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Derivation of the Dirac equation from principles of information processing
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Without using the relativity principle, we show how the Dirac equation in three space dimensions emerges
from the large-scale dynamics of the minimal nontrivial quantum cellular automaton satisfying unitarity, locality,
homogeneity, and discrete isotropy. The Dirac equation is recovered for small wave vector and inertial mass,
whereas Lorentz covariance is distorted in the ultrarelativistic limit. The automaton can thus be regarded as a
theory unifying scales from Planck to Fermi. A simple asymptotic approach leads to a dispersive Schrödinger
equation describing the evolution of narrowband states at all scales.
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I. INTRODUCTION

Since the beginning of the path-integral approach [1], dis-
crete versions of quantum field theories have been extensively
studied, giving the Dirac equation in the continuum limit [2,3],
and similar models have been developed for simulating Fermi
gas on a lattice [4,5]. A special case of discrete theory is the
quantum cellular automaton (QCA), the quantum version of
the classical cellular automaton of von Neumann [6] (for a
review, see Ref. [7]). The two main features of the automaton
are (1) the dynamics involve countable systems and (2) the
update rule for the state of system is local; namely, in the
quantum case it is described by local unitary operators, each
one involving few systems. This should be contrasted with
other discrete theories—e.g., lattice gauge theories—where the
unitary operator is the exponential of an Hamiltonian involving
all systems at a time.

QCAs concretize the Feynman and Wheeler paradigm of
“physics as information processing” [8–10]. However, so
far only classical automata have been contemplated in such
view [11,12]. Taking the QCA as the microscopic mechanism
for an emergent quantum field has been recently suggested in
Refs. [13–15], along with using it as a framework to unify
a hypothetical Planck scale with the usual Fermi scale of
high-energy physics. The additional bonus of the automaton
framework is that it also represents the canonical solution
to practically all issues in quantum field theory, such as all
divergences and the problem of particle localizability, all due
to the continuum, infinite volume, and Hamiltonian descrip-
tion. [16–18]. Moreover, the QCA is the ideal framework
for a quantum theory of gravity, being the automaton theory
quantum ab initio (the QCA is not derivable by quantizing a
classical theory), and naturally incorporates the informational
foundation for the holographic principle, a relevant feature of
string theories [19,20] and the main ingredient of the micro-
scopic theories of gravity of Jacobson [21] and Verlinde [22].
Finally, a theory based on a QCA assumes no background,
but only interacting quantum systems, and space time and
mechanics are emergent phenomena.
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The assumption of Planck-scale discreteness has the
consequence of breaking Lorentz covariance along with all
continuous symmetries: These are recovered at the Fermi scale
in the relativistic limit in the same way as in the doubly special
relativity of Amelino-Camelia [23,24] and the deformed
Lorentz symmetry of Smolin and Magueijo [25,26]. Such
Lorentz deformations have phenomenological consequences,
and possible experimental tests have been recently proposed
by several authors [27–30]. The deformed Lorentz group of
the automaton has been preliminarily analyzed in Ref. [31].

In analogy with classical cellular automata, the QCA
consists of cells of quantum systems interacting with a finite
number of other cells, but, differently from the classical
case, the evolution is reversible. After early stimulating
ideas of Feynman [8], the first QCA was introduced in
Ref. [32] and only a decade later entered rigorous mathematical
literature [33–37]. A QCA, in principle, can evolve a quantum
field that can obey any statistics; however, as we see in
this paper, in the present spirit of deriving the theory from
information-theoretical principles, the QCA is fundamentally
Fermionic. In addition, Fermionic QCA can simulate every
other QCA respecting the local structure of interactions (see,
e.g., [38–40]), whereas the converse is not true.

The evolution defining the QCA is determined by its action
on the whole Fock space. However, being linear in the field,
as in the present case, the single-particle sector completely
specifies the automaton.

In this paper we show how the Dirac equation in three space
dimensions can be derived solely from fundamental principles
of information processing, without appealing to special relativ-
ity. The Dirac equation emerges from the large-scale dynamics
of the minimum-dimension QCA, satisfying unitarity, locality,
homogeneity, and discrete isotropy of interactions. Precisely,
the Dirac equation is recovered for small wave vector and
inertial mass. In Sec. II we show the construction of space
starting just from interactions between quantum systems by
requiring simple informational principles on the update rule
representing the evolution of a QCA. The principles allow us
to identify the set of systems of the automaton with the Cayley
graph of a group. In Sec. III we specialize our construction to
the case of automata over Cayley graphs of Abelian groups.
In Sec. IV we derive the only four solutions to the unitarity
equations for the case of the bcc lattice, corresponding to the
unique Cayley graph of Z3 supporting a QCA satisfying our
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requirements. We call these solutions Weyl automata, because
they give Weyl’s equation in the relativistic limit. In Sec. V we
show the unique possible way to couple Weyl automata locally
in order to obtain a new automaton. We call the resulting QCA
a Dirac automaton because it gives Dirac’s equation in the
relativistic limit. The inequivalent Dirac automata are only
two. In Sec. VI we show the same result for the case of Cayley
graphs of Z2 and Z, leading to Weyl and Dirac QCAs in two
and one space dimensions, respectively. Finally, in Sec. VII
we study the relativistic limit of all the above automata, which
consists of taking small wave vectors compared to the Planck
length, which is the scale of a lattice step. We then show
the first-order corrections to the Dirac dynamics in the d = 3
case, due to the discreteness of space time at the Planck
scale, and provide the range of possible experimental tests
of the corrections. In this section we also provide an analytical
description of the QCA for the narrowband states of quantum
field theory in terms of a dispersive Schrödinger equation
holding at all scales.

II. QCAS AND SYMMETRIES

In the present section we introduce the general construction
of space starting from QCA representing interactions among
identical Fermionic quantum systems. Let the cellular automa-
ton involve a denumerable set G of systems, conveniently
described by Fermionic field operators ψg,l satisfying the usual
anticommutation relations,

{ψg,l,ψg′,l′ } = 0, {ψg,l,ψ
†
g′,l′ } = δg,g′δl,l′ . (1)

In the following, we denote by ψg the formal sg-component
column vector,

ψg =

⎛
⎜⎜⎜⎝

ψg,1

ψg,2
...

ψg,sg

⎞
⎟⎟⎟⎠, (2)

where sg is the number of field components at site g.
We now assume the following requirements for the inter-

actions defining the QCA evolution: (1) linearity, (2) unitarity,
(3) locality, (4) homogeneity, and (5) isotropy.

By linearity, we mean that the interaction between systems
is described by sg′ × sg transition matrices Agg′ , which allow
us to write the evolution from step t to step t + 1 as

ψg(t + 1) =
∑
g′∈G

Agg′ψg′ (t). (3)

Unitarity corresponds to the reversibility constraint∑
g′ Agg′A

†
g′′g′ =∑g′ A

†
gg′Ag′′g′ = δgg′′Isg

.
If we define the set Sg ⊆ G of sites g′ interacting with

g as the set of sites g′ for which Agg′ �= 0, the locality
requirement amounts to ask that the cardinality of the set Sg is
uniformly bounded over G, namely, |Sg| � k < ∞ for every
g. In the following we focus on those automata for which, if
the transition from g to g′ is possible, then also that from g′ to
g is possible, namely, if Agg′ �= 0, then Ag′g �= 0.

