
PHYSICAL REVIEW A 90, 062110 (2014)

Modes of asymmetry: The application of harmonic analysis to symmetric quantum dynamics
and quantum reference frames

Iman Marvian1,2,3 and Robert W. Spekkens1

1Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario, Canada N2L 2Y5
2Institute for Quantum Computing, University of Waterloo, 200 University Avenue W, Waterloo, Ontario, Canada N2L 3G1

3Department of Physics and Astronomy, Center for Quantum Information Science and Technology, University of Southern California,
Los Angeles, California 90089, USA

(Received 5 November 2014; published 4 December 2014)

Finding the consequences of symmetry for open-system quantum dynamics is a problem with broad
applications, including describing thermal relaxation, deriving quantum limits on the performance of amplifiers,
and exploring quantum metrology in the presence of noise. The symmetry of the dynamics may reflect a symmetry
of the fundamental laws of nature or a symmetry of a low-energy effective theory, or it may describe a practical
restriction such as the lack of a reference frame. In this paper, we apply some tools of harmonic analysis together
with ideas from quantum information theory to this problem. The central idea is to study the decomposition
of quantum operations—in particular, states, measurements, and channels—into different modes, which we call
modes of asymmetry. Under symmetric processing, a given mode of the input is mapped to the corresponding
mode of the output, implying that one can only generate a given output if the input contains all of the necessary
modes. By defining monotones that quantify the asymmetry in a particular mode, we also derive quantitative
constraints on the resources of asymmetry that are required to simulate a given asymmetric operation. We present
applications of our results for deriving bounds on the probability of success in nondeterministic state transitions,
such as quantum amplification, and a simplified formalism for studying the degradation of quantum reference
frames.
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I. INTRODUCTION

Extracting nontrivial information about a system’s dy-
namics based on its symmetries is a standard technique in
physics. Noether’s theorem is a prime example: It allows one
to infer conservation laws from symmetries of closed-system
dynamics. As it turns out, however, for mixed quantum states,
the Noether conservation laws do not capture all of the
constraints on state transitions that arise from symmetries.
Furthermore, for open-system dynamics, there are nontrivial
constraints on state transitions arising from symmetries even
though Noether’s theorem does not imply any [1].

The symmetry of a closed-system dynamics is simply the
symmetry of the Hamiltonian that describes the dynamics.
In an open-system dynamics, the system is not isolated but
interacts with its environment. Then, if the total Hamiltonian
of the system and environment respects a symmetry, and
furthermore if the initial state of the environment also respects
that symmetry, then the effective evolution of the system will
also have that symmetry.

Finding the set of all constraints on state transitions that are
implied by symmetries of the dynamics (open or closed) is an
important open problem. Solving it motivates the development
of a general theory of the asymmetry properties of states,
that is, the properties which describe the manner in which a
state breaks symmetries, because these are the properties that
determine the possibility of state transitions under symmetric
dynamics.

Developing such a theory is also important for the study
of quantum references frames (see [2] for a review). In a
context where the only experimental operations that can be
freely implemented by an agent are symmetric, an asymmetric
state becomes a resource because it can be used to simulate

asymmetric channels and asymmetric measurements [3–11]
(see Fig. 1). The restriction to symmetric operations can be
understood as the result of lacking a reference frame, and an
asymmetric state can be understood as a quantum token of
the missing reference frame, allowing the agent to simulate
measurements and transformations that are defined relative to
the frame. So this provides another motivation for developing
a general theory of asymmetry, one that characterizes not
only the asymmetry properties of states, but of channels and
measurements as well.

There has been significant progress towards this goal
in recent years, in particular, on the asymmetry properties
of pure states [12–16]. For instance, Ref. [14] provides a
characterization of the equivalence classes of pure asymmetric
states and the necessary and sufficient conditions for one pure
state to be converted to another by symmetric processing
for any symmetry corresponding to a compact Lie group.
In the case of general mixed states, however, the problem is
much harder and much less is known. Furthermore, there has
been very little work on developing a unified framework for
characterizing the asymmetry properties of quantum channels
and measurements for arbitrary symmetry groups.

The theory of asymmetry also provides a framework for
understanding quantum coherence as a resource. Coherence
is considered in many cases to be the signature of quantum
behavior. Famous quantum phenomena such as the wave
nature of particles, superconductivity, and superfluidity can
all be interpreted as manifestations of quantum coherence. To
understand the relation between asymmetry and coherence,
consider the following example from quantum optics. Suppose
|n〉 is the state with n photons in a given mode and |0〉
is the vacuum state. Consider the coherent superposition
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FIG. 1. (Color online) Circuit diagrams depicting how an asym-
metric state on one system can be used together with symmetric
operations to simulate an asymmetric channel or an asymmetric
measurement on another system.

1√
2
(|0〉 + |n〉) and the incoherent mixture 1

2 (|0〉〈0| + |n〉〈n|).
One way to understand the difference between these two states
is that the coherent superposition is sensitive to phase shifts
while the incoherent mixture is not. As such, coherence can be
defined as asymmetry relative to phase shifts. This connection
is explored further in Appendix A.

This article develops the theory of asymmetry by focus-
ing on Fourier decompositions of quantum states, quantum
measurements, and quantum channels.

To give the flavor of our approach, we begin by recalling
the significance of harmonic analysis (equivalently, Fourier
analysis) for classical signal processing. If a processing is
both linear and symmetric under time translations (one says
that the system is linear time invariant in this case), then
one can decompose the input and output signals to different
Fourier modes, i.e., different frequencies, such that a signal
with frequency ω at the input can only generate a signal with
the same frequency ω at the output (see Fig. 2).

We here consider an analogous decomposition of quantum
states, measurements, and channels into different modes.

The key mathematical tool is the notion of irreducible
tensor operators. Using these, one can develop a notion of
a decomposition into modes for any symmetry described by a
finite or compact Lie group.

We refer to the modes appearing in such a decomposition
as modes of asymmetry. Roughly speaking, different modes of
asymmetry of a state (or measurement or channel) are different
characteristic ways in which it can break a given symmetry. If
for a given symmetry group a state does not have a particular
mode of asymmetry, then under a symmetric dynamics it can
never evolve to a state which has that mode of asymmetry.

Linear 
Time Invariant 

System
eiωt f(ω)eiωt

FIG. 2. (Color online) Any linear time-invariant process trans-
forms an input signal of frequency ω to an output signal of the same
frequency. In other words, linearity together with time invariance
implies that the process cannot change the frequency of the input. It
follows that any linear time-invariant system can be uniquely specified
by a complex function f (ω) specifying the change in amplitude and
phase of the mode ω. This explains why Fourier analysis is extremely
useful for the study of these processes.

Similarly, it cannot be used as a quantum reference frame for
simulating measurements or channels which have that mode of
asymmetry. We also introduce some measures of asymmetry
(i.e., asymmetry monotones) that can quantify the amount of
asymmetry associated with a particular mode.

This approach provides us with a powerful tool for the
study of asymmetry, one that is particularly well adapted to un-
derstanding asymmetric quantum states of finite-dimensional
systems, i.e., quantum reference frames, as physical resources.
For example, these tools allow one to determine which
aspects of the quantum reference frame are relevant for the
degree of success that can be achieved in a reference frame
alignment protocol and more generally in covariant quantum
estimation problems. Similarly, they allow one to determine
which aspects of the quantum reference frame state are relevant
for being able to simulate asymmetric channels or asymmetric
measurements.

Previous work has sometimes identified, for certain tasks
such as simulating measurements and channels, which proper-
ties of a quantum reference frame are relevant for performing
that task, but these insights were achieved in an ad hoc manner
and only for particular groups (see, e.g., [3–6]). The framework
presented in this paper provides a unified and systematic way
of determining what aspects of an asymmetric state are relevant
for any such task, and it can also be applied to any finite or
compact Lie group.

In the following we provide a couple of examples of results
that one can derive with this framework.

A. Some examples of applications

1. Spin- j system as quantum reference frame

Many authors have considered the example of a spin-j
system as a quantum reference frame for direction (see, e.g.,
[2–11]). In particular, one interesting question which has
been studied in several works is the problem of simulating
measurements and channels that break rotational symmetry
using rotationally invariant interactions and the resource of a
spin-j system as a quantum reference frame.

For instance, Ref. [6] considers this problem for the special
case of simulating channels and measurements on a spin- 1

2
system using a spin-j system as resource. To simplify the
problem, it is assumed that the state of the spin-j system is
invariant under rotations around a direction n̂, which is to say
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that it merely acts as a reference direction rather than as a
full Cartesian frame. Using this assumption, Ref. [6] argues
that the state of the quantum reference frame can be uniquely
specified by 2j real numbers corresponding to 2j moments
of Ln̂, i.e., {tr(ρLk

n̂) : 1 � k � 2j}, where ρ is the state of
the quantum reference frame and where Ln̂ is the angular
momentum operator in the n̂ direction. This characterization
is then used to quantify how well a given measurement or
channel on a spin- 1

2 system can be simulated.
As an example of the applications of our general results,

we reconsider this problem in Sec. VI and we show how our
approach leads to a great deal of simplification. In particular,
we show that the quality of simulating a measurement
(channel) on a spin-1/2 system only depends on tr(ρLn̂)
[(trρLn̂) and tr(ρL2

n̂)]. In other words, all the higher moments
are irrelevant in this problem. More generally, we consider
the problem of simulating measurements and channels on a
spin-l system instead of a spin- 1

2 . In this case we show that
the quality of simulating a measurement (channel) depends
only on 2l (4l) real parameters corresponding to the moments
{tr(ρLk

n̂) : 1 � k � 2l} ({tr(ρLk
n̂) : 1 � k � 4l}).

Finally, we consider the general case where the spin-j
system does not have any symmetries, and hence can act as a
full Cartesian frame. In Theorem 2 we show that in this general
case the quality of simulating a measurement (channel) is
determined uniquely by the expectation value of all irreducible
spherical tensor operators with rank less than or equal to 2l

(4l), i.e., by (2l + 1)2 − 1 [(4l + 1)2 − 1] real parameters.
This example exhibits the power of the simple idea of mode

decompositions of states, measurements, and channels.

2. Bounds on nondeterministic amplifiers

An interesting application of the theory of asymmetry is to
study the quantum noise generated by optical or electronic
amplifiers. Such noise is inevitable in any amplification
process and has a quantum origin. The traditional explanation
is based on commutation relations together with the linearity
of the equations of motion [17]. However, this approach cannot
be applied to study the noise generated in nonlinear amplifiers.
Also, nondeterministic amplifiers, which were introduced in
[18], fall outside the scope of applicability of this approach. A
nondeterministic amplifier is defined as one that is allowed to
only succeed with some nonzero probability (it must, however,
produce a flag specifying whether it has succeeded or not),
and this makes it possible to achieve amplification which
produces less noise than would a deterministic amplifier when
it succeeds.

It turns out that the quantum noise generated in an optical
amplification process can be explained as a consequence of
a U(1) symmetry of the amplifier. This is the symmetry
corresponding to the phase shifts of the input and output
signals. So a phase-insensitive amplifier can be thought as
an open-system dynamics with U(1) symmetry (amplification
is necessarily an open-system dynamics because it requires
a source of energy). Therefore, we can apply the general
theory of asymmetry to find the consequences of symmetry in
this open-system dynamics. In particular, we can explain the
origin of quantum noise in the following way: A symmetric
dynamics cannot increase the amount of asymmetry. If a

phase-insensitive amplifier did not generate noise and, for
example, perfectly transformed a coherent state to another
coherent state with larger amplitude, then the asymmetry of
the output signal would be larger than the asymmetry of the
input. This statement can be made quantitative using the notion
of asymmetry monotones (see Sec. II A).

In this paper, we introduce a particular type of asymmetry
monotone, one which quantifies the amount of asymmetry in
a particular mode. Under a phase-insensitive amplifier, the
amount of asymmetry in each mode is nonincreasing. There-
fore, for every mode of asymmetry, we get an independent
constraint on the output signal. The advantage of this approach
for explaining the origin of the noise is that it can be applied to
a much broader range of amplification processes. In particular,
it can be applied to nonlinear and nondeterministic amplifiers.
In the following, we present an example of some results which
can be obtained in this way.

Let N̂ be the number operator with eigenvectors {|n〉,n =
0,1, . . .} such that N̂ |n〉 = n|n〉. Here the eigenvalue n corre-
sponds to the number of photons (excitations) in the input
and/or output signals. This means that a phase shift φ is
described by the unitary eiφN̂ .

