is an interesting question about the asymmetry A in
the differential cross section for a circularly polarized initial
photon,

A = dσ+ − dσ−
dσ+ + dσ−

, dσ± =
∑

λ2μpμq

dσ±λ2μpμq
. (30)

In the Born approximation the asymmetry vanishes for any p,
q, and k2. This fact follows from the relation

MB
λ1λ2μpμq

= −μpμq

(
MB

λ1λ2μpμq

)∗
; (31)

see Eqs. (20) and (26). However, for the Coulomb corrections
this relation is not valid due to the complex factor ( |T+�⊥|

|T−�⊥| )
2iη

in the integrand in Eq. (28). In Figs. 4 and 5 the asymmetry

0 1 2 3 4 5 6

−0.06

−0.04

−0.02

0.00
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FIG. 4. Asymmetry A, Eq. (30), as a function of the angle ϕ

between k2⊥ and p⊥ for εp = 0.4ω1, εq = 0.25ω1, p⊥ ‖ −q⊥, p⊥ =
4.7m, q⊥ = 0.8m, k2⊥ = m: Born result (dotted curve), Z = 47 (Ag,
dash-dotted curve), Z = 82 (Pb, dashed curve), and Z = 92 (U, solid
curve).
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FIG. 5. Same as Fig. 4, but for p⊥ ‖ q⊥, p⊥ = 0.7m, q⊥ = 2.33m.

is shown as a function of the angle ϕ between vectors k2⊥
and p⊥. As it should, the asymmetry vanishes when k1, k2,
p, and q lie in the same plane (ϕ = 0,π in Figs. 4 and 5). It
is seen that the asymmetry can reach tens of percent even for
moderate values of Z.

VI. CONCLUSION

Using the quasiclassical approximation, we have derived
exactly, in the parameter η = Zα, the helicity amplitudes
of e+e− photoproduction in the atomic field accompanied
by bremsstrahlung. The results obtained, Eqs. (19), (26),
and (28), have a compact form and are convenient for
numerical calculations. They correspond to the leading high-
energy small-angle asymptotics of the amplitude and have the
relative uncertainty ∼max(θp,θq,θk2 ,m/ω1). It is shown that,
in general, accounting for the Coulomb corrections essentially
modify the differential cross section, which is different from
the Born result. Moreover, when the initial photon is circularly
polarized, the Coulomb corrections lead to the asymmetry
in the distribution over the azimuth angles ϕi of produced
particles with respect to the replacement ϕi → −ϕi , Eq. (30).
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