The homogeneity requirement means that all the sites g ∈
G are equivalent. In other words, the evolution must not allow
one to discriminate two sites g and g′. In mathematical terms,

this requirement has three main consequences. The first one
is that the cardinality |Sg| is independent of g. The second
one is that the set of matrices {Agg′ }g′∈Sg

is the same for every
g, whence we will identify the matrices Agg′ = Ah for some
h ∈ S with |S| = |Sg|. This allows us to define gh = g′ if
Agg′ = Ah. In this case, we also formally write g = g′h−1.
Since for Agg′ �= 0 also Ag′g �= 0, clearly if h ∈ S then also
h−1 ∈ S. The third consequence is that, whenever a sequence
of transitions h1h2 · · · hN with hi ∈ S connects g to itself, i.e.,
gh1h2 · · · hN = g, then it must also connect any other g′ ∈ G

to itself, i.e., g′h1h2 · · ·hN = g′.
We now define the graph �(G,S), where the vertices are

elements of G, and edges correspond to couples (g,g′) with
g′ = gh. The edges can then be colored with |S| colors,
in one-to-one correspondence with the transition matrices
{Ah}h∈S . It is now easy to verify that either the graph �(G,S)
is connected or it consists of n disconnected copies of the
same connected graph �(G0,S). Since the information in G is
generally redundant, consisting of n identical and independent
copies of the same QCA with cells belonging to G0, from
now on we assume that the graph �(G,S) is connected.
One can now prove that such a graph represents the Cayley
graph of a finitely presented group with generators h ∈ S and
relators corresponding to the set R of strings of elements of S

corresponding to closed paths. More precisely, we define the
free group F of words with letters in S and the free subgroup
H generated by words in R; it is easy to check that H is normal
in F , thanks to homogeneity. The group G with Cayley graph
�(G,S) coincides with F/N .

In the elementary case there are no self-interactions, and
the set S can then be taken as S = S+ ∪ S−, where S−
is the set of inverses of the elements of S+. In case of
self-interactions, we include the identity e in S, which then
becomes S = S+ ∪ S− ∪ {e}. The requirements of unitarity
and homogeneity correspond to assuming that the following
operator over the Hilbert space �2(G) ⊗ Cs is unitary,

A =
∑
h∈S

Th ⊗ Ah, (4)

where T is the right-regular representation of G on �2(G)
acting as Tg|g′〉 = |g′g−1〉.

Finally, we say that the automaton is isotropic if every
direction on �(G,S) is equivalent. In mathematical terms, there
must exist a faithful representation U over Cs of a group L of
graph automorphisms transitive over S+ such that one has the
covariance condition

A =
∑
h∈S

Th ⊗ Ah =
∑
h∈S

Tl(h) ⊗ UlAhU
†
l , ∀ l ∈ L. (5)

The existence of such automorphism group implies that the
Cayley graph is symmetric.

The unitarity conditions in terms of the transition matrices
Ah read ∑

h∈S

A
†
hAh =

∑
h∈S

AhA
†
h = Is,

(6)∑
h,h′ ∈ S

h−1h′ = h′′

A
†
hAh′ =

∑
h,h′ ∈ S

h′h−1 = h′′

Ah′A
†
h = 0.
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In order to have nontrivial sums in the second family of
conditions, it is necessary to have generators hi1 , hi2 , hi3 ,
and hi4 such that, e.g., h−1

i1
hi2h

−1
i4

hi3 = e. In terms of group
presentation, this means that the relevant relators for the
unitarity conditions are those of length four.

Notice that if the transition matrices {Ah}h∈S satisfy
the unitarity conditions (6), then also their complex conju-
gates {A∗

h}h∈S , their transposes {AT
h−1}h∈S , and their adjoints

{A†
h−1}h∈S do, as can be verified taking the complex conjugate,

the transpose, or the adjoint of the conditions, and considering
that if h−1

i1
hi2 = h−1

i3
hi4 , then also h−1

i2
hi1 = h−1

i4
hi3 .

The QCA in Eq. (5) corresponds to the description of
a physical law by a quantum algorithm with finite al-
gorithmic complexity, with homogeneity corresponding to
the universality of the law. One can easily recognize the
generality of the construction, considering that the group
G is abstractly introduced via generators and relators: G

can be a random group, have tree-shaped graph, and reflect
many other situations. The whole physics will emerge without
requiring any metric structure, since the group is defined only
topologically. An intuitive notion of metric on the Cayley graph
is given by the word length lw(g), defined as lw(g) := min{n ∈
N| g = hi1hi2 · · · hin, hij ∈ S}. Space then emerges through the
quasi-isometric embedding E : G → R of the Cayley graph
(�,d�) equipped with the word metric d�(g,g′) = lw(g−1g′)
in a metric space (R,dR). Quasi-isometry is defined as [41]

1

a
d�(g,g′) − b � dR(E(g),E(g′)) � ad�(g,g′) + b, (7)

∀ x ∈ R ∃g ∈ G dR(x,E(g)) � c, (8)

for some a,b,c ∈ R. We also want homogeneity and isotropy
to hold locally in the space R; namely, we require for all
g,g′ ∈ G and h,h′ ∈ S

dR(E(g),E(gh)) = dR(E(g′),E(g′h)),
(9)

dR(E(g),E(gh)) = dR(E(g),E(gh′)).

The cardinality of group G can be finite or infinite,
depending on its relators. The most interesting case in the
present context is that of a finitely generated infinite group.
Among infinite groups G, we restrict to those having a
Cayley graph that is quasi-isometrically embeddable [42] in
the Euclidean space Rd . Since Rd and Zd are quasi-isometric,
every group G that is quasi-isometrically embeddable in
Rd is also quasi-isometric to Zd . Finally, by the so-called
quasi-isometric rigidity of Zd every such group G has Zd as
a subgroup with finitely many cosets; namely, G is virtually
Abelian of rank d [43].

Our analysis focuses on Abelian groups Zd .

III. QCAS ON ABELIAN GROUPS

The Cayley graphs of Zd satisfying our assumption of
isotropic embedding in Rd are just the Bravais lattices. Since
the groups G that we are considering are Abelian, from now
on we denote the group elements as usual by boldfaced vector
notation as n ∈ G and generators as h ∈ S, and we use the
sum notation for the group composition, as well as 0 for
the identity. The space �2(G) is the span of {|n〉}n∈G and
the right-regular representation coincides with the left-regular.

The unitary operator of the automaton is then given by

A =
∑
h∈S

Th ⊗ Ah, (10)

and one has [A,Th ⊗ Is] = 0. Being the group G Abelian, its
unitary irreps are one-dimensional, and are labeled by the joint
eigenvectors of Th

Thi
|k〉 = e−iki |k〉, (11)

where we label the elements hj ∈ S+ by the label j and

k =
3∑

j=1

kj h̃j , (12)

where h̃j · hl = δjl . Finally, this implies

|k〉 = 1√|B|
∑
n∈G

e−ik·n|n〉, |n〉 = 1√|B|
∫

B

dkeik·n|k〉,

(13)

where B is the first Brillouin zone defined through the
following set of linear constraints:

B :=
⋂

1�i�|S|
{k ∈ Rd | − π |h̃i |2 � k · h̃i � π |h̃i |2}. (14)

The invariant spaces of the translations T then correspond to
plane waves |k〉 on the lattice G, with wave vector k. Notice
that

〈k|k′〉 = 1

|B|
∑
n∈G

ei(k−k′)·n = δB(k − k′). (15)

Translation invariance of the automaton in Eq. (10) then
implies a form for the unitary operator A,

A =
∫

B

dk|k〉〈k| ⊗ Ãk, (16)

where Ãk =∑h∈S eih·kAh is unitary for every k. Notice that
Ãk is a matrix polynomial in eih·k, as a consequence of
the requirement of homogeneity. The spectrum {eiω

(i)
k } of the

operator Ãk plays a crucial role in the analysis of the dynamics,
because the speed of the wave front of a plane wave with wave
vector k is given by the phase velocity ω

(i)
k /|k|, while the speed

of propagation of a narrowband state having wave vector k
peaked around the value k0 is given by the group velocity at
k0, namely the gradient of the function ω

(i)
k evaluated at k0.