Consider a general input state described by the density
operator ρ =∑n,m ρnm|n〉〈m|. Suppose that under a phase-
insensitive nondeterministic amplification process this state
is transformed to ρ ′ =∑n,m ρ ′

nm|n〉〈m| with probability of
success p. Then, we show in Sec. II A that the following
inequalities hold:

∀ k ∈ N : p �
∑

n |ρn+k,k|∑
n |ρ ′

n+k,k|
. (1.1)

The kth such inequality is a constraint derived from the
nonincrease of asymmetry in the kth mode. In particular, these
inequalities imply that if ρ = |ψ〉〈ψ | and ρ ′ = |ψ ′〉〈ψ ′| are
pure states and |ψ〉 =∑n ψn|n〉 and |ψ ′〉 =∑n ψ ′

n|n〉, then

∀ k ∈ N : p �
∑

n |ψn+k||ψn|∑
n |ψ ′

n+k||ψ ′
n|

. (1.2)

To see an example of the consequences of these con-
straints, assume the input is a coherent state |α〉 ≡
e−|α|2/2∑

n(αn/
√

n!)|n〉. There have been speculations that a
nondeterministic quantum amplifier might be able to transform
a coherent state |α〉 to a coherent state |α′〉 for |α′| > |α| with
a nonzero probability [18]. Then, using Eq. (1.2) we find

∀ k ∈ N : p � e− |α|2
2
∑

n |α|2n+k/
√

n!(n + k)!

e− |α′ |2
2
∑

n |α′|2n+k/
√

n!(n + k)!

� e− |α|2−|α′ |2
2

( |α|
|α′|
)k

. (1.3)

In the limit k → ∞, we can easily see that if |α′| > |α|, then the
probability of transforming the coherent state |α〉 to |α′〉 is zero.
The conclusion that the probability of achieving a nontrivial
amplification of a coherent state is strictly zero was also found
in Refs. [19] and [20] by completely different arguments.
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B. The structure of this paper

We begin by explaining the main ideas of the article using
the simple example of a U(1) symmetry associated with a
(nonprojective) unitary representation. Then we present the
generalization to the case of an arbitrary finite or compact
Lie group with arbitrary projective representations. In the
following we present an overview of the contents of the article.

In Sec. II, we present the idea of a mode decomposition
for the special case of the group U(1). In Sec. II A, we
introduce asymmetry monotones which quantify the amount
of asymmetry in each mode. Then in Secs. II B and II C we
present some applications of the idea of mode decompositions
in the context of phase references.

To generalize the concept of modes of asymmetry to
arbitrary finite and compact Lie groups, we use the notion
of irreducible tensor operators. We provide a short review of
this subject in Sec. III A. In Sec. III B, we use this notion to
introduce a representation of G-covariant quantum operations,
i.e., quantum operations which have symmetry relative to
a unitary representation of group G. This representation of
G-covariant operations basically characterizes them in terms
of how they act on the irreducible tensor operators. We use this
representation to define the notion of modes of asymmetry of
states for arbitrary finite and compact Lie group in Sec. IV,
and we introduce the notion of asymmetry monotones that
quantify the amount of asymmetry in a particular mode.

In Sec. V A, we generalize the idea of mode decompositions
to quantum channels and measurements. The main motivation
for this generalization is to study the problem of simulating
quantum channels and measurements using quantum reference
frames. This is done in Sec. V B, where we show how the mode
decomposition of a quantum reference frame determines the
measurements and channels which can be simulated by it.
Finally, in Sec. VI, we apply these results to the important
example of a spin-j system as a directional quantum reference
frame.

II. MODES OF ASYMMETRY FOR THE GROUP U(1)

Let eiθ → U (θ ) be an arbitrary unitary representation of
the group U(1). Let {|n,α〉} be an orthonormal basis in which
the representation eiθ → U (θ ) is decomposed into irreducible
representations as

U (θ ) =
∑

n

einθ
∑

α

|n,α〉〈n,α|, (2.1)

where the integer n specifies the irrep of U(1) and α is the
multiplicity index.

Let B(H) be the space of linear operators on H, which is
clearly spanned by {|n,α〉〈m,β|}. Consider the subspace in
B(H) spanned by operators {∀ n,α,β : |n + k,α〉〈n,β|}. We
denote this subspace by B(k). We call any operator in this
subspace a mode k operator.

Suppose A(k) is a mode k operator, i.e., it lives in B(k). We
may then write it as

A(k) =
∑
n,α,β

|n + k,α〉〈n,β| tr(A|n,β〉〈n + k,α|). (2.2)

It also follows that

U (θ )A(k)U †(θ ) = eikθA(k), ∀ θ ∈ [0,2π ). (2.3)

On the other hand, if an operator A satisfies Eq. (2.3), then
by virtue of the linear independence of functions {eikθ } we
can conclude that A necessarily lives in the subspace B(k).
Therefore, we have

A(k) ∈ B(k) ⇐⇒ ∀ θ : U (θ )A(k)U †(θ ) = eikθA(k). (2.4)

For an arbitrary operator A, we can express it as a decompo-
sition A =∑k A(k), where A(k) ∈ B(k). Here A(k) is called the
component of A in mode k. Note that for all k = 0 we have
tr(A(k)) = 0. Furthermore,

U (θ )AU †(θ ) =
∑

k

eikθA(k). (2.5)

So to decompose a given operator A to its modes we can use
the following relation:

∀ k : A(k) = 1

2π

∫
dθ e−ikθ U (θ )AU †(θ ). (2.6)

Note that for any Hermitian operator A it holds that A(k)† =
A(−k).

Suppose E is a U(1)-covariant superoperator, i.e.,

∀ θ : E(U (θ )(·)U †(θ )) = U (θ )E (·) U †(θ ).

Then, if both sides of this equation act on an arbitrary operator
A(k) ∈ B(k), we get

eikθE(A(k)) = U (θ )E(A(k))U †(θ ). (2.7)

We can then infer from Eq. (2.4) that E(A(k)) also lives in B(k).
Note that this result did not require E to be a completely

positive map nor to be trace preserving, but it certainly applies
in these cases. We use the term quantum operation to refer
to a completely positive trace-nonincreasing superoperator
and quantum channel to refer to a deterministic (i.e., trace-
preserving) quantum operation. We infer that U(1)-covariant
quantum operations cannot change the mode of a state; they
just map an operator in one mode to another operator in the
same mode. In particular, if a U(1)-covariant channel E maps
state ρ to σ , then

E(ρ(k)) = σ (k), (2.8)

where

ρ =
∑

k

ρ(k) with ρ(k) ∈ B(k), and (2.9)

σ =
∑

k

σ (k) with σ (k) ∈ B(k), (2.10)

are the mode decompositions of ρ and σ .
This suggests that we can interpret different k as different

modes of asymmetry: They cannot be interconverted to each
other under U(1)-covariant quantum channels. In particular, if
the initial state does not have a particular mode, then the final
state of a U(1)-covariant dynamics also does not have that
mode. (Of course, a mode can be eliminated if the associated
component is mapped to zero by the dynamics.) Furthermore,
a state ρ is U(1)-invariant if and only if it contains only mode
k = 0.

062110-4



MODES OF ASYMMETRY: THE APPLICATION OF . . . PHYSICAL REVIEW A 90, 062110 (2014)

Let Modes(ρ) ≡ {k : ρ(k) = 0} be the set of all integer k’s
for which the state ρ has a nonzero component in mode k (this
will always include k = 0). So using this notation the above
observation can be summarized as follows.

Proposition 1. Assume a state ρ can be transformed to
another state σ under a U(1)-covariant operation (deterministic
or stochastic). Then

Modes(σ ) ⊆ Modes(ρ). (2.11)

This proposition can be understood as a refined version
of the simple fact that if the initial state of a U(1)-covariant
operation is invariant under a U(1)-subgroup, then the final
state will also be invariant under that U(1) subgroup. To see
this, first recall that under the action of the symmetry group,
state ρ transforms as

U (θ )ρU †(θ ) =
∑

k

eikθρ(k). (2.12)

Now suppose a state ρ is invariant under the unitary U ( 2π
l

) for
some integer l such that U ( 2π

l
)ρU †( 2π

l
) = ρ. Using Eq. (2.12)

and noting that the set {ρ(k)} are all linearly independent, we
can conclude that for all modes k which are not equal to an
integer time l, ρ(k) must be equal to zero. On the other hand, if
for all k’s which are not equal to some integer times l, ρ(k) = 0,
then the state is invariant under U ( 2π

l
). So we conclude that

Modes(ρ) uniquely specifies the symmetries of ρ, i.e., all U(1)
subgroups which leave ρ invariant.

Example 1. Consider a pure state |ψ〉 =∑n,α ψn,α|n,α〉.
Let �(ψ) be the difference between the highest and lowest
n for which

∑
α |ψn,α|2 is nonzero. Then clearly, �(ψ) =

max{Modes(ψ)}. Now Proposition 1 implies that if there exists
a U(1)-covariant channel which transforms a pure state |ψ〉
to another pure state |φ〉 with a nonzero probability, then
Modes(φ) ⊆ Modes(ψ). This implies that max{Modes(φ)} �
max{Modes(ψ)} and therefore �(φ) � �(ψ). This result has
been obtained in Ref. [12] using a totally different argument.1

So the above proposition captures this result as a particular
case.

We finish this section by providing a list of useful facts
about modes of asymmetry.

(1) Modes of asymmetry of a joint system. Suppose ρ1 and
ρ2 are two states with the mode decompositions

ρ1 =
∑

k

ρ
(k)
1 : ρ

(k)
1 ∈ B(k) and ρ2 =

∑
l

ρ
(l)
2 : ρ

(k)
2 ∈ B(k).

We denote the mode decomposition of ρ1 ⊗ ρ2 as ρ1 ⊗ ρ2 =∑
j (ρ1 ⊗ ρ2)(j ). Then we can easily see that

(ρ1 ⊗ ρ2)(j ) =
∑

k

ρ
(k)
1 ⊗ ρ

(j−k)
2 . (2.13)

1The proof in Ref. [12] proceeds by first finding a characterization
of the Kraus operators of U(1)-covariant channels and then finding
which pure state transformations are possible under quantum channels
with this type of Kraus decomposition.

(2) Mode decomposition for a weighted twirling operation.
Let p(θ ) be an arbitrary probability density and

σ ≡
∫

dθ p(θ ) U (θ )ρU †(θ ). (2.14)

Let

ρ =
∑

k

ρ(k) : ρ(k) ∈ B(k) and σ =
∑

k

σ (k) : σ (k) ∈ B(k)

be the mode decomposition of ρ and σ . Then

σ (k) = p−kρ
(k), (2.15)

where pk = ∫ dθ p(θ )e−iθk is the kth component of the Fourier
transform of p(θ ).

A. Quantifying the degree of U(1) asymmetry in a given mode

Asymmetry monotones are functions from states to real
numbers which quantify the amount of symmetry breaking
of any given state, such that the value of these functions are
nonincreasing under symmetric dynamics. The intuition is that
since symmetric dynamics cannot generate asymmetry, any
measure of asymmetry should be nonincreasing under this
type of dynamics. We take this as the defining property of

asymmetry monotones. Introducing the notation ρ
G-cov−−−→ σ to

denote the fact that there exists a G-covariant channel which
transforms state ρ to state σ , the definition is as follows [3,12].

Definition 1. A function F from states to real numbers is an

asymmetry monotone if ρ
G-cov−−−→ σ implies F (ρ) � F (σ ).

Recently, several examples of asymmetry monotones have
been proposed [1,12,13,21–23].

In this section, we consider the problem of quantifying
the amount of asymmetry in each mode. In other words, we
find asymmetry monotones which only measure the degree of
asymmetry associated with some specific mode of asymmetry.

One family of such monotones can be constructed from the
trace norm. Recall that for an arbitrary operator X the trace
norm of X is ‖X‖ ≡ tr(

√
X†X). This norm is nonincreasing

under quantum channels (trace preserving, completely positive
linear superoperators). So for any arbitrary quantum channel
E , we have

‖E(X)‖ � ‖X‖.
In the previous section we saw that if E is a U(1)-covariant

channel which maps state ρ to σ (with the mode decomposition
ρ =∑k ρ(k) : ρ(k) ∈ B(k) and σ =∑k σ (k) : σ (k) ∈ B(k)),
then ∀ k : E(ρ(k)) = σ (k). Now the monotonicity of the trace-
norm implies

∀ k : ‖σ (k)‖ � ‖ρ(k)‖.
So we can think of ‖ρ(k)‖ as a measure of the amount of
asymmetry of the state ρ in the mode k.