These remarks spot the relevance of the dispersion relation,
namely the expression of the phases ω

(i)
k as functions of k.

In the h representation the unitarity conditions (6) for A

read ∑
h∈S

AhA
†
h =

∑
h∈S

A
†
hAh = Is,

(17)∑
h−h′=h′′

AhA
†
h′ =

∑
h−h′=h′′

A
†
h′Ah = 0.

In an Abelian group every couple of generators h,h′ is involved
at least in one length-four relator expressing Abelianity,
namely, h − h′ = −h′ + h.
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In the Abelian case, if {Ah}h∈S is a set of transition matrices
satisfying the unitarity conditions (17), in addition to its
complex conjugate {A∗

h}h∈S , its transpose {AT
−h}h∈S , and its

adjoint {A†
−h}h∈S . Also, its reflected set {A−h}h∈S provides a

solution to the conditions (17).
Given an automaton A corresponding to a set of transition

matrices {Ah}h∈S satisfying the unitarity condition (17), notice
that the identity

(I ⊗ Ã
†
k=0)A =

∑
h∈S

Th ⊗ A′
h, (18)

holds, with
∑

h∈S A′
h = Is , namely, modulo a uniform local

unitary we can always assume∑
h∈S

Ah = Is. (19)

As explained in Sec. II, the requirement of isotropy for the
automaton needs the existence of a group that acts transitively
over the generator set S+ with a faithful representation that
satisfies Eq. (5). The isotropy requirement implies that Ãk=0

commutes with the representation U of the isotropy group L,
whence we can classify the automata by requiring identity (19)
and then multiplying the operator A on the left by (I ⊗ V ),
with V commuting with the representation U . In the case that
U is irreducible, by Schur’s lemmas we have only V = Is .

Unitarity of Ãk for s = 1 amounts to the requirement
that, for every k ∈ B, |∑h∈S zhe

ih·k| = 1 with zh ∈ C. This
is possible only if zh = δh0h for some generator h0. However,
the only choice of h0 compatible with isotropy is h0 = 0, thus
providing the trivial automaton A = I . From now on we then
consider the simplest nontrivial automaton, having s = 2.

IV. THE QUANTUM AUTOMATON WITH MINIMAL
COMPLEXITY: THE WEYL AUTOMATON

In the present section we solve Eqs. (17) for unitarity, on
the Abelian group Z3.

For d = 3, the only Cayley graphs are the primitive cubic
(PC) lattice corresponding to the presentation of Z3 as the free
Abelian group on d generators, the bcc, corresponding to a
presentation with four generators S+ = {hi}1�i�4 with relator
h1 + h2 + h3 + h4 = 0, and the rhombohedral, having six
generators S+ = {hi}1�i�6 with relators h1 − h2 = h4, h2 −
h3 = h5, and h3 − h1 = h6. The corresponding coordination
numbers are 6, 8, and 12, respectively (notice that the other
Bravais lattices are topologically equivalent to the above three
ones; namely, they are the same lattice modulo stretching
transformations that do not change the graph). The unitarity
conditions are very restrictive and allow for a solution only
on one of three possible Cayley graphs for Z3. Moreover,
the automata satisfying our principles are only four, modulo
unitary conjugation. The solutions are divided in two pairs,
A± and B±. A pair of solutions is connected to the other pair
by transposition in the canonical basis, i.e., Ã±

k = (B̃±
k )T .

We call these solutions Weyl automata, because in the
relativistic limit of small wave-vector |k| � 1 their evolution
obeys Weyl’s equation, as discussed in Sec. VII.

In Appendix A the details of the derivation are explained,
along with the proof of impossibility for a QCA on the PC and
rhombohedral lattices.

FIG. 1. (Color online) The Brillouin zone for the bcc lattice. The
components of the wave vector k are dimensionless.

Let us now describe the bcc lattice in more detail. The
corresponding presentation of Z3 involves four vectors, S+ =
{h1,h2,h3,h4}, with relator h1 + h2 + h3 + h4 = 0. The four
vectors can be chosen as follows:

h1 = 1√
3

⎛
⎝1

1
1

⎞
⎠, h2 = 1√

3

⎛
⎝ 1

−1
−1

⎞
⎠,

(20)

h3 = 1√
3

⎛
⎝−1

1
−1

⎞
⎠, h4 = 1√

3

⎛
⎝−1

−1
1

⎞
⎠.

The 12 dual vectors k̃i satisfying hi · h̃j = δij are

h̃ =
√

3

2

⎛
⎝ 1

±1
0

⎞
⎠, (21)

modulo permutations of the three components and an overall
sign. The Brillouin zone for the bcc lattice—shown in Fig. 1—
is defined by

B :=
{

k| − 3π

2
� k · h̃i � 3π

2
,1 � i � 6

}
, (22)

which in Cartesian coordinates, using Eq. (21), reads

−
√

3π � ki ± kj �
√

3π, i �= j ∈ {x,y,z}. (23)

Two solutions A± of the unitarity equations correspond to
the following transition matrices Ahi

:

Ah1 =
(

ζ ∗ 0
ζ ∗ 0

)
, A−h1 =

(
0 −ζ

0 ζ

)
,

Ah2 =
(

0 ζ ∗
0 ζ ∗

)
, A−h2 =

(
ζ 0

−ζ 0

)
,

(24)

Ah3 =
(

0 −ζ ∗
0 ζ ∗

)
, A−h3 =

(
ζ 0
ζ 0

)
,

Ah4 =
(

ζ ∗ 0
−ζ ∗ 0

)
, A−h4 =

(
0 ζ

0 ζ

)
.
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FIG. 2. (Color online) Plot of the surface ωA+
k = π

2 within the
Brillouin zone for the bcc lattice. The components of the wave vector
k are dimensionless.

The remaining solutions are the transposes B̃±
k = (Ã±

k )T . As
we will see later, the solutions B̃±

k are redundant.
The solutions A±

k in the Fourier representation are

Ã±
k = 1

4

(
z(k) −w(k)∗
w(k) z(k)∗

)
,

z(k) := ζ ∗eik1 + ζe−ik2 + ζe−ik3 + ζ ∗eik4 ,
(25)

w(k) := ζ ∗eik1 + ζe−ik2 − ζe−ik3 − ζ ∗eik4 ,

ζ = 1 ± i

4
,

and can be written as

Ã±
k = IdA±

k − iα± · aA±
k , (26)

where we define (
aA±

k

)
x

:= sxcycz ± cxsysz,(
aA±

k

)
y

:= cxsycz ∓ sxcysz,
(27)(

aA±
k

)
z

:= cxcysz ± sxsycz,

dA±
k := cxcycz ∓ sxsysz.