Now suppose a given state ρ can be transformed to another
state σ under a U(1)-covariant channel with probability p.
If this is possible, then there exists a U(1)-covariant channel
which maps state ρ to

σ̃ ≡ p σ ⊗ |succ〉〈succ| + (1 − p)
I

d
⊗ |fail〉〈fail|,
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where |succ〉,|fail〉 are two orthonormal states which are
invariant under the symmetry transformations and I

d
is the

completely mixed state on the Hilbert space of σ and is
clearly invariant under all symmetry transformations. Now
the fact that this channel is U(1)-covariant implies that for all
k|σ̃ (k)| � |ρ(k)|. However, because states |succ〉,|fail〉 and I

d

are invariant under the symmetry transformations, this implies
that for all k = 0 it holds that

‖σ̃ (k)‖ =
∥∥∥∥ 1

2π

∫
dθe−iθkU (θ )σ̃U †(θ )

∥∥∥∥ = p‖σ (k)‖ � ‖ρ(k)‖.

So to summarize, we have shown the following.
Proposition 2. Suppose there is a U(1)-covariant channel

which maps a state ρ to state σ with probability p. Then it
holds that

∀ k : p‖σ (k)‖ � ‖ρ(k)‖. (2.16)

This proposition can be thought of as a quantitative version
of Proposition 1.

Using a similar argument, one can prove the following more
general proposition about transforming a state to an ensemble
of states.

Proposition 3. Suppose there is a U(1)-covariant channel
that maps the state ρ to the ensemble consisting of states σi

with probabilities pi , where the value of i becomes known at
the end of the process. Then it holds that

∀ k :
∑

i

pi‖σ (k)
i ‖ � ‖ρ(k)‖. (2.17)

This result subsumes Proposition 2 as a special case
because Eq. (2.17) implies that for any given value of i,
∀ k : pi‖σ (k)

i ‖ � ‖ρ(k)‖.
In the following, we calculate ‖ρ(k)‖ for arbitrary state ρ in

the case where the representation is multiplicity free, so that
U (θ ) =∑n eiθn|n〉〈n|. (Note that all the previous results work
for any representation of U(1) no matter if the representation
has multiplicity or not.) Consider an arbitrary density operator
ρ =∑n,m ρn,m|n〉〈m|. Then

ρ(k) =
∑

n

ρn+k,n|n + k〉〈n|.

Therefore,

‖ρ(k)‖ = tr(
√

ρ(k)ρ(k)†) =
∑

n

|ρn+k,k|. (2.18)

In particular, if the state is pure, i.e., ρ = |ψ〉〈ψ |, where |ψ〉 =∑
n ψn|n〉, then

‖ρ(k)‖ =
∑

n

|ψn+k||ψn|. (2.19)

Also, note that if the state is pure, then

‖ρ(k)‖ � 1, (2.20)

where the bound follows from the Cauchy-Schwartz inequal-
ity.

It is also worth noting that the sum of this monotone over
all modes,

∑
k ‖ρ(k)‖ =∑k,n |ρn+k,k|, is also an asymmetry

monotone. It is equivalent to the asymmetry monotone pre-
sented in Eq. (44) of Ref. [24], with the equivalence manifest
when the expression is worked out for pure states in Eq. (49).

Example 2. Consider the sequence of states{
|ψN 〉 ≡ 1√

N

N∑
n=1

|n〉 : N ∈ N

}
. (2.21)

One can easily see that for any given state |φ〉 there is a
U(1)-covariant channel EN which transforms |ψN 〉 to a state
arbitrary close to |φ〉 in the limit of large N . EN is given by

EN (ρ) =
∫

dθ U (θ )|φ〉〈ψN |U †(θ ) ρ U (θ )|ψN 〉〈φ|U †(θ ).

(2.22)
The sufficiency of |ψN 〉 for forming approximations to any
other state in the limit of large N suggests that |ψN 〉 has the
maximal possible asymmetry in this limit. This can be made
precise as follows:∥∥|ψN 〉〈ψN |(k)

∥∥ =
∑

n

|ψn+k||ψn| = 1 − |k|
N

|k| � N

= 0 otherwise.

So for all modes k for which |k| � N , the state |ψN 〉 has almost
the maximal value of asymmetry for mode k with respect to
this monotone [namely, the value 1, as shown in Eq. (2.20)].

B. Effect of misalignment of phase references

To be able to measure a quantity with high precision, one
fundamental requirement is to have a precise reference frame,
for instance, in the case of measuring a time interval, a high-
precision clock. Any uncertainty in the configuration of the
reference frame will limit the precision of the measurements
that one can perform.

In this section, we consider the problem of misalignment of
phase references. So we assume the system under considera-
tion carries a nontrivial representation of the group U(1) given
by eiθ → U (θ ). The U(1) group may have different physical
interpretations: It may describe a rotation around some axis or
a phase shift between states with different numbers of photons.

We assume there is an ideal perfect reference frame
possessed by Alice and there is a noisy reference frame
possessed by Bob. For example, Bob can be on a satellite
and so has access to a clock with low accuracy while Alice is
on Earth and has access to a high-precision atomic clock.

Assume they know that the phase shift relating Bob’s
reference frame to Alice’s is θ with probability p(θ ). If θ

were known, then a state which is described by ρ relative to
Alice’s reference frame would be described by U (θ )ρU †(θ )
relative to Bob’s reference frame. Given that θ is only known
to be distributed according to p(θ ), it follows that the state is
described relative to Bob’s reference frame as

ρ̃ ≡
∫

dθ p(θ )U (θ )ρU †(θ ), (2.23)

which is generally a mixed state. This explains how the lack
of a perfect reference frame can limit Bob’s ability to get
information about an unknown state ρ.

By Eq. (2.15), the state ρ̃ can be rewritten in terms of the
mode decomposition of ρ as

ρ̃ =
∑

k

p−kρ
(k), (2.24)
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where ρ(k) is the kth component of the mode decomposition
of ρ and

pk =
∫

dθ p(θ )e−iθk (2.25)

is the kth component of the Fourier transform of p(θ ).
So to understand how the uncertainty about the phase

reference can affect Bob, it is helpful to consider the Fourier
transform of the probability distribution p(θ ). For example,
if the Hilbert space of the system under consideration carries
a finite number of irreps of U(1), then there will be a finite
set of modes in which a state can have nonzero components.
Then any quantity which quantifies the effect of misalignment
described by the probability distribution p(θ ) should only
depend on the Fourier component of p(θ ) in those particular
modes.

Example

Consider the representation of U(1) given by eiθ → U (θ ),
where

U (θ ) =
nmax∑

n=nmin

eiθn|n〉〈n|.

Assume the phase difference between Alice and Bob’s local
reference frames is θ with probability p(θ ). Now, to quantify
the effect of this misalignment on the description of an arbitrary
state of this system we only need to consider the Fourier
components of p(θ ), denoted pk , for 0 � k � nmax − nmin.
For example, suppose Bob wants to estimate the phase φ of
the state

1√
2

(|n = 0〉 + eiφ|n = l〉) . (2.26)

The information about this phase lives only in the modes l, −
l. So the only property of the probability distribution p(θ )
which is relevant for this estimation problem is its lth Fourier
component. In particular, if this component is zero, then Bob
cannot get any information about the phase φ. This can happen
even if the two phase references are highly correlated. For
example, if

p(θ ) = 1
2δ(θ ) + 1

4δ(θ − π/l) + 1
4δ(θ + π/l),

then p(θ ) has no component in the mode l and therefore Bob
cannot get any information about the phase φ. This simple
observation shows that a measure of the alignment of two
reference frames should be chosen based on the specific task
to which the reference frames are being applied.

In many practical situations we can assume that the
probability distribution p(θ ) is almost Gaussian. In particular,
this is the case if Bob’s knowledge of θ is obtained by averaging
over many independent estimations. Let δθ be the standard
deviation of θ . Then, for Gaussian distributions we know that
for all modes with |k| � 1/δθ , |pk| ≈ 1 and therefore for these
modes the distribution is effectively a δ function over θ . So
in the case of the above example where Bob is interested in
estimating the phase φ of the state 1/

√
2(|n = 0〉 + eiφ|n =

l〉), if δθ � 1/l then the imperfectness of Bob’s local frame
does not put any significant limitation on his performance.

C. Alignment of phase references using U(1)-asymmetric states

If Alice wishes to ensure that Bob’s reference frame is
aligned with her own, she can send him a quantum reference
frame, i.e., a quantum system prepared in an asymmetric
state which carries information about her reference frame.
For example, Alice can send Bob many copies of the state
described by (1/

√
2)(|0〉 + |1〉) relative to her reference frame

and also tell him the description of this state relative to her
reference frame. Then Bob can use these quantum systems
to obtain information about the relative phase between his
reference frame and Alice’s.

Assume Alice and Bob’s prior knowledge about the phase
difference between their local phase references is described by
the probability distribution p(θ ). Consider an arbitrary state
described by ρ relative to Alice’s reference frame. As we have
seen before, the lack of information regarding the relation of
Bob’s reference frame to Alice’s prevents him from obtaining
as much information about the unknown state ρ as Alice could.
Now assume that Alice also sends Bob a quantum reference
frame in the state τ and assume that the representation of phase
shifts on this system is given by eiθ → V (θ ).

To find more precise information about ρ, Bob can first
use the quantum reference frame τ to align his reference
frame with Alice’s and then perform some measurement on
ρ. However, this procedure does not describe the most general
process that Bob can implement. The most general process is
to perform a joint measurement on the state ρ and the quantum
reference frame τ . In this case the information Bob can obtain
about the unknown state ρ is the information he can extract
from the state∫

dθ p(θ )[V (θ ) ⊗ U (θ )]τ ⊗ ρ[V †(θ ) ⊗ U †(θ )]. (2.27)

This state is equal to∑
k1,k2

p−k1τ
(−k2) ⊗ ρ(k1+k2), (2.28)

where τ =∑k τ (k) is the mode decomposition of τ and pk is
the kth Fourier component of p(θ ). This shows precisely how
the information Bob can obtain about different modes of ρ

is determined by which modes are present in the state of the
quantum reference frame and in the probability distribution
p(θ ) describing the misalignment.

Example

Suppose Alice and Bob’s local reference frames are initially
uncorrelated and therefore the prior distribution p(θ ) is
uniform.

Assume Bob wants to find information about the phase φ

of the state

1√
2

(|n = 0〉 + eiφ|n = 2〉). (2.29)

Note that here the information is encoded in the modes 2 and
−2. So to enable Bob to encode this information, Alice should
send him a quantum reference frame which has modes 2 and
−2. In particular, the reference frame should not be invariant
under U (π ), because if U (π )τU †(π ) = τ , then the state τ

will not have any component in mode 2. However, lack of this
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symmetry does not imply that the quantum reference frame has
mode 2. For example, assume Alice sends Bob the quantum
reference frame

|ψ〉 = |0〉 + |1〉√
2

. (2.30)

This state is not invariant under any subgroup of U(1).
However, it still does not have any component in the mode
k = 2 and so it does not help Bob to obtain information about
the phase φ of the state (2.29).

III. REPRESENTATION OF G-COVARIANT CHANNELS IN
THE IRREDUCIBLE TENSOR OPERATOR BASIS

In this section we first present a short review of irreducible
tensor operators (see, e.g., [25] and [26] for more information
on this subject). Then we introduce a new representation of
G-covariant channels which basically describes a G-covariant
channel by specifying how it acts on an irreducible tensor
operator basis.

A. Review of irreducible tensor operators

LetB(H) be the space of all bounded operators acting on the
Hilbert space H. For any unitary V ∈ B(H) the superoperator
V (·)V † preserves the Hilbert-Schmidt inner product on B(H),
defined as 〈A,B〉 ≡ tr(A†B) for arbitrary A,B ∈ B(H). So the
superoperator V (·)V † can be thought of as a unitary acting on
the space B(H).

Suppose g → U (g) is a projective unitary representation
of a finite or compact Lie group G on the Hilbert space
H. Then g → Ug , where Ug[·] ≡ U (g)(·)U †(g) is a unitary
representation of G on B(H). Note that this representation is
always nonprojective,

∀ g1,g2 ∈ G : Ug2 ◦ Ug1 = Ug2g1 . (3.1)

Let {T (μ,α)
m } be a basis of B(H) in which the representation

g → Ug decomposes to the irreps of G such that

Ug

[
T (μ,α)

m

] =
∑
m′

u
(μ)
m′m(g) T

(μ,α)
m′ , (3.2)

where

u
(μ)
m′m(g) ≡ 〈μ,m′|U (μ)(g)|μ,m〉, (3.3)

are the matrix elements of U (μ)(g), the unitary (nonprojective)
irreducible representation of G labeled by μ. We choose this
basis to be normalized such that

tr
(
T (μ,α)

m
†T (μ′,α′)

m′
) = δμ,μ′δα,α′δm,m′ . (3.4)

Here, α can be thought of as a multiplicity index. We call
the basis {T (μ,α)

m } the irreducible tensor operator basis. Also,
the elements of the set {T (μ,α)

m } for a fixed μ and α are called
components of the irreducible tensor T (μ,α). We call the irrep
label μ the rank of the tensor operator T

(μ,α)
m .