The symbols ci and si denote cos ki√
3

and sin ki√
3
, respectively,

while α± is the vector of matrices

α±
x := σx, α±

y := ∓σy, α±
z := σz. (28)

As one can see from (26), the matrices Ã±
k have unit

determinant, with spectrum {e−iωA±

k ,eiωA±

k }, and the dispersion
relation is given by

ωA±
k = arccos(cxcycz ∓ sxsysz). (29)

In Fig. 2 a plot lot of the surface ωA+ = π
2 within the Brillouin

zone is given.
The three vectors that rule the evolution are (i) the wave

vector k, (ii) the helicity direction aA±
k , and (iii) the group

velocity v±
k := ∇kω

±
k , representing the speed of a wave packet

peaked around the central wave vector k. The group velocity
has the components

(
vA±

k

)
x

=
(
aA±

k

)
x√

1 − (dA±
k

)2 , (30)

(
vA±

k

)
y

=
(
aA∓

k

)
y√

1 − (dA±
k

)2 , (31)

(
vA±

k

)
z
=

(
aA±

k

)
z√

1 − (dA±
k

)2 , (32)

where we remark the sign mismatch for the y component. An
alternate, convenient expression of the two automata above is
the following:

Ã±
k = e

−i kx√
3
σx e

∓i
ky√

3
σy e

−i
kz√

3
σz . (33)

If we now consider the automata Ã±
k and translate their ar-

gument as k′ := k +
√

3π
2 ki along the directions k0 := (1,1,1),

k1 := (1,−1,−1), k2 := (−1,1,−1), or k3 := (−1,−1,1), we
obtain Ã±

k′ = ∓B̃∓
k . Similarly, if we translate in the same way

along the directions −k0, −k1, −k2, or −k3, we obtain Ã±
k′ =

±B̃∓
k . Finally, if we translate by

√
3π along the Cartesian axes,

we obtain Ã±
k′ = −Ã±

k .
One can easily verify that the two automata Ã±

k are covariant
under the group L2 of binary rotations around the coordinate
axes, with the representation of the group L2 on C2 given by
{I,iσx,iσy,iσz}.

Finally, the two automata are connected by the following
identity:

Ã±
k = Ã∓∗

−k. (34)

Since for SU(2) matrices complex conjugation is obtained
unitarily by conjugation with σy , the essential connection
between the two solutions Ã±

k is a parity reflection P : k �→
−k.

Summarizing, we can say that the automata A± and A∓∗ are
connected by the P symmetry, A± and B±∗ by the T symmetry,
and A± and B∓ by PT symmetry. Charge conjugation for the
Weyl automata is not defined.

V. COUPLING WEYL AUTOMATA:
THE DIRAC AUTOMATA

In this section we find the only two automata that can be
obtained by locally coupling Weyl automata. These automata
are called Dirac automata, because in the relativistic limit of
|k| � 1 they give Dirac’s equation, a discussed in Sec. VII.

We start from two arbitrary Weyl automata F and D, which
can be A± or B±. The coupling is obtained by performing
the direct sum of their representatives F̃k and D̃k, obtaining a
QCA with s = 4 and introducing off-diagonal blocks B and C

in such a way that the obtained matrix is unitary. Locality of
the coupling requires the off-diagonal blocks B and C to be
independent of k, namely,

Ã′
k :=

(
xF̃k yB

zC tD̃k

)
, (35)
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where x and t are generally complex, whereas y and z can be
chosen as positive. In Appendix B the derivation is carried out,
leading to the only two possible automata,

Ẽ±
k :=

(
nÃ±

k imI

imI nÃ
±†
k

)
, (36)

with n2 + m2 = 1.
Notice also that the choice of B± instead of A± would

have led to a unitarily equivalent automaton, since B̃±∗
k =

σyB̃
±
k σy = Ã

±†
k , and the exchange of the upper left block with

the lower right one can be achieved unitarily.
The eigenvalues {λE±

k ,λE±∗
k } of Ẽk are derived in Ap-

pendix B along with the projections on the eigenspaces,

and their expression λE±
k = e−iωE±

k is given in terms of the
following dispersion relation:

ωE±
k = arccos[

√
1 − m2(cxcycz ∓ sxsysz)]. (37)

The Dirac automaton can be expressed in terms of the γ

matrices in the spinorial representation as

Ẽ±
k = IdE±

k − iγ 0γ ± · aE±
k + imγ 0, (38)

where dE± = ndA± and aE± = naA±. The representations γ ±
only differ by a sign on γ 2.

Notice that the two automata E+ and E− are connected
by a CPT symmetry, modulo the unitary transformation
γ 0γ 2, where the CPT transformations are defined here by
C (charge conjugation): C : Ẽk �→ −γ 2Ẽ∗

kγ 2, P : k �→ −k,
and T : E �→ E†.

VI. THE DIRAC AUTOMATON IN ONE AND TWO SPACE
DIMENSIONS

In this section we show the solution to the unitarity
conditions in Eq. (6) on Cayley graphs of Z and Z2.

A. Two-dimensional case

For d = 2, the only Cayley graphs that are topologically
inequivalent are the square lattice corresponding to the presen-
tation ofZ2 as the free Abelian group on two generators and the
hexagonal lattice, corresponding to a presentation with three
generators S+ = {hi}1�i�3 with relator h1 + h2 + h3 = 0. The
corresponding coordination numbers are 4 and 6, respectively.
Analogously to the case d = 3, also for d = 2 the unitarity
conditions allow for a solution only on one of the possible
Cayley graphs, precisely the square lattice. In this case there
are only two solutions modulo unitary conjugation, and they
are connected by transposition. In the relativistic limit of small
wave vector |k| � 1 their evolution obeys Weyl’s equation in
d = 2, as discussed in Sec. VII.

Since the second solution is just the transpose of the first
one, only the first solution is derived in Appendix C and
corresponds to an expression for the automaton,

Ãk = 1

4

(
z(k) iw(k)∗

iw(k) z(k)∗

)
,

z(k) := ζ ∗(eik1 + e−ik1 ) + ζ (eik2 + e−ik2 )
(39)

w(k) := ζ (eik1 − e−ik1 ) + ζ ∗(eik2 − e−ik2 )

ζ := 1 + i

4
,

which can be written as

Ãk = IdA
k − iα · aA

k , (40)

where αi := σi and the functions ak and dk are expressed in
terms of kx := k1+k2√

2
and ky := k1−k2√

2
as(

aA
k

)
x

:= sxcy,
(
aA

k

)
y

:= cxsy,
(41)(

aA
k

)
z

:= sxsy, dA
k := cxcy.

The symbols ci and si denote cos ki√
2

and sin ki√
2
, respectively.

The dispersion relation is

ωA
k = arccos(cxcy); (42)

then the helicity vector is aA
k , and the group velocity is then

(
vA

k

)
x

=
(
aA

k

)
x√

1 − (dA
k

)2 − (aA
k

)2
z

, (43)

(
vA

k

)
y

=
(
aA∓

k

)
y√

1 − (dA
k

)2 − (aA
k

)2
z

. (44)

The QCA in Eq. (39) is covariant for the cyclic transitive group
L = {e,a} generated by the transformation a that exchanges h1

and h2, with representation given by the rotation by π around
the x axis.