Consider the Hermitian conjugate of both sides of Eq. (3.2),(
Ug

[
T (μ,α)

m

])† = Ug

[
T (μ,α)

m
†] =

∑
m′

ū
(μ)
m′m(g) T

(μ,α)
m′

†, (3.5)

where ū
(μ)
m′m(g) denotes the complex conjugate of u

(μ)
m′m(g). This

implies that for any component T
(μ,α)
m of a tensor operator of

rank μ, its Hermitian conjugate T
(μ,α)
m

† is in the subspace
spanned by rank μ̄ irreducible tensor operators, where μ̄

denotes the irrep equivalent to the complex conjugate of irrep
μ. In particular, in the case of SO(3) [or equivalently SU(2)]
where the complex conjugate of any irrep μ is equivalent to
the irrep μ, the Hermitian conjugate of a component of an
irreducible tensor operator with rank μ is in the subspace
spanned by the irreducible tensor operators with rank μ.

To find an irreducible tensor operator basis in B(H) it is
helpful to use the Liouville representation of operators in
which an operator will be represented by a vector formed
by stacking all the rows of its matrix representation (in some
specific basis defining the representation) in a column vector
[6]. This is equivalent to the Choi isomorphism between
operators on H and vectors on H ⊗ H.

Then the Liouville (or Choi) representation of the su-
peroperator Ug will be U (g) ⊗ Ū (g), where Ū (g) denotes
the complex conjugate of U (g) in the basis that defines the
representation. So the ranks of all tensor operators which show
up in the space B(H) correspond to the set of all irreps of
G which show up in the representation g → U (g) ⊗ Ū (g).
Furthermore, to decompose a particular operator in B(H)
to irreducible tensor operators we can write the Liouville
representation of that operator and find out how it decomposes
into the irreducible basis of G defined by the representation
g → U (g) ⊗ Ū (g).

One can construct higher ranks of irreducible tensor
operators by decomposing the product of irreducible tensor
operators with lower ranks. Let {T (μ1)

m } be the components
of a rank μ1 tensor operator and {R(μ2)

m } be the components
of a rank μ2 tensor operator. Finally, let C

μ3,m3,α
μ1,m1;μ2,m2 be the

Clebsch-Gordon coefficients (see, e.g., [26]). Then the set of
operators {S(μ3,α)

m } defined by

S(μ3,α)
m =

∑
m1,m2,μ1,μ2

Cμ3,m3,α
μ1,m1;μ2,m2

T (μ1)
m1

R(μ2)
m2

(3.6)

are components of a rank μ3 irreducible tensor operator.
Finally, we present the Wigner-Eckart theorem which gives

a useful tool to find the irreducible tensor operator basis (see,
e.g., [25]).

Theorem 1: Wigner-Eckart. Let G be a finite group or a
compact Lie group. Let T

(μ1,α)
m1 be an element of a tensor

operator. Then

〈μ3,m3|T (μ1,α)
m1

|μ2,m2〉=
∑

β

(
Cμ3,m3,β

μ1,m1;μ2,m2

)∗
(μ3|T (μ1,α)|μ2)β,

(3.7)

where β is a multiplicity index that counts the number of
copies of the μ3 irrep that can be formed by composing irreps
μ1 and μ2, C

μ3,m3,β
μ1,m1;μ2,m2 are the Clebsch-Gordon coefficients

for this composition, and (μ3|T (μ1,α)|μ2)β is a number which
is independent of m1,m2, and m3.

Note that the left-hand side of the equality can be interpreted
as the matrix elements of the unitary acting on B(H) which
transforms the orthonormal basis {|μ3,m3〉〈μ2,m2|} to the
orthonormal basis {T (μ1,α)

m1 }.
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Example: SO(3)

In the case of SO(3), the complex conjugate of any repre-
sentation is unitarily equivalent to the original representation:
Suppose Ū (g) is the complex conjugate of U (g) in the basis
in which Lz is diagonal and all the matrix elements of Lx are
real numbers. Then

∀ g ∈ SO(3) Ū (g) = e−iπLy U (g)eiπLy . (3.8)

Let g → U (g) be an arbitrary projective unitary representation
of SO(3) on H. The above discussion implies that one way to
find the ranks of tensor operators and their multiplicities for
the basis {T (μ,α)

m } which spans B(H) is to find the irreps and
their multiplicities which show up in the representation

g → U (g) ⊗ Ū (g).

An important special case, which we use later, is when H
carries a spin-j irrep of SO(3). Then the above observation
implies that B(H) is spanned by{

T (μ)
m : (μ,m) : 0 � μ � 2j, − μ � m � μ

}
and there is no multiplicity. In other words, the maximum rank
of the irreducible tensor operators on this space is 2j .

Note that the operators {T (μ)
m } are uniquely defined only

when we fix the basis we use to represent the matrix elements
u

(μ)
m′m(g) in Eq. (3.2). In the case of SO(3), we always use the

basis in which the matrix representation of Lz is diagonal and
the matrix elements of Lx are all real numbers.

Then it follows that in this basis

μ = 0 : T (μ=0) = c0I,

μ = 1 : T
(μ=1)
m=0 = c1Lz, T

(μ=1)
m=±1 = ±c1

1√
2
L±,

where I is the identity operator on H, L± ≡ Lx ± iLy , and
c0,c1 are normalization factors [26].

One can generate all higher rank tensor operators on
this space, by considering the products of T

(μ=1)
m1 T

(μ=1)
m2 · · ·

and decomposing them to irreducible tensor operators using
Eq. (3.6). Following this method one can show that the rank-2
irreducible tensor operators are

μ = 2 : T
(μ=2)
m=±2 = c2

1

2
L2

±,

T
(μ=2)
m=±1 = c2

±1

2
(L±Lz + LzL±),

T
(μ=2)
m=0 = c2

1√
6

(
3L2

z − L2
)
,

where L2 = L2
x + L2

y + L2
z is the total angular momentum and

c2 is a normalization factor (see, e.g., [26]).

B. A representation of G-covariant superoperators

In this section, we introduce a representation of G-covariant
superoperators which are useful in the rest of this paper.

Recall that a superoperator E is G covariant if it commutes
with the superoperator representation of the group G,

∀ g ∈ G : E ◦ Ug = Ug ◦ E . (3.9)

Then Schur’s lemma implies that E should be block diagonal
in any basis of the operator space B(H) which decomposes
the representation g → Ug into the irreps of G. But, this is
exactly the definition of an irreducible tensor operator basis
and therefore G-covariant channels are block diagonal in the
irreducible tensor operator bases. The following lemma states
this result.

Lemma 1. Let g → Uin(g) and g → Uout(g) be projective
unitary representations of the group G on the Hilbert spaces
Hin and Hout. Let {T (μ,α)

m } and {S(μ,β)
m } be the corresponding

normalized irreducible tensor operator bases for B(Hin)
and B(Hout). Consider a linear superoperator E : B(Hin) →
B(Hout) which is G-covariant, i.e., ∀ g ∈ G : E[Uin(g) ·
U

†
in(g)] = Uout(g)E (·) U

†
out(g). Then

E(X) =
∑

μ,m,α

tr
(
T (μ,α)

m
†X
)⎡⎣∑

β

c
(μ)
βα S(μ,β)

m

⎤⎦ , (3.10)

where c
(μ)
βα ≡ tr[S(μ,β)

m
†E(T (μ,α)

m )] (which turns out to be inde-
pendent of m).

The proof is straightforward and is presented in Ap-
pendix B. This representation simply means that under G-
covariant superoperators, an input operator in the mode (μ,m)
can only be mapped to an output operator in the same mode
(for a general linear superoperator there is no such constraint
on the output).

Lemma 1 implies that any linear G-covariant superoperator
can be uniquely specified by specifying the set of matrices
{c(μ)} for the set of all μ which show up as ranks of irreducible
tensor operators in both input and output spaces. In the next
chapter we use this representation of G-covariant superoper-
ators to study the asymmetry properties of quantum states. It
can also have applications in other fields such as tomography
of G-covariant channels or equivalently tomography of the
symmetrized version of a channel (see [27,28]).

Example 3. Consider a rotationally covariant superoperator
from B(Hj1 ) to B(Hj2 ), where the input and output spaces Hj1

and Hj2 are spin-j1 and spin-j2 irreps of SO(3), respectively.
Then, from Sec. III A we know that the tensor operators

for both input and output spaces do not have multiplicity
and their rank varies between μmin

1 = 0 and μmax
1 = 2j1 in

the input space and between μmin
2 = 0 and μmax

2 = 2j2 in
the output space. So Lemma 1 implies that an arbitrary
rotationally covariant superoperator from B(Hj1 ) to B(Hj2 )
can be described by coefficients c(μ), where μ varies between
μ(min) = 0 and μ(max) = min{μmax

1 ,μmax
2 }.

If this superoperator is a channel, i.e., it is trace preserving
and completely positive, then we can put more constraints on
the coefficients c(μ). First, we use the fact that any completely
positive superoperator maps Hermitian operators to Hermitian
operators. This implies that all the coefficients {c(μ)} should
be real. On the other hand, the fact that a quantum channel is
trace preserving fixes one coefficient, namely, c(μ=0). So any
SO(3) covariant channel on these spaces can be described by

2 min{j1,j2}
real numbers. The special case of this result for j1 = j2 has
been observed previously in [6].
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In particular, if the input space is a spin- 1
2 system, the

channel can be described by just one real parameter. Note that
in the absence of symmetry the number of parameters one
needs to specify the channel scales as j 2

1 j 2
2 .

Let {T (μ)
m } and {S(μ)

m } be the irreducible tensor operator basis
forB(Hj1 ) andB(Hj2 ) and {c(μ) : μ = 1, . . . ,2 min{j1,j2}} be
the coefficients describing the rotationally invariant superop-
erator E from B(Hj1 ) to B(Hj2 ). It follows from Lemma 1 that
if E(ρ) = σ , then

tr
(
σS(μ)

m
†) = c(μ)tr

(
ρT (μ)

m
†). (3.11)

Finally, recall that the trace norm is nonincreasing under
positive and trace-preserving superoperators. This implies that
if the superoperator E is positive and trace-preserving, then
∀ (μ,m) : ‖E(T (μ)

m )‖ � ‖T (μ)
m ‖, which by virtue of Lemma 1

implies

∀ (μ,m) : |c(μ)| � ‖T (μ)
m ‖

‖S(μ)
m ‖

. (3.12)

In particular, if the input and output spaces are the same, i.e.,
j1 = j2, then

∀ (μ,m) : |c(μ)| � 1. (3.13)

Consider the case where the output space of the G-covariant
superoperator E1 matches the input space of E2 such that the
composition E2 ◦ E1 is well defined. If E1 is described by
the set of matrices {c(μ)} and E2 is described by the set of
matrices {d (μ)}, then E2 ◦ E1 is described by the set of matrices
{d (μ)c(μ)}. This implies that in cases such as the example above,
where all tensor operators are multiplicity free and cμ and
dμ are scalars, then all G-covariant superoperators commute
with each other. Furthermore, this observation implies that a
master equation which describes a G-covariant dynamics can
be decomposed to a set of uncoupled differential equations for
each of these matrices.

IV. MODES OF ASYMMETRY FOR AN ARBITRARY
GROUP

With the framework of irreducible tensor operators in hand,
we can now generalize the notion of modes of asymmetry,
which we have thus far only defined for the case of U(1), to
the case of arbitrary finite groups and compact Lie groups.

Consider the subspace spanned by {T (μ,α)
m : ∀ α} for a fixed

m and μ. Then Lemma 1 implies that any G-covariant superop-
erator maps an operator in this subspace to another operator in
this subspace. This suggests the following definition of modes
of asymmetry.

Definition 2. The (μ,m) mode component of an operator X,
denoted X(μ,m), is defined by

X(μ,m) ≡
∑

α

T (μ,α)
m tr

(
T (μ,α)

m
†X
)
. (4.1)

We call the decomposition X =∑μ,m X(μ,m) the mode de-
composition of operator X.