Since the isotropy group has a reducible representation, the
most general automaton is actually given by

(cos θI + i sin θσx)Ãk. (45)

However, the parameter θ in this case just represents a fixed
translation of the Brillouin zone along the kx direction, namely
a redefinition of the wave vector. The physics is essentially
independent of θ , and it is then safe to restrict to Ãk.

The other solution B can be simply obtained by taking
B̃k := ÃT

k .
The only possible automaton describing a local coupling

of two Weyl’s is obtained by the same procedure as for the
three-dimensional (3D) case, described in Appendix B, and is
given by

Ẽk =
(

nÃk imI

imI nÃ
†
k

)
, (46)

with n2 + m2 = 1.
As in the 3D case, we can write the automaton Ẽk in terms

of the γ matrices as

Ẽk = IdE
k − iγ 0γ · aE

k + imγ 0, (47)

where dE
k = ndA

k and aE
k = naA

k .

B. One-dimensional case

For the sake of completeness, we consider the 1D case
studied in Refs. [14,44], rephrasing it in in the present
framework.

The unique Cayley graph satisfying our requirements for Z
is the lattice Z itself, presented as the free Abelian group on
one generator. In this case the nearest neighbors are two. The
unitarity conditions for a Weyl spinor then read

A
†
hA−h = AhA

†
−h = 0, (48)
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and, consequently,

Ah = V M, A−h = V (I − M), (49)

where M is a rank 1 projection that we identify with the
eigenspace of σz with eigenvalue −1. We then have

Ã
(1)
k =

(
e−ik 0

0 eik

)
. (50)

This matrix can be expressed as

d
(1)
k I − ia

(1)
k α(1), (51)

where α(1) := σz and

d
(1)
k := cos k, a

(1)
k := sin k. (52)

The dispersion relation is simply

ωA(1)

k = k. (53)

Modulo a permutation of the canonical basis, the coupling of
two conjugate Weyl spinors is obtained as in Appendix B, and
for d = 1 gives two independent s = 2 automata as

Ẽ
(1)
k =

⎛
⎜⎜⎝

ne−ik im 0 0
im neik 0 0
0 0 neik im

0 0 im ne−ik

⎞
⎟⎟⎠, (54)

both having dispersion relation

ωE(1)

k = arccos(n cos k). (55)

In this case we can express each of the two spinor automata in
terms of the Pauli matrices as

Ẽ
(1)
k = n cos kI − in sin kσz + imσx. (56)

VII. THE RELATIVISTIC LIMIT

In the present section we study the behavior of the automata
studied in the previous sections for small wave vectors |k| � 1.
The physical domain in which this limit applies is strictly
related to the hypotheses that we make on the order of
magnitude of the lattice step and of the time step of the
automata. As we discussed in the Introduction, our assumption
is that automata describe physics at a discrete Planck scale,
which amounts to taking the time step steps equal to the
Planck time tP in dimensionful units. Moreover, as we see
in the following, we recover Weyl’s and Dirac’s equations in
the mentioned limit, with the speed of light replaced with a
constant speed c = a/(

√
dtP ), where a is the length of the

lattice step. If we want c equal to the speed of light, then
we must take the lattice step a as a = √

dlP , where lP is the
Planck length. Having set these conversion factors between
dimensionless and dimensionful units, the limit of |k| � 1
corresponds to the limit where wavelengths λ = 1/|k| are
much larger than the Planck length. This clearly encompasses
all the relativistic regimes tested in most advanced experiments
in high-energy physics.

In order to obtain the relativistic limit of the automata
studied in the previous sections, we define an interpolating
Hamiltonian HX

I (k) as

e−iHX
I (k) := X̃k, (57)

for any of the automata X = Ã±
k ,B̃±

k ,Ãk,B̃k,Ã
(1)
k ,Ẽ±

k ,Ẽk,Ẽ
(1)
k

studied in the previous sections. The term interpolating refers
to the fact that the Hamiltonian HX

I (k) generates a unitary
evolution that interpolates the discrete time determined by the
automaton steps through a continuous time t as

ψ(k,t) = e−iHX
I (k)tψ(k,0). (58)

In the case of Weyl automata, independently of the
dimension d, for narrowband states ψ(k,t) with |k| � 1,
expanding of HX

I (k) to the first order in k we obtain

i∂tψ(k,t) = HX
W (k)ψ(k,t), (59)

where HW (k) is the Weyl Hamiltonian, obtained by expanding
HX

F (k) to first order in k, namely,

HX
W (k) = 1√

d
αX · k + O(|k|2). (60)

Similarly, in the case of the Dirac automata, for narrowband
states ψ(k,t) with |k| � 1 the expansion of HX

I (k) to the first
order in k gives

i∂tψ(k,t) = HD(k)ψ(k,t), (61)

where HD(k) is the Dirac Hamiltonian, obtained by expanding
HE(k) at first order in k, namely,

HD(k) = n√
d

α · k + mβ + O(|k|2). (62)

Finally, for small values of m, m � 1, we have n � 1 +
O(m2). Neglecting terms of order O(m2) and O(|k|2), we
then get

HD(k) = 1√
d

α · k + mβ, (63)

which is the Dirac equation in the wave-vector representation.
Notice that in the case of the Ẽ−

k automaton in 3D the Dirac
Hamiltonian is recovered in the spinorial representation where
the complex conjugate of γ 2 is taken instead of γ 2.

In Fig. 3 we show two samples of the evolution of the
2D Dirac automaton are given, for a localized state and a
particlelike state.

We now provide a quantitative study of the approximation
of Dirac’s equation in 3D in the relativistic limit of |k| � 1,
m � 1 [O(m) = O(|k|)]. First we compare the automaton
with the Dirac equation in dimensionless units with dispersion
relation ωE(k) = (m2 + k2

6 )
1
2 , and then we recover the usual

Dirac equation with dispersion �ωD(p) := (m2c4 + c2p2)
1
2 by

introducing dimensions for the automaton time and lattice
steps. We compare the two evolutions for a particle state
in a fixed spin state, with a narrow packet around k0 � 1,
with variance σ � |k0|. The trace-norm distance between the
output states from the same input state evolved under the Dirac
Hamiltonian and under the automaton, respectively, is given by√

1 − F 2, where F is the fidelity between the two states, which
is given by F = |〈exp [−iN�(k)]〉|, where N is the number
of steps of the automaton (each corresponding to a Planck
time for the Dirac evolution, or equivalently to an integer time
for a Dirac equation written in dimensionless form in Planck
units), the expectation is over the input state, and the operator
�(k) := (m2 + k2

6 )
1
2 − ωE(k), diagonal in the eigenbasis of
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FIG. 3. (Color online) Examples of evolution of for the 2D Dirac
automaton for m = 0.1, N = 120, corresponding to coupling of
two Weyl’s in Eq. (C21) for (top) |〈x| ⊗ 〈e1|ψ(0)〉|2 and ψ(0)
localized in x = 0 in state |e1〉 (|en〉, n = 1, . . . ,4 canonical basis
i C4) and (bottom) |〈x| ⊗ 〈u1(k)|ψ(0)〉|2 for |ψ(0)〉 Gaussian spin-up
particle state with k0 = (0,.1)π centered in x = 0 with �2

x = 102,
�2

y = 50, with |u1(k)〉 denoting the spin-up component of the particle
eigenvector. The color code corresponds to the spin-component
relative weight (hue) and relative phase (saturation). Notice the
colored square with vanishing small probability, corresponding to
the causal velocity, which is