Note that in the above definition we have assumed that the
basis {T (μ,α)

m } is an orthonormal basis, i.e.,

tr
(
T (μ,α)

m T
(μ′,α′)
m′

†) = δm,m′δμ,μ′δα,α′ .

Lemma 1 has a simple interpretation in terms of mode
decompositions of operators: A G-covariant superoperator E
maps an operator in a particular mode of asymmetry to an
operator in the same mode of asymmetry; i.e., if Y = E(X),
then

∀ μ,m : Y (μ,m) = E(X(μ,m)). (4.2)

So we can think of different pairs (μ,m) as different indepen-
dent modes which cannot be mixed under a G-covariant linear
superoperator. In particular, if an input X has no component in
a particular mode then the corresponding output Y also cannot
have any component in that mode.

The above definition is independent of the choice of the
tensor operators basis, {T (μ,α)

m }. In the following lemma, we
present another way to define modes of asymmetry which is
explicitly basis independent.

Let {g → u(μ)(g)} be the (nonprojective) set of all unitary
irreps of a finite or compact Lie group G and {u(μ)

mm′(g)} be
the matrix elements of these unitary irreps. Recall that these
matrix elements satisfy the orthonormality relations,∫

dg ū(μ)
m1m2

(g)u(ν)
m3m4

(g) = 1

dμ

δμ,νδm1,m3δm2,m4 . (4.3)

where in the case of finite groups the integral is replaced by
the summation over all group elements. Then one can easily
see that the following lemma holds.

Lemma 2. Let X =∑μ,m X(μ,m) be the mode decomposi-
tion of operator X. Then

X(μ,m) = dμ

∫
dg ū(μ)

mm(g) Ug(X), (4.4)

where dμ is the dimension of the irrep μ, dg is the uniform
measure over the group G and the bar represents complex
conjugation.

Proof. We start with Eq. (3.2),

Ug

(
T (μ,α)

m

) =
∑
m′

u
(μ)
m′m(g)T (μ,α)

m′ .

We multiply both sides by ū(ν)
nn (g) and integrate over G. Now

we use the orthonormality relations, Eq. (4.3). This implies
that

∀ α : dμ

∫
dg ū(μ)

nn (g) Ug

(
T (μ,α)

m

) = δm,nδμ,νT
(μ,α)
m . (4.5)

The lemma follows from this equality together with the
definition of mode decompositions given by Eq. (4.1). �

This lemma gives us an alternative method to find the mode
decomposition of a given operator.

It is worth emphasizing an important difference between
the mode decomposition for the case of non-Abelian groups
and the mode decomposition for the case of Abelian groups
such as U(1). This difference concerns the result of symmetry
transformations on operators in different modes. Since

Ug

[
T (μ,α)

m

] =
∑
m′

u
(μ)
m′m(g)T (μ,α)

m′ , (4.6)

it follows that modes (μ,m) and (μ′,m′) for which μ = μ′
do not mix together under the action of the group, but modes
for which μ = μ′ and m = m′ can mix together under this
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action. This can happen because, in general, a symmetry
transformation Ug is not a G-covariant operation, unless the
group G is Abelian. In the Abelian case, modes are just
specified by an irrep label μ.

A. Quantifying the degree of asymmetry in a given mode

As we saw in the specific case of the group U(1), one can
quantify, for a given state, the amount of asymmetry in each
mode in terms of the trace norm of the component of the state
in that particular mode. By a similar argument, it follows that
for each mode (μ,m) the function defined by

Fμ,m(X) ≡ ‖X(μ,m)‖ (4.7)

is an asymmetry monotone.
The constraint on state to ensemble transformations, de-

scribed in Proposition 3 for the U(1) case, generalizes as
follows.

Proposition 4. Suppose there is a G-covariant channel
which maps the state ρ to the ensemble containing states σi

with probabilities pi , where the value of i becomes known at
the end of the process. Then

∀ (μ,m) :
∑

i

pi

∥∥σ (μ,m)
i

∥∥ � ‖ρ(μ,m)‖. (4.8)

Using Definition 2 we can rewrite this bound as

∀ (μ,m) :
∑

i

pi

∑
α

tr
(√

T
(μ,α)
m T

(μ,α)
m

†
)∣∣tr(T (μ,α)

m σ )
∣∣

�
∑

α

tr
(√

T
(μ,α)
m T

(μ,α)
m

†
)∣∣tr(T (μ,α)

m ρ
)∣∣.

As a simple corollary of Proposition 4, if a nondeterministic
G-covariant operation maps state ρ to state σ with probability
p, then

∀ (μ,m) : p‖σ (μ,m)‖ � ‖ρ(μ,m)‖. (4.9)

B. Example: Spin- j system

Consider the case of a spin-j representation of SO(3). Then,
as we have seen before, all the modes are multiplicity free and
so

∀ (μ,m) : Fμ,m(ρ) ≡ ‖ρ(μ,m)‖ = tr
(√

T
(μ)
m T

(μ)
m

†
)∣∣tr(T (μ)

m ρ
)∣∣.

Now if a state ρ of the spin-j system evolves under a
rotationally invariant dynamics to a state σi of the spin-j
system with probability pi , then for all modes (μ,m) it holds
that ∑

i

pi

∣∣tr(T (μ)
m σi

)∣∣ � ∣∣tr(T (μ)
m ρ

)∣∣. (4.10)

So, for example, in the case of mode (μ = 1, m = 0), where
T

(1)
0 = cLz for some constant c, we find∑

i

pi |tr(Lzσi)| � |tr(Lzρ)|.

Note that here the direction ẑ is chosen arbitrarily and so for
any direction n̂ it holds that∑

i

pi |tr(Ln̂σi)| � |tr(Ln̂ρ)|. (4.11)

This result is very intuitive. If a spin-j undergoes a deter-
ministic or stochastic rotationally covariant dynamics, the
average of the absolute value of the expectation value of
angular momentum cannot increase. Note that the sign of
this expectation value can change, i.e., a state whose angular
momentum is negative in the ẑ direction can evolve to a state
whose angular momentum is positive in this direction.

In this example we have assumed that the initial and final
spaces are both spin-j systems. On the other hand, one can
easily show that the absolute value of angular momentum can
increase if the final space is allowed to have a higher spin.
In the following we find a bound which applies to the cases
where the initial and final spaces have different spins. Before
this, we present another consequence of Eq. (4.10) for the case
where both input and output spaces are spin-j .

Although in a rotationally covariant dynamics of a spin-
j system the absolute value of angular momentum can-
not increase, nevertheless the expectation value of higher
powers of angular momentum can increase. However, using
Eq. (4.10) we can find nonincreasing functions which involve
the expectation value of higher powers of angular momentum.
For instance, consider the case of (μ = 2, m = 0). Then, as we
have seen in Sec. III A, for a spin-j representation of SO(3),

T (μ=2,m=0) = c(3L2
z − L2),

where c is a normalization factor. Then Eq. (4.10) implies that

p

∣∣∣∣tr(σL2
z

)− j (j + 1)

3

∣∣∣∣ � ∣∣∣∣tr(ρL2
z

)− j (j + 1)

3

∣∣∣∣, (4.12)

where we have used the fact that for all spin-j systems
the expectation value of L2 is j (j + 1). Note that the ẑ

direction is chosen arbitrarily. So, for arbitrary direction n̂,
|tr(ρL2

n) − j (j + 1)/3| is nonincreasing under rotationally
covariant dynamics, even though tr(ρL2

n̂) can increase.
Now we find a bound on the change of the absolute value

of the expectation value of angular momentum when the input
and output spaces have different spins.

To achieve this goal, we calculate ‖ρ(μ,m)‖ for the mode
(μ = 1, m = 0) in the case of a spin-j system. Using the fact
that T (μ=1,m=0) = cLz for some constant c, we find

Fμ=1,m=0(ρ) ≡ ‖ρ(1,0)‖ = tr
(√

L2
z

)
tr
(
L2

z

) |tr(Lzρ)|

= 3tr
(√

L2
z

)
tr
(
L2
) |tr(Lzρ)|, (4.13)

where we have used the normalization condition, i.e.,
|c|2tr(L2

z) = 1. One can easily see that tr(L2) = j (j + 1)(2j +
1) and

tr
(√

L2
z

) =
{
j (j + 1) integer j,

(j + 1/2)2 half integer j.
(4.14)
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So

‖ρ(1,0)‖ =
{

3
2

|tr(Lzρ)|
j+1/2 integer j,

3
2

|tr(Lzρ)|(j+1/2)
j (j+1) half integer j.

(4.15)

So ‖ρ(1,0)‖ is less than or equal to 3/2 and at the limit of j

going to infinity it tends to 3/2.
Now we can find an analog of the bound of Eq. (4.11) for

the case where the input and output systems have spins j and
j ′, respectively. If, for example, both j and j ′ are integer then

p
|tr(Ln̂σ )|
j ′ + 1/2

� |tr(Ln̂ρ)|
j + 1/2

. (4.16)

In Proposition 7 below, we show that the quantity |tr(Lzρ)|
j+1/2

admits of an operational interpretation: It quantifies the ability
of the state ρ to act as a quantum reference frame for the task
of distinguishing, on a spin- 1

2 system, the two eigenstates of
Lz, |j = 1/2,m = −1/2〉 and |j = 1/2,m = 1/2〉.

V. SIMULATING QUANTUM OPERATIONS BY QUANTUM
REFERENCE FRAMES

Consider the situation where we are restricted to those
Hamiltonians which all have a particular symmetry. Then it
is still possible to simulate a dynamics which breaks this
symmetry if we have access to a state which breaks the
symmetry, i.e., a source of asymmetry. As we have mentioned
earlier, this symmetry-breaking state is called a quantum
reference frame. By coupling this quantum reference frame to a
system via a symmetric dynamics, we can effectively generate
an asymmetric dynamics or measurement on this system. In
this section we are interested in finding the set of asymmetric
dynamics and measurements which can be simulated using a
given quantum reference frame.

As a simple example, consider the case where we are
restricted to the rotationally invariant Hamiltonians. Then by
coupling a quantum system to a large magnet with magnetic
field in the ẑ direction via a rotationally invariant Hamiltonian,
we can effectively simulate a rotation around the ẑ axis on
that quantum system (note that a rotation is not a rotationally
invariant operation and so cannot be performed without having
access to a system which breaks the rotational symmetry).
In this case, we can model the magnet by a spin-j system
in a large coherent state polarized in the ẑ direction, i.e., in
the maximum weight eigenstate of Lẑ, |j,m = j 〉ẑ. Then by
coupling the quantum system to this quantum reference frame
one can realize a quantum channel on the system such that
this channel at the limit where j goes to infinity approaches
a perfect (unitary) rotation. In fact, one can show that, using
a spin-j in the coherent state in the ẑ direction, at the limit
of large j any arbitrary dynamics which is invariant under
rotation around ẑ can be simulated on the system [7].2

Note that by having access to this quantum reference frame
we still cannot simulate a rotation around x̂ or any other

2Furthermore, it is shown in Ref. [7] that if, in addition, one has
access to a similar quantum reference frame in a coherent state
polarized in the x̂ direction, then one can simulate arbitrary dynamics
on the system.

dynamics which is not invariant under rotation around ẑ. More
generally, for a given quantum reference frame, only those time
evolutions and measurements can be simulated which have all
the symmetries of the quantum reference frame. In this section
we generalize this simple observation by finding a relation
between the modes of asymmetry of the quantum reference
frame and the modes of asymmetry of a time evolution or
measurement that can be simulated using it.

A. Modes of asymmetry of quantum operations

The notion of modes of asymmetry naturally extends to
the superoperators. Let g → U (g) be the projective unitary
representation of G on the Hilbert space H. Also, let Ug(·) ≡
U (g)(·)U †(g). Then g → Ug is a (nonprojective) unitary
representation of G on B(H). Similarly, we can define a
representation of G on the space of all linear superoperators:
Consider the linear space of all superoperators from B(Hin) to
B(Hout). Then a natural representation of G on this space is
given by the map

∀ g ∈ G : Ug[E] ≡ Uout
g ◦ E ◦ U in

g−1 (5.1)

for arbitrary E : B(Hin) → B(Hout), where g → U in
g and g →

Uout
g are the representations of the symmetry on B(Hin)

and B(Hout), respectively. This representation has a natural
physical interpretation: Suppose the representation g → U (g)
describes a change of reference frame, such that a state which
is described by |ψ〉 in the old reference frame is described by
U (g)|ψ〉 in the new reference frame. Then an observable or a
density operator which is described by an operator A relative
to the old reference frame will be described by Ug[A] relative
to the new reference frame. Similarly, a superoperator which
is described by E relative to the old reference frame will be
described by Ug[E] relative to the new reference frame.