√
2 times larger than the propagation

speed. The coordinates x and y are dimensionless, the unit being the
lattice step.

the Dirac Hamiltonian to the order O(k4 + N−1k2), is given
by

�(k) =
√

3kxkykz(
m2 + k2

3

) 1
2

− 3(kxkykz)2(
m2 + k2

3

) 3
2

+ 1

24

(
m2 + k2

3

) 3
2

,

where the term O(N−1k2) comes from the mismatch between
the eigenvectors of the automaton and the Dirac particle states.
One can see the the fidelity approaches F = 1 in the relativistic
limit, for not too large a number of steps. In the relativistic
scale k � m � 1, for a proton mass one has N � m−3 =
2.2 × 1057, corresponding to t = 1.2 × 1014 s = 3.7 × 106 y.
The approximation is still good in the ultrarelativistic case
k � m, e.g., for k = 10−8 (as for ultra-high energy cosmic
rays), where it holds for N � k−2 = 1016 steps, corresponding
to 5 × 10−28 s. We convert dimensionless to dimensionful
quantities through the Planck units lP , mP , and tP as

c := lP /tP , μ := mmP , � := mP lP c, p = �k/(
√

3lP ),

(64)

where c is the speed of light, μ the rest mass, and p the
momentum. The above choice corresponds to taking mP

FIG. 4. (Color online) (Top) Dispersion relation ωE+
k for the 3D

Dirac automaton for m = 0 and for ωE+
k = 0.45,1.05,2.09,2.69 from

left to right. (Bottom) modulus of group velocity vk = ∇kω(k) for
the 2D case for m = 0. The components of the wave vector k are
dimensionless.

as the bound for rest mass of the particle, lP as half of the
side of the conventional bcc cell, and tP as the time of a
single automaton step. Upon substituting Eq. (64) one can
immediately check that ωE(k) = tP ωD(p). One can also see
that the speed of light c is slower than the causal speed—i.e.,
one site per Planck time—by a factor

√
3. Indeed, isotropy is

recovered only in the relativistic limit: At the Planck scale there
is a possibility of propagation at speed higher than c, however,
bounded by

√
3c and with a negligible probability, as shown in

Fig. 3. Notice that a similar analysis holds also for d = 1,2, and
the rescaling factor in the general case is

√
d . In Fig. 4 we report

the dispersion relation for the Dirac automaton for d = 2,3
with m = 0. In the 3D dispersion relation, in addition to the
central ball in the rightmost figure, corresponding to the usual
particle dispersion, one can notice four balls corresponding to
the so-called Fermion doubling [45,46]. The plot of the group
velocity of the 2D automaton exhibits anisotropy; however, the
flat central area incorporates huge ultrarelativistic moments
with velocity still perfectly isotropic.

For narrowband states around k = k0 we can approximate
the automaton evolution also in the Planck regime with a
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dispersive Schrödinger equation,

i∂t ψ̃(x,t) = ±[v · ∇ + 1
2 D · ∇∇]ψ̃(x,t), (65)

where ψ̃(x,t) is the Fourier transform of ψ̃(k,t) :=
e−ik0·x+iω0tψ(k,t), and v and D are the drift vector v =
(∇kω) (k0) and diffusion tensor D = (∇k∇kω) (k0), respec-
tively. The Schrödinger equation is just the second-order k
expansion around k0. This equation approximates well the
evolution, also in the Planck regime for many steps, depending
on the bandwidth (see Ref. [44]).

VIII. CONCLUSION

We introduced a representation of space as emergent from
the evolution of quantum systems via a QCA and imposed
the principles of unitarity, linearity, locality, homogeneity,
and isotropy of the evolution, showing that under these
assumptions we can arrange the systems constituting the QCA
on the Cayley graph of a group.

We studied the case where such group can be quasi-
isometrically embedded in the Euclidean spaces Rd , with
d = 1,2,3, showing that the minimal nontrivial QCAs are
then essentially unique and provide Weyl’s equation in the
relativistic limit of small wave vectors compared to the inverse
of the lattice step, which is taken of the order of Planck’s length.

We also showed the unique way in which two Weyl
automata can be locally coupled, leading to the Dirac QCA.
This QCA provides Dirac’s equation in the relativistic limit.
We studied first-order corrections to Dirac’s evolution due
to the discreteness of the QCA lattice. The correction terms
lead to a diffusive Schrödinger equation, which expresses the
dynamics of the QCA at all scales, in the approximation of
narrowband wave packets.

In conclusion, we remark that Lorentz covariance is obeyed
only in the relativistic limit |k| � 1, whereas the general
covariance (corresponding to invariance of ωE±

k ) is a nonlinear
representation of the Lorentz group, with additional invariants
in the form of energy and distance scales [31], as in the
doubly special relativity [23,24] and in the deformed Lorentz
symmetry [25,26], for which the automaton then represents
a concrete microscopic theory. Correspondingly, also CPT
symmetry of Dirac’s QCA is broken at the ultrarelativistic
scale.
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APPENDIX A: DERIVATION OF THE WEYL AUTOMATA
ON THE BCC LATTICE

In this Appendix we study the unitarity conditions of Eq. (6)
on Cayley graphs of Z3 for s = 2. We find two solutions for
the bcc lattice, and we prove the impossibility of a unitary
solution on the PC and on the rhombohedral lattices.

Before starting the analysis of unitarity conditions on
different lattices, let us introduce some notation that will be
useful in the following. First of all, let us introduce the polar
decomposition of operators Ah as

Ah = Vh|Ah|, (A1)

with Vh unitary. Notice that, for Bravais lattices, the condition
of Eq. (17) with h′′ = 2h is equivalent to

h′′ = ±2hi , (A2)

equivalent to |Ah||A−h| = 0. Now, since s = 2 and by defini-
tion the |A±h|’s are non-null, this can be satisfied only with

Ah = αhVh|ηh〉〈ηh|, α−hA−h = Vh|η−h〉〈η−h|, (A3)

where 〈η+h|η−h〉 = 0, and we can always choose αh > 0 for
every h.

1. The bcc case

In the following we take Ae = 0 and a posteriori we check
that there is no other possibility.