Now, following the same logic we used to define modes of
asymmetry of operators based on the representation g → Ug

of group G on the space of operators, we can define the
notion of modes of asymmetry of superoperators based on
the representation g → Ug of group G on the space of super-
operators. One way to do this is by defining the analogs of the
irreducible tensor operators for superoperators. Alternatively,
we can define modes of asymmetry for superoperators using
the analog of Lemma 2 .

Definition 3. The mode (μ,m) of the superoperator E ,
denoted by E (μ,m) is defined by

E (μ,m) = dμ

∫
dg ū(μ)

mm(g) Ug [E] , (5.2)

where dμ is the dimension of the irrep μ. We call the
decomposition E =∑μ,m E (μ,m) the mode decomposition of
the superoperator E and E (μ,m) the (μ,m) modal component of
E .

Note that this definition implies that a G-covariant super-
operator only has a nonzero component in the mode which
corresponds to the trivial representation of the group, denoted
by μ = 0.

Let g → U (g) be the representation of the symmetry group
on the Hilbert space H. As we have seen before, we can find
the set of all modes of asymmetry that an operator X ∈ B(H)
can possibly have, by decomposing the representation g →
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U (g) ⊗ Ū (g). Similarly, we can find all modes of asymmetry
that a superoperator E : B(Hin) → B(Hout) can possibly have
by decomposing the representation

g → Uout(g) ⊗ Ūout(g) ⊗ Uin(g) ⊗ Ūin(g)

to irreps of G. Here g → Uin(g) and g → Uout(g) are the
representations of the symmetry group on Hin and Hout,
respectively.

Example 4. Consider the group of rotations in R3, i.e.,
G = SO(3), and assume the input Hilbert space carries a j1

irrep and the output Hilbert space carries a j2 irrep. Then any
superoperator from B(Hin) to B(Hout) can have modes (μ,m)
with μ � 2(j1 + j2). In particular, if the input and output
spaces of a superoperator are both spin- 1

2 systems (i.e., j1 =
j2 = 1/2), then the superoperator can only have modes (μ =
0), (μ = 1, m = −1,0,1), and (μ = 2, m = −2, − 1,0,1,2).
On the other hand, if the input space Hin is a spin- 1

2 irrep of
SO(3) and the output space is invariant under rotation (i.e.,
j1 = 1/2 and j2 = 0), then the superoperator can only have
modes (μ = 0),(μ = 1, m = −1,0,1). These latter kind of
superoperators can describe, for example, measurements on
a spin- 1

2 system where the postmeasurement state is always
rotationally invariant.

In this example, we found all modes of asymmetry that a
measurement performed on a spin- 1

2 system can possibly have.
In the following we study the notion of modes of asymmetry
of measurements more closely.

Modes of asymmetry of measurements

In the study of the modes of asymmetry of measurements,
we focus on the aspect of a measurement that is relevant for
making inferences about the input, that is, its informative
aspect, and neglect the aspect that is relevant for making
predictions about future measurements on the system, that
is, its state-updating aspect.

Let {Mλ} be the positive operator-valued measure (POVM)
describing an arbitrary measurement. Define the channel

M(X) ≡
∑

λ

tr(XMλ)|λ〉〈λ|, (5.3)

where the set {|λ〉} consists of orthogonal and G-invariant
states. Then any measurement whose statistics is described by
the POVM {Mλ} can be realized by first applying the channel
M(·) to the state and then measuring the output system in the
{|λ〉} basis. But, this latter measurement is G covariant and
so one does not need a quantum reference frame to realize
it. So to find the asymmetry resources required to implement
a measurement of the POVM {Mλ}, it suffices to find the
asymmetry resources required to implement M.

One can easily show the following.
Lemma 3. M(μ,m), the (μ,m) modal component of M, is

equal to

M(μ,m)(X) =
∑

λ

tr
(
XM

(μ,m)
λ

)|λ〉〈λ|, (5.4)

where M
(μ,m)
λ is the (μ,m) modal component of the operator

Mλ.

Proof. First note that, by Definition 3,

M(μ,m)(X) ≡ dμ

∫
dg ū(μ)

mm(g) Uout
g ◦ M ◦ U in

g−1 (X). (5.5)

Here the representation of symmetry on the output system is
trivial and so

M(μ,m)(X) = dμ

∫
dg ū(μ)

mm(g) Uout
g ◦ M ◦ U in

g−1 (X)

= dμ

∑
λ

|λ〉〈λ|
∫

dg ū(μ)
mm(g)tr

(
U in

g−1 (X)Mλ

)

= dμ

∑
λ

|λ〉〈λ|
∫

dg ū(μ)
mm(g)tr

(
XU in

g (Mλ)
)

=
∑

λ

tr
(
XM

(μ,m)
λ

)|λ〉〈λ|.

�
Further on, we use this observation to infer the asymmetry

resources which are required to implement a given measure-
ment.

B. From modes of quantum reference frames to modes
of quantum channels

As described above, under the assumption that all symmet-
ric dynamics are free, we can use a quantum reference frame,
which breaks the symmetry, as a resource of asymmetry which
enables us to simulate dynamics which break the symmetry.

Definition 4. Let Hsys and HRF be Hilbert spaces with pro-
jective unitary representations g → Usys(g) and g → URF(g)
of group G. We say that a channel E : B(Hsys) → B(Hsys)
can be simulated using the resource state ρRF if there exists
a channel Ẽ : B(Hsys ⊗ HRF) → B(Hsys ⊗ HRF) which is G

covariant, i.e.,

∀ g ∈ G : Ẽ ◦ (U sys
g ⊗ URF

g

) = (U sys
g ⊗ URF

g

) ◦ Ẽ,

such that

E(X) = trRF[Ẽ(X ⊗ ρRF)]. (5.6)

Now one can easily prove the following result.
Lemma 4. Suppose the channel E can be simulated using

a quantum reference frame in the state ρ and a G-covariant
channel Ẽ such that E(X) = trRF[Ẽ(X ⊗ ρ)]. Then

E (μ,m)(X) = trRF[Ẽ(X ⊗ ρ(μ,m))]. (5.7)

Proof. First, note that

Ug[E](X) = Ug ◦ E ◦ Ug−1 (X)

= Ug ◦ trRF{Ẽ[Ug−1 (X) ⊗ ρ]}.
Then, because Ẽ is G-covariant, we have

Ug[E](X) = trRF{Ẽ[X ⊗ Ug(ρ)]}.
By multiplying both sides by ū

(μ)
mm(g) and taking the integral

over G, we prove the lemma. �
In the previous section, we defined Modes(ρ) to be the

set of all modes in which state ρ has nonzero components.
Similarly, we define Modes(E) to be the set of all modes in
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which a channel E has nonzero components. Then the above
lemma implies the following.

Proposition 5. If a quantum reference frame ρ can simulate
a quantum channel E , then

Modes(E) ⊆ Modes(ρ). (5.8)

So if a quantum reference frame does not have a particular
mode of asymmetry, it cannot simulate a time evolution
or measurement which has that mode of asymmetry. Also,
the lemma implies that to specify whether a given quantum
reference frame ρ can simulate a quantum channel E or not we
only need to know the components of ρ in modes contained
in Modes(E). So, as we will see in an example, although
the Hilbert space of the quantum reference frame might be
arbitrarily large, the number of parameters required to specify
its performance for some specific simulation can be very small.

Furthermore, for any given finite-dimensional Hilbert space
Hsys, there is a finite set of modes in which a channel acting on
B(Hsys) can have nonzero components. So for a given quantum
reference frame ρRF on an arbitrarily large Hilbert space and
having amplitude over arbitrarily many representations of the
group, the properties of the quantum reference frame which
are relevant for simulating arbitrary channels acting onB(Hsys)
can be specified merely by specifying the components of ρRF

in that finite set of modes.

Example: Reference frames of unbounded size may
still lack modes

In the case of G = SO(3), consider the family of quantum
reference frames defined by

|ψN 〉 ≡ 1√
N

N∑
k=1

|j = N2 + 2k,m = N2 + k〉.

One can easily show that, at the limit of large N these states
are very sensitive to rotations around ẑ and also rotations
around any axis in the x̂-ŷ plane. In other words, for any
small such rotation, |ψN 〉 is almost orthogonal to the rotated
version of |ψN 〉. So, one may think that at the limit of
large N this quantum reference frame completely breaks the
symmetry and so it can be used to simulate any arbitrary
measurement on a spin- 1

2 system. This is not the case, however.
Indeed, it turns out that even though at the limit of large N

these states are very sensitive to rotations around ẑ (that is,
they break this symmetry), nonetheless they cannot simulate
any measurement on a spin- 1

2 system which is not invariant
under rotations around ẑ. To see this, first note that if the
POVM elements of a measurement on a spin- 1

2 system are
not invariant under rotations around ẑ, then they have nonzero
components in the modes (μ = 1, m = ±1). Then Lemma
3 implies that the channel describing that measurement will
have modes (μ = 1, m = ±1). Now Proposition 5 implies
that to be able to simulate any such measurement a quantum
reference frame needs to have a nonzero component in the
modes (μ = 1, m = ±1). However, using the Wigner-Eckart
theorem, one can easily show that none of the states in

the above family have a nonzero component in the modes
(μ = 1, m = ±1).3

The conclusion is that there are measurements that break
rotational symmetry that cannot be simulated by this family of
quantum reference frames.

VI. EXAMPLE: SPIN- j SYSTEM AS A QUANTUM
REFERENCE FRAME

The problem of using a spin-j system as a quantum
reference frame to simulate dynamics or measurements which
are not invariant under rotations has been studied in several
papers (see, e.g., [2–11]). In this section, we show that the
mode decomposition of states provides an extremely powerful
insight into this problem. In particular, we show that using this
approach some of the previously known results which have
been achieved in an ad hoc manner can be reproduced and
generalized in a systematic way.

A. Simulating measurements and dynamics on a spin- 1
2 system

We start with the problem of simulating measurements on
a spin- 1

2 system. Here the assumption is that we are restricted
to use rotationally invariant unitaries, ancillary systems in
rotationally invariant states, and measurements whose POVM
elements are all rotationally invariant. Under this restriction,
we are given a spin-j system in an arbitrary state ρ as
a quantum reference frame and our goal is to simulate a
noninvariant measurement on a spin- 1

2 system. Here we focus
on the informative aspect of the measurement; that is, we are
not concerned with how the state of system is updated after
the simulated measurement.

For an arbitrary measurement on a spin- 1
2 system, consider

the channel which describes the informative aspects of this
measurement, as defined in Eq. (5.3). Then consider the set
of all modes {(μ,m)} in which this channel can have nonzero
components. We can conclude from Lemma 3 that this set
is equal to {(μ = 0),(μ = 1, m = −1,0, + 1)} (This is also
shown in Example 4.).

Then it follows from Lemma 4 that the only properties
of ρ that are relevant for its performance in simulating a
measurement on a spin- 1

2 system are its components in the
modes {(μ = 0),(μ = 1, m = −1,0, + 1)}, i.e., ρ(μ=0) and
{ρ(μ=1,m) : m = −1,0,1}. Furthermore, since the irreducible
tensor operator basis on a spin-j system is multiplicity-free,
each of these components is determined by only one parameter,
namely, the Hilbert-Schmidt inner product between ρ and the

3Consider the terms in the decomposition

|ψN 〉〈ψN | = 1

N

N∑
k,k′=1

|j = N 2 + 2k,m = N 2 + k〉

× 〈j ′ = N 2 + 2k′,m′ = N 2 + k′|.
Any term in this decomposition with k = k′ is invariant under
rotations around ẑ and so it only has components in modes (μ,m = 0).
On the other hand, terms with k = k′ have no components in any of
the modes (μ = 1, m = −1,0, + 1) because j and j ′ always differ
by at least 2.
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corresponding component of the irreducible tensor operator
basis,

T (μ=0) = c0I, T
(μ=1)
m=0 = c1Lz, and T

(μ=1)
m=±1 = ± c1√

2
L±,

where c0 and c1 are normalization factors. It follows that
the components of ρ in the modes {(μ = 0),(μ = 1, m =
−1,0, + 1)} are uniquely specified by the vector of expectation
values of angular momentum for ρ, i.e., (〈Lx〉,〈Ly〉,〈Lz〉).

So we conclude the following.
Proposition 6. Consider a spin-j system in state ρ as

a quantum reference frame. Its performance in simulating
(informative aspects of) measurements on a spin- 1

2 system
is uniquely specified by the vector of expectation values of
angular momentum of ρ.

This result has been previously obtained in [5] using a
totally different and rather ad hoc argument. However, using
our approach we can easily generalize it to the case of
measurements on systems supporting arbitrary representations
of SO(3) (as opposed to just the spin- 1

2 representation).
Before presenting this generalization we investigate some
implications of Proposition 6.

An interesting consequence is the following: Suppose the
system is spin-j and the vector of expectation values of angular
momentum of ρ is polarized in the n̂ direction. In general, for
j = 1/2, such a state need not be invariant under rotations
around n̂. Now consider the symmetrized version of ρ, i.e., the
state

ρsym ≡ 1

2π

∫
dθ e−iθ �L.n̂ρ eiθ �L.n̂,

which is invariant under rotations around n̂. One can easily
see that this state has the same vector of expectation values
of angular momentum as the original state ρ. Therefore, any
measurement on the spin- 1

2 system which can be simulated
using ρ can also be simulated using ρsym and vice versa.
However, since ρsym is invariant under rotations around n̂, it
can only simulate those measurements whose POVM elements
are invariant under rotations around n̂. This argument implies
the following.

Corollary 1. Consider a spin-j system in state ρ as a
quantum reference frame for direction. If ρ has a vector of
expectation values of angular momentum that is polarized in
the n̂ direction, then it can only simulate those measurements
on a spin- 1

2 system for which the POVM elements are invariant
under rotations around n̂.

So, even at the limit of large j , a single spin-j system cannot
act as a perfect reference frame for direction even if it does not
have any symmetries.

As an example of simulating measurements on a spin- 1
2

system, consider the following problem: suppose one uses a
spin-j system in the state ρ as a quantum reference frame
to measure the angular momentum of a spin- 1

2 system in the
ẑ direction, that is, to measure the observable σz. It can be
shown that this measurement cannot be simulated perfectly
with a quantum reference frame of bounded size. This result
is known as the Wigner-Araki-Yanase theorem [29–31] and
is quite an intuitive result in the context of the resource
theory of asymmetry [10,11]. Now the question is as follows:
Using the spin-j system in the state ρ as a quantum reference

frame, how well can one simulate this measurement? In other
words, using this quantum reference frame, what is the highest
precision attainable in a simulation of a measurement of
σz? We evaluate the precision of the realized measurement
using the following figure of merit: the highest probability of
successfully distinguishing an unknown eigenstate of σz when
we are given each of the two eigenstates with equal probability.

The answer, which we prove in an appendix, is as follows.
Proposition 7. Suppose we are restricted to the rotationally

invariant measurements but we have access to the state ρ

of a spin-j system as a quantum reference frame. Then the
maximum probability of successfully distinguishing the two
eigenstates of σz for a spin- 1

2 system, |j = 1/2, m = 1/2〉 and
|j = 1/2, m = −1/2〉, when the prior probabilities of the two
are equal, is given by

psucc(ρ) = 1

2

[
1 + |tr(ρLz)|

j + 1/2

]
. (6.1)

So, as we expected from Proposition 6, this probability
only depends on the expectation value of the vector of angular
momentum (in this case, just the ẑ component). Note that,
as one may expect intuitively, in the limit where j becomes
arbitrarily large, the coherent state |j,j 〉 can be used as a
quantum reference frame to simulate the measurement of σz

perfectly.
Finally, it is worth mentioning that if the Hilbert space

of the quantum reference frame under consideration carries
different irreps of SO(3) or if it has more than one copy of an
irrep, then the vector of angular momentum of the reference
frame state alone is not sufficient to specify the measurements
it can simulate on a spin- 1

2 system. For example, suppose the
quantum reference frame is formed from a spin-j system and
a qubit whose states are invariant under rotation. This means
that the total Hilbert space of the quantum reference frame has
two copies of irrep j of SO(3). Suppose the quantum reference
frame is in the state

1√
2

(|j,m = j 〉|λ = 1〉 + |j,m = −j 〉|λ = 2〉),

where λ labels different orthogonal states of the qubit. Then,
one can easily show that at the limit of large j this reference
frame can simulate any arbitrary measurement which is
invariant under rotation around ẑ. However, the expectation
value of angular momentum for this state is zero in all
directions. So, for a general representation of SO(3), these
expectation values cannot characterize the ability of the state
to simulate measurements on a spin- 1

2 system.
Proposition 6 can be easily generalized to the problem of

simulating arbitrary dynamics on a spin- 1
2 system.4

Recalling Example 4, it is clear that the modes of asym-
metry appearing in the modal decomposition of a channel
on a spin- 1

2 system are {(μ = 0),(μ = 1, m = −1,0,1),(μ =
2, m = −2, − 1,0,1,2)}. So, Lemma 4 implies that to specify
the ability of a particular state ρ of the spin-j system to
simulate an arbitrary dynamics on a spin- 1

2 system, we merely

4This includes, as a special case, the problem of simulating
measurements when we are concerned with simulating not just their
informative aspect, but the particular update rule as well.
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need to specify these modes of asymmetry of ρ. Again from
the result of Sec. III A we can see that the components of ρ in
these modes are uniquely specified by the following eight real
parameters:

μ = 1 modes : 〈Lx〉,〈Ly〉,〈Lz〉,
μ = 2 modes :

〈
L2

x

〉
,
〈
L2

y

〉
,〈LxLy + LyLx〉, (6.2)

〈LxLz + LzLx〉, 〈LyLz + LzLy〉.
So to summarize, we have shown the following.

Proposition 8. Consider a spin-j system in state ρ as
a quantum reference frame. Its performance in simulating
channels on a spin- 1

2 system is uniquely specified by the eight
real parameters specified in Eq. (6.2).

B. Generalization to arbitrary systems

In the previous section we considered the problem of
simulating measurements and channels on spin- 1

2 systems. In
this section we generalize these results to arbitrary systems.
We start with a generalization of Propositions 6 and 8 .

Theorem 2. Consider a spin-j system in state ρ as a
quantum reference frame. Its performance for simulating a
measurement (channel) on a system with Hilbert space H
is uniquely specified by (2l + 1)2 − 1 [(4l + 1)2 − 1] real
parameters, where l is the largest angular momentum quantum
number which shows up in the decomposition of H into irreps
of SO(3). These parameters of ρ correspond to the expectation
values of all the nontrivial irreducible tensor operators with
rank less than or equal to 2l (4l).

The proof is presented in Appendix B. Note that an arbitrary
state ρ of a spin-j system is specified by (2j + 1)2 − 1 real
parameters. However, the above result implies that the number
of parameters of ρ that are relevant for its performance in the
simulation task depends only on l, the size of the system to
which the measurement or channel is applied, and not on j ,
the size of the quantum reference frame.

An important special case is where the state ρ is invariant
under rotations around some axis n̂. This special case has been
previously considered for example in [6]. From Theorem 2 we
get the following.

Corollary 2. Consider a spin-j system in state ρ as a
quantum reference frame, and suppose that ρ is invariant
under rotations around the direction n̂. Its performance in
simulating a measurement (channel) can be uniquely specified
by 2l (4l) real parameters corresponding to the moments
{tr(ρLk

n̂) : 1 � k � 2l} ({tr(ρLk
n̂) : 1 � k � 4l}), where Ln̂ is

the angular momentum operator in the n̂ direction.
Note that to specify an arbitrary state ρ of a spin-j system

which has the relevant symmetry property (invariance under
rotations around direction n̂), one needs 2j real parameters. An
instance of these parameters is {tr(ρLk

n̂) : 1 � k � 2j}. This
particular characterization of states is used in [6] to specify
how the quality of a quantum reference frame degrades after
using it to simulate a channel or measurement.

In particular, they use this characterization to study the
problem of simulating channels on a spin- 1

2 system and
of simulating measurements on a spin-1 system. However,
from the result of Corollary 2 we know that to specify the
performance of the quantum reference frame in both of these

cases, we only need to specify two real parameters, namely,
tr(ρLn̂) and tr

(
ρL2

n̂

)
. As we see next, this can lead to a

significant simplification of the problem of characterizing how
a quantum reference frame degrades when used to implement
measurements and channels on another system.

C. Degradation of quantum reference frames

Using a quantum reference frame to simulate a symmetry-
breaking measurement or channel will inevitably degrade
it. This degradation of quantum reference frames can be
understood as a manifestation of the fact that obtaining
information about a quantum system will necessarily disturb
it.

For example, in the case of rotational symmetry, consider
a quantum reference frame which specifies an unknown
direction in space. We can use this quantum reference frame
to simulate a rotation around this unknown direction on an
object system. Then, by comparing the initial and final states
of the object system we can obtain some information about
the unknown direction. So using a quantum reference frame
for simulating a rotation can be understood as performing a
measurement on the quantum reference frame and since we
thereby obtain some information about the quantum reference
frame, its state is necessarily disturbed in the process.

Different aspects of the degradation of quantum refer-
ence frames have been studied in several papers (see, e.g.,
[3–6,10,11,32,33] and the references in [2]). A central question
studied in these papers is how the performance of the quantum
reference frame for simulating the measurement or channel
drops as a function of the number of implementations of the
latter.

A natural special case of the degradation problem, consid-
ered in [3,4,6], is where the average of the state of the system
to which the measurement or channel is applied is symmetric.
In other words, each time we use the quantum reference frame
to simulate an operation on the object system, the initial state
of the object system is chosen at random from an ensemble the
average state of which does not break the symmetry. So, for
example, in the case of rotational symmetry, which we study in
this section, the average state of the object system is assumed
to be rotationally invariant.

Then it follows that under this assumption the degradation
of the quantum reference frame will be described by a
rotationally covariant channel. In other words, the state of
the quantum reference frame after k uses, denoted ρk , will be

ρk = EDeg(ρk−1), (6.3)

where EDeg is a G-covariant channel. This implies that, under
this assumption about the distribution of the states of the
object system, different modes of asymmetry of the quantum
reference frame degrade independently, i.e.,

∀ (μ,m) : ρ
(μ,m)
k = EDeg

(
ρ

(μ,m)
k−1

)
. (6.4)

This simple observation can greatly simplify the analysis.
Consider the case of spin-j quantum reference frames

for direction. First, note that this observation together with
Theorem 2 implies that the quality of simulation of a channel
or measurement on an object system after using the quantum
reference frame for arbitrary number of times only depends on
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a fixed number of parameters of the initial state of the quantum
reference frame and this number is independent of the size of
the quantum reference frame.

Furthermore, from Example 3 we know that since the
channel EDeg which describes the degradation of the quantum
reference frame is rotationally covariant it holds that

∀ (μ,m) : ρ
(μ,m)
k = c(μ)ρ

(μ,m)
k−1 , (6.5)

where {c(μ)} is a set of real coefficients which describe the
channel EDeg and ∀ μ : |c(μ)| � 1. Then, since, for a spin-j
representation of SO(3), the elements of the irreducible tensor
operator basis {T (μ)

m } are multiplicity-free it holds that ρ(μ,m)
k =

tr(ρkT
(μ)
m

†)T (μ)
m and, therefore,

∀ (μ,m) : tr
(
ρkT

(μ)
m

†) = c(μ)tr
(
ρk−1T

(μ)
m

†). (6.6)

So if ρ and ρk are respectively the initial state of the quantum
reference frame and its state after k uses, then it holds that

∀ (μ,m) : tr
(
ρkT

(μ)
m

†) = (c(μ))ktr
(
ρT (μ)

m
†). (6.7)

Since |c(μ)| � 1 we can conclude that each of the modal
components of the state of the quantum reference frame either
remains constant or decays exponentially.

Example 5. Here we consider the scenarios studied in [6],
where a spin-j system is used as a quantum reference frame to
simulate channels on a spin- 1

2 system and measurements on a
spin-1 system. Furthermore, it is also assumed that the average
of the state of the object system is rotationally invariant. This
implies that the channel which describes the degradation of
the quantum reference frame is also rotationally covariant. It
is also assumed in [6] that the state of the quantum reference
frame is initially invariant under rotation around an arbitrary
direction which we denote by ẑ. Note that since the degradation
of the quantum reference frame is described by a rotationally
covariant channel, the state of the quantum reference frame
will remain invariant under rotations around ẑ.

Now from Theorem 2 and Corollary 2 we know that the
performance of the state ρ of this quantum reference frame for
these simulations is uniquely specified by two real parameters:
The components of ρ in modes (μ = 1, m = 0) and (μ =
2, m = 0). These are specified by

tr
(
ρT

(μ=1)
m=0

†) = A1tr(ρLẑ),

and tr
(
ρT

(μ=2)
m=0

†) = A2tr
[
ρ
(
3L2

z − L2
)]

,

where A1 and A2 are independent of ρ.5 Note that since the
state ρ by assumption is confined to the irrep j of SO(3), it
follows that tr(ρL2) = j (j + 1) and so

tr
(
ρT

(μ=2)
m=0

†) = A2
[
3tr
(
ρL2

z

)− j (j + 1)
]
.