Let us now focus on the unitarity conditions. Here, besides
h′′ = ±2hi we have two kinds of conditions. (i) h′′ = hi − hj :
In this case there are only two terms in the sums in Eq. (17),
thus leading to the same conditions as in Eqs. (A91) and (A93),
namely,

A
†
hi

Ahj
+ A

†
−hj

A−hi
= 0, (A4)

Ahi
A

†
hj

+ A−hj
A

†
−hi

= 0. (A5)

(ii) h′′ = hi + hj : In this case, the identity hi + hj + hl +
hm = 0 (ij lm a permutation of 1234) implies h′′ = −hl − hm.
Consequently, there are four terms in the sums in Eq. (17),
leading to the following new conditions:

A
†
hi

A−hj
+ A

†
hj

A−hi
+ A

†
−hl

Ahm
+ A

†
−hm

Ahl
= 0, (A6)

Ahj
A

†
−hi

+ Ahi
A

†
−hj

+ A−hm
A

†
hl

+ A−hl
A

†
hm

= 0. (A7)

Consider now the condition in Eq. (A5). Multiplying on the
left by A

†
hi

and on the right by Ahj
we obtain

A
†
hi

Ahj
A

†
hi

Ahj
+ A

†
hi

A−hi
A

†
−hj

Ahj
= 0, (A8)

and using the condition in Eq. (A2) we have

A
†
hi

Ahj
A

†
hi

Ahj
= 0. (A9)

Since the transition matrices Ahi
are rank 1, the latter condition

can be fulfilled only in the following two cases.
(1) Ahj

A
†
hi

= 0. In this case one has clearly |Ahi
||Ahj

| =
|Ahj

||Ahi
| = 0. In turn, this implies that 〈ηhi

|ηhj
〉 = 0, i.e.,

|ηhj
〉〈ηhj

| = |η−hi
〉〈η−hi

| and

Ahi
= αhi

Vi

∣∣ηhi

〉〈
ηhi

∣∣, A−hi
= α−hi

Vi

∣∣η−hi

〉〈
η−hi

∣∣,
Ahj

= αhj
Vj

∣∣η−hi

〉〈
η−hi

∣∣, A−hj
= α−hj

Vj

∣∣ηhi

〉〈
ηhi

∣∣,
(A10)

where Vi is a shorthand for Vhi
.
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(2) A
†
hi

Ahj
= 0. In this case, a similar analysis provides

the following identities:

A
†
hi

= αhi
Vi

∣∣θhi

〉〈
θhi

∣∣, A
†
−hi

= α−hi
Vi

∣∣θ−hi

〉〈
θ−hi

∣∣,
A

†
hj

= αhj
Vj

∣∣θ−hi

〉〈
θ−hi

∣∣, A
†
−hj

= α−hj
Vj

∣∣θhi

〉〈
θhi

∣∣.
(A11)

Now, if Ahj
A

†
hi

= Ahl
A

†
hi

= 0—i.e., for both (i,j ) and (i,l)
condition (1) is satisfied—then by by Eq. (A10) we have

Ahj
A

†
hl

= αhj
αhl

Vj

∣∣η−hi

〉〈
η−hi

∣∣V †
l , (A12)

which cannot be null. Similarly, if A
†
hi

Ahj
= A

†
hi

Ahl
= 0—

i.e., for both (i,j ) and (i,l) condition (1) is satisfied—then by
Eq. (A11) we have

A
†
hj

Ahl
= αhj

αhl
Vj

∣∣θ−hi

〉〈
θ−hi

∣∣V †
l , (A13)

which cannot be null. Finally, this implies that the conditions
of item 1 or item 1 can be satisfied only with one or two
different values of j for the same fixed value of i.

Modulo relabelings of the vertices, we then have without
loss of generality one of three sets of conditions,

Ah1A
†
h2

= Ah1A
†
h3

= Ah2A
†
h4

= 0,

A
†
h2

Ah3 = A
†
h1

Ah4 = A
†
h3

Ah4 = 0,
(A14)

or

Ah1A
†
h2

= Ah1A
†
h3

= Ah2A
†
h4

= Ah3A
†
h4

= 0,

A
†
h2

Ah3 = A
†
h1

Ah4 = 0,
(A15)

or

Ah2A
†
h3

= Ah1A
†
h4

= 0,

A
†
h1

Ah2 = A
†
h1

Ah3 = A
†
h2

Ah4 = A
†
h3

Ah4 = 0.
(A16)

The conditions in Eqs. (A15) and (A16) lead to the same
solutions modulo the exchange of Ahi

and A
†
hi

, or equivalently

modulo the PT symmetry Ãk �→ Ã
†
−k. It is then sufficient to

solve Eqs. (A14) and (A15).
The number of couples (i,j ) for which both conditions

(1) and (2) are simultaneously satisfied is limited. Indeed,
suppose, e.g., that both Ah1A

†
h3

= 0 and A
†
h1

A
†
h3

= 0. Then

clearly either A
†
h1

Ah2 �= 0 or A
†
h2

Ah1 �= 0, otherwise for the
couple (2,3) neither condition (1) nor (2) can be satisfied.
For a similar reason, either A

†
h1

Ah4 �= 0 or A
†
h4

Ah1 �= 0. The
same argument can be applied to the couples (2,3) and (3,4).
Then the only remaining couple for which both conditions can
be simultaneously satisfied is (2,4). Actually, one can prove
that in this case, after a little algebra, one can prove that both
conditions are satisfied for the couple (2,4).

A necessary condition for isotropy is that

αhi
= αhj

=: α+, α−hi
= α−hj

=: α−. (A17)

Moreover, considering one couple (i,j ) such that either
A

†
hj

Ahi
�= 0 or Ahi

A
†
hj

�= 0, by condition (A4) or by condi-

tion (A5), respectively, one has

α2
+
∣∣η−hi

〉〈
η−hi

∣∣V †
j Vi

∣∣ηhi

〉〈
ηhi

∣∣
+α2

−
∣∣η−hi

〉〈− ηhi

∣∣V †
i Vj

∣∣ηhi

〉〈
ηhi

∣∣ = 0, (A18)

which implies α2
+ = α2

−. Finally, since α± > 0 one has α+ =
α− =: α.

Let us first consider the five conditions that are common to
both Eqs. (A14) and (A15), namely,

Ah1A
†
h2

= Ah1A
†
h3

= Ah2A
†
h4

= 0, (A19)

A
†
h2

Ah3 = A
†
h1

Ah4 = 0. (A20)

According to Eqs. (A10), the conditions in Eq. (A19) then
imply

Ah1 = αV1M, A−h1 = αV1(I − M),

Ah2 = αV2(I − M), A−h2 = αV2M,
(A21)

Ah3 = αV3(I − M), A−h3 = αV3M,

Ah4 = αV4M, A−h4 = αV4(I − M),

where M := |ηh1〉〈ηh1 | = |ηh4〉〈ηh4 | = |η−h2〉〈η−h2 | =
|η−h3〉〈η−h3 |, with the following constraints on the unitarities
Vi ,

V
†

2 V3 = i n1 · σ , V
†

4 V1 = i n2 · σ , (A22)

where σz = M − (I − M) = 2M − I , and the real vectors ni

lie in the xy plane. Notice that the conditions in Eq. (A20) are
now immediately satisfied.