In other words, the quality of simulation is uniquely specified
by the expectation values of the first and the second moments
of Lz for ρ.

Now using Eq. (6.7) we can conclude that if the initial
state of the quantum reference frame is ρ and if we have used

5A−1
1 = √tr(L2

z) and A−1
2 = √tr([3L2

z − L2]2).

the quantum reference frame k times, then the quality of the
(k + 1)th simulation is uniquely specified by

tr(ρkLz) = (c(1))ktr(ρLz) (6.8)

and

tr
(
ρkL

2
z

) = [c(2)]ktr
(
ρL2

z

)+ [1 − (c(2))k
]j (j + 1)

3
, (6.9)

where {c(μ)} is the set of coefficients which describe the
degradation channel EDeg. So, in the example studied in [6],
the only properties of the channel EDeg which are relevant to
specify the drop in the quality of simulation after many uses
are the two real coefficients c(1) and c(2). Finally, note that
since |c(1)| � 1 then Eq. (6.8) implies that the absolute value
of tr(ρkLz) is either constant or decays exponentially with k.
Similarly, since |c(2)| � 1, then Eq. (6.9) implies that tr(ρkL

2
z)

is either constant or exponentially saturates to j (j + 1)/3,
which is the expectation value of L2

z for the completely mixed
state.
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APPENDIX A: QUANTUM COHERENCE AS ASYMMETRY
RELATIVE TO PHASE SHIFTS

We here argue that quantum coherence, considered as a
resource, is simply the resource of asymmetry relative to phase
shifts.

Consider the case of coherence between the eigenspaces
of a number operator N . For the phase complementary to N ,
the group of phase shifts is represented by the set of unitaries
{eiθN : θ ∈ (0,2π ]}. Clearly, the set of states that are invariant
under phase shifts are those that are block-diagonal relative to
the eigenspaces of the number operator, i.e., precisely those
that have no coherence relative to these eigenspaces. Hence, a
state with coherence is one that has some asymmetry relative
to phase shifts.

Another observation which supports this view of coherence
is that phase-insensitive operations, that is, operations that
commute with all phase shifts, cannot generate coherence.
In other words, under a phase-insensitive time evolution,
incoherent states such as |n〉〈n| or 1

2 (|0〉〈0| + |n〉〈n|) cannot
evolve to states which have coherence. From the point of view
of the theory of asymmetry, this is a special example of the
more general fact that for any given symmetry, symmetric
time evolutions cannot take symmetric states to asymmetric
states. Therefore, the problem of quantifying and classifying
coherence can be considered as a special case of the theory of
asymmetry where the group under consideration is U(1). The
theory of asymmetry is more general, however, because it also
concerns non-Abelian groups, such as SO(3), where there is
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no preferred set of subspace coherences between which imply
asymmetry.

A slightly different approach to the study of coherence
was recently proposed in [34]. Instead of focusing on phase-
insensitive operations, the focus is on a class of incoherent
operations, which is defined as the set of all operations
that transform every incoherent state to another incoherent
state. One can easily show that incoherent operations are a
proper subset of phase-insensitive operations: For instance, for
any n = m and n′ = m′, the transformation α|n〉 + β|m〉 −→
α|n′〉 + β|m′〉 can be realized via an incoherent operation,
while it is forbidden under phase-insensitive operations unless
n − m = n′ − m′. In other words, incoherent operations allow
arbitrary permutations among the number eigenspaces. It
follows that all states of the form α|n〉 + β|m〉 for n = m are
equivalent (i.e., reversibly interconvertible) under incoherent
operations, whereas they are not all equivalent relative to
phase-insensitive operations.

To decide which of these two subsets of quantum oper-
ations is best suited to define coherence as a resource, one
should consider whether there is some realistic restriction on
experimental capabilities that would imply the realizability
of only this subset. In other words, we ask whether one can
provide an operational interpretation of either subset. Just an
interpretation exists for phase-insensitive operations: These
arise from the restriction that is imposed on a pair of parties
when they lack a shared phase reference [2]. For instance, if
the phase describes the configuration of an oscillator that is
acting as a clock, then if two parties fail to have synchronized
clocks, they lack a shared phase reference. In these situations
the transformation α|n〉 + β|m〉 −→ α|n′〉 + β|m′〉 cannot
happen unless n − m = n′ − m′. On the other hand, it is not
clear if there is any operational scenario which motivates the
study of incoherent operations.

This analysis is bolstered by considering a similar distinc-
tion in entanglement theory. The subset of quantum operations
that is taken to define the resource of entanglement is the
set of local operations and classical communication (LOCC).
This is distinct from the set of nonentangling operations,
the operations which map unentangled states to unentangled
states. The latter set in particular includes nonlocal operations
such as swapping two separated systems. There is no obvious
restriction on experimental capabilities that would permit
swapping without also permitting the use of a quantum
channel. In other words, while the set of LOCC operations
has a clear operational meaning, the set of nonentangling
operations does not. Nonlocal operations such as swap are the
counterpart, within the set of nonentangling operations, of the
general permutations within the set of incoherent operations:
Neither seems to admit of a good operational interpretation.

APPENDIX B: PROOFS

1. Proof of Lemma 1

Since {S(μ,α)
m } is a basis for B(Hout), then for any map E

E
(
T (μ,α)

m

) =
∑

μ′,m′,β

c(μ,μ′;m,m′;α,β)S
(μ′,β)
m′ (B1)

for some coefficients c(μ,μ′; m,m′; α,β). Now we apply the
superoperatorUg to both sides of the above equation. Applying
Ug on the left-hand side and using G covariance of E , we get

Ug

(
E
(
T (μ,α)

m

)) = E
(
Ug

(
T (μ,α)

m

)) =
∑
m′′

u
(μ)
m′′m(g) E

(
T

(μ,α)
m′′

)
.

(B2)
On the other hand, applying Ug to the right-hand side of
Eq. (B1) we get

Ug

⎛⎝ ∑
μ′,m′,β

c(μ,μ′;m,m′;α,β)S
(μ′,β)
m′

⎞⎠
=
∑

μ′,m′,β

c(μ,μ′;m,m′;α,β)

∑
m′′

u
(μ′)
m′′m′(g)S(μ′,β)

m′′ .

Equating the right-hand sides of the above two equations and
using the orthogonality of the functions {u(μ)

mm′′ (g)}, we find
that c(μ,μ′;m,m′;α,β) can be written as

c(μ,μ′;m,m′;α,β) = δmm′δμμ′c
(μ)
βα . (B3)

So we conclude that

E
(
T (μ,α)

m

) =
∑

β

c
(μ)
βα S(μ,β)

m . (B4)

Note that the orthonormality of the basis {S(μ,α)
m } implies

c
(μ)
βα = tr

(
S(μ,β)

m
†E
(
T (μ,α)

m

))
, (B5)

which holds for all m. Finally, we notice that the orthonormal-
ity of the basis {T (μ,α)

m } together with linearity of E implies

E(X) =
∑

μ,m,α

tr
(
T (μ,α)

m
†X
)
E(T (μ,α)

m ). (B6)

These last three equations together prove the lemma.

2. Proof of Theorem 2

We start by the proof in the case of measurements. This
proof follows exactly the same as the proof in the special case
of spin- 1

2 systems. SupposeH is the Hilbert space of the system
on which we simulate the measurement. Then by assumption
the largest irrep of SO(3) showing up in H is l. Let g → U (g)
denote the projective representation of SO(3) on H.

Then, as we have seen in Sec. III A the set of possible
ranks of the irreducible tensor operators acting on H is the
same as the set of all irreps of SO(3), which show up in the
representation g → U (g) ⊗ Ū (g). However, from Sec. III A
we know that in the case of SO(3) this set is equal to the set of all
irreps which show up in the representation g → U (g) ⊗ U (g).
Now since the maximum irrep in the representation g → U (g)
is l then the maximum irrep in the representation g → U (g) ⊗
U (g) is 2l. Therefore, we conclude that the maximum rank of
an irreducible tensor operator acting on H is 2l.

Now from Lemma 3 we know that the channel describing
the informative aspect of an arbitrary measurement on this
space has mode in the set {(μ,m) : μ � 2l}. This together
with Lemma 4 implies that to specify the performance of
state ρ of quantum reference frame to simulate measurements
on this system, we only need to specify the components of
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ρ in all modes with μ � 2l. However, since the irreducible
tensor operators acting on the space of spin-j system have no
multiplicity, there is only

2l∑
k=0

(2k + 1) = (2l + 1)2

independent irreducible tensor operators with rank less than
or equal to 2l. Furthermore, the rank 0 tensor operator is
proportional to the identity operator and so the component
of ρ in this mode is fixed by the normalization. This implies
that the performance of the quantum reference frame is
determined by specifying at most (2l + 1)2 − 1 complex
numbers corresponding to the expectation values of the density
operator ρ for all nontrivial irreducible tensor operators with
rank less than or equal to 2l. Furthermore, in the case of
SO(3), as we have seen in the discussion after Eq. (3.5), the
Hermitian conjugate of a component of an irreducible tensor
operator with rank μ is still in the subspace spanned by rank
μ irreducible tensor operators. This implies that this subspace
has a basis which is formed only from Hermitian operators.
This together with the fact that the density operator ρ itself is a
Hermitian operator imply that the components of ρ for modes
with rank less than or equal 2l are uniquely specified by at
most (2l + 1)2 − 1 real parameters. This completes the proof
of Theorem 2 in the case of measurements.

Proof in the case of channels follows in the same way.
The only difference is that the set of all possible modes that
a quantum channel acting on the system with Hilbert space
H can have is determined by irreps which show up in the
representation

g → U (g) ⊗ Ū (g) ⊗ U (g) ⊗ Ū (g)

of SO(3). Now, since the highest angular momentum which
shows up in the representation g → U (g) is l, then the
highest angular momentum which shows up in the above
representation is 4l. So an arbitrary channel acting on H can
have mode in the set {(μ,m) : μ � 4l}. So, from Lemma 4 to
specify the performance of the quantum reference frame for
simulating channels acting on this space we need to specify
the components of ρ for all modes with rank less than or equal
to 4l. The rest of argument follows exactly the same as the
argument for the case of measurements.

3. Proof of Corollary 2

We present the proof for the case of measurements. The
proof for the case channels follows exactly in the same way.

From Theorem 2 we know that to specify the performance
of state ρ as a quantum reference frame we need to specify all
components of ρ for all modes {(μ,m) : 1 � μ � 2l}.

Without loss of generality, we assume state ρ is invariant
under rotations around ẑ. Now for each mode (μ,m = 0), the
corresponding component of the irreducible tensor operator
basis, i.e., T

(μ)
m , is not invariant under rotation around ẑ. Then

it follows that for all modes (μ,m = 0) the component of ρ in
those modes is zero, i.e.,

∀ (μ,m = 0) : ρ(μ,m) ≡ tr
(
ρT (μ)

m
†) = 0.

So we conclude that if the state ρ is invariant under rotation
around ẑ, then to specify it as a quantum reference frame we
only need to specify its components in modes {(μ,0) : 1 �
μ � 2l}. Now using Eq. (3.6) we can easily show that the
subspace spanned by{

T
(μ)
m=0 : 1 � μ � 2l

}

is the same as the subspace spanned by{(
T

(1)
m=0

)k
: 1 � k � 2l

}
.

To see this we use Eq. (3.6) to decompose the product
of irreducible tensor operators to the sum of irreducible
tensor operators. Then Eq. (3.6) implies that the problem of
decomposing (T (1)

m=0)k to irreducible tensor operators is exactly
equivalent to the problem of decomposing state |j = 1,m =
0〉⊗k to irreps of SO(3). It follows that that (i) (T (1)

m=0)k has a
nonzero component in mode (μ = k,0) and (ii) (T (1)

m=0)k does
not have any nonzero component in modes (μ > k,0).

So it follows that the span of {T (μ)
m=0 : 1 � μ � 2l} is the

same as span of {(T (1)
m=0)k : 1 � k � 2l}. So to specify all

the components of ρ in modes {(μ,0) : 1 � μ � 2l} one
can specify all the moments of {tr[ρ(T (1)

m=0)k] : 1 � k � 2l}
or equivalently the moments {tr(ρLk

z) : 1 � k � 2l}. This
completes the proof of Corollary 2.
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