Imposing the conditions in Eq. (A4) and (A5) gives the
following new constraints:

MV
†

1 V2(I − M) + MV
†

2 V1(I − M) = 0, (A23)

MV
†

1 V3(I − M) + MV
†

3 V1(I − M) = 0, (A24)

V1MV
†

4 + V4(I − M)V †
1 = 0, (A25)

V2(I − M)V †
3 + V3MV

†
2 = 0, (A26)

(I − M)V †
2 V4M + (I − M)V †

4 V2M = 0, (A27)

(I − M)V †
3 V4M + (I − M)V †

4 V3M = 0. (A28)

While the two conditions of Eq. (A25) and (A26) are easily
verified, the remaining four are equivalent to the following
conditions:

[M,(V †
1 V2 + V

†
2 V1)] = [M,(V †

1 V3 + V
†

3 V1)] = 0,

[M,(V †
2 V4 + V

†
4 V2)] = [M,(V †

3 V4 + V
†

4 V3)] = 0.
(A29)

We can satisfy the first condition in Eq. (A29) in two ways:
Either V

†
1 V2 = ν(cI + isσz) with |ν| = 1 or V

†
1 V2 + V

†
2 V1 =

κI with |κ| = 1.
In the first case, since V

†
1 V3 = V

†
1 V2V

†
2 V3, we have

V
†

1 V3 = i νn3 · σ , (A30)

where n3 := (cn1 − se3 × n1). Clearly, n3 lies in the xy plane.
In order to satisfy the conditions in Eq. (A29), ν must then be
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real, namely ν = ±1. Including ν in c,s, we then have

V
†

1 V2 = (cI + isσz), V
†

1 V3 = i n3 · σ ,
(A31)

V
†

1 V4 = −i n2 · σ .

In this case, the matrix Ãk has the form

Ãk = αV1

(
eik1 + ωe−ik2 i(eik3 − θ∗e−ik4 )

i(e−ik3 − θeik4 ) e−ik1 + ω∗eik2

)
, (A32)

where now ω = c + is, and we choose n3 = (1,0,0), while
θ = (n2)1 + i(n2)2. The unitarity condition for Ãk finally gives
the constraint

α2

(
eik1 + ωe−ik2 i(eik3 − θ∗e−ik4 )

i(e−ik3 − θeik4 ) e−ik1 + ω∗eik2

)

×
(

e−ik1 + ω∗eik2 −i(eik3 − θ∗e−ik4 )
−i(e−ik3 − θeik4 ) eik1 + ωe−ik2

)
= I, (A33)

namely,

α2[4 + (ω − θ )e−i(k1+k2) + (ω∗ − θ∗)ei(k1+k2)] = 1, (A34)

for every choice of k1, k2 [we remind the reader that k1 +
k2 + k3 + k4 = 0, and then k3 + k4 = −(k1 + k2)]. Finally,
this implies that θ = ω and α = 1/2. In order to have Ãk=0 = I

[Eq. (19)], the only possibility is to have V1 = X−1, with

X = 1

2

(
1 + ω i(1 − ω∗)

i(1 − ω) 1 + ω∗

)
. (A35)

Then we have

Ãk = 1

4

(
z(k) −iw(k)∗

−iw(k) z(k)∗

)
,

z(k) := ζ ∗eik1 + ζe−ik2 + η∗e−ik3 + ηeik4 ,
(A36)

w(k) := ηeik1 + ωηe−ik2 − ζe−ik3 + ωζeik4 ,

ζ = 1 + ω

4
, η = 1 − ω

4
.

One can check that the remaining conditions of Eqs. (A6)
and (A7) are verified a posteriori, since Ãk is unitary.

In the second case we instead impose V
†

1 V2 + V
†

2 V1 = κI

without [V †
1 V2,M] = 0, and we have the situation

V
†

1 V2 = ν(cI + isn3 · σ ), V
†

1 V3 = ν(c′I + is ′n4 · σ ),

(A37)

where

c′ = −s(n1 · n3), s ′n4 = cn1 − s(n3 × n1). (A38)

Now either ν = ν∗ or s = s ′ = 0. However, if s = 0, then
s ′ = 1. The only possibility is then ν = ν∗ = ±1. Including ν

in the coefficients c,c′,s,s ′. We can also calculate V
†

2 V4 and
V

†
1 V4, obtaining

V
†

1 V2 = cI + isn3 · σ , (A39)

V
†

1 V3 = c′I + is ′n4 · σ , (A40)

V
†

1 V4 = −in2 · σ , (A41)

V
†

2 V3 = in1 · σ , (A42)

V
†

2 V4 = −s(n2 · n3)I − i(cn2 + sn3 × n2) · σ , (A43)

V
†

3 V4 = −s ′(n2 · n4)I − i(c′n2 + s ′n4 × n2) · σ . (A44)

One can easily verify that the conditions in Eq. (A29) are all
satisfied without further constraints.

Reminding the reader now of the expressions in Eq. (A21),
we can impose the conditions in Eqs. (A6) and (A7) as follows:

V1MV
†

2 + V2(I − M)V †
1 + V3MV

†
4 + V4(I − M)V †

3 = 0,

(A45)

V1MV
†

3 + V3(I − M)V †
1 + V2MV

†
4 + V4(I − M)V †

2 = 0,

(A46)

MV
†

1 V2M + (I − M)V †
2 V1(I − M)

+MV
†

3 V4M + (I − M)V †
4 V3(I − M) = 0, (A47)

MV
†

1 V3M + (I − M)V †
3 V1(I − M)

+MV
†

2 V4M + (I − M)V †
4 V2(I − M) = 0, (A48)

MV
†

1 V4(I − M) + MV
†

4 V1(I − M)

+MV
†

2 V3(I − M) + MV
†

3 V2(I − M) = 0. (A49)

We omit the sixth condition, which is trivially satisfied. The
last condition in Eq. (A49) is easily verified using the form of
V

†
1 V4 and V

†
2 V3. Let us now focus on the third and fourth

conditions. Substituting the explicit expression for V
†

1 V2 and
V

†
3 V4 in Eq. (A47) and V

†
1 V3 and V

†
2 V4 in Eq. (A48), and

considering that M = 1/2(I + σz), we obtain

cI + is{σz,n3 · σ } − s ′(n2 · n4)I

− i{σz,c
′n2 − s ′n2 × n4 · σ } = 0,

c′I + is ′{σz,n4 · σ } − s(n2 · n3)I

− i{σz,cn2 − sn2 × n3 · σ } = 0,

namely,

cI − s ′(n2 · n4)I = 0, sn3 · h + s ′n2 × n4 · h = 0,
(A50)

c′I − s(n2 · n3)I = 0, s ′n4 · h + sn2 × n3 · h = 0.

Substituting the expression for s ′n4 we have

c − c(n1 · n2) + sn1 · (n2 × n3) = 0, (A51)

sn3 · h − cn1 × n2 · h − s(n1 · n2)n3 · h = 0, (A52)

c′ − s(n2 · n3) = 0, (A53)

sn1 × n3 · h + sn2 × n3 · h = 0. (A54)

From Eqs. (A38), (A53), and (A54) we immediately conclude

s(n1 · n3) = −s(n2 · n3), sn3 × h · n1 = −sn3 × h · n2.

(A55)

For s = 0 we recover a special case of the solution as in
Eq. (A36). We then consider the case s �= 0. Reminding
the reader that we are assuming here n3 not parallel to h,
we have n1 = −n2. Finally, from Eq. (A51) we then conclude
that c = 0 and s = ±1. Including s in the definition of n3, we
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have

V
†

1 V2 = in3 · σ , (A56)

V
†

1 V3 = −(n1 · n3)I + in1 × n3 · σ , (A57)

V
†

1 V4 = in1 · σ , (A58)

V
†

2 V3 = in1 · σ , (A59)

V
†

2 V4 = (n1 · n3)I − in1 × n3 · σ , (A60)

V
†

3 V4 = −i[2(n1 · n3)n1 − n3] · σ . (A61)

Considering now the condition in Eq. (A45), and multiplying
on the left by V

†
1 and on the right by V2, we obtain

M + V
†

1 V2(I − M)V †
1 V2

+V
†

1 V3MV
†

4 V2 + V
†

1 V4(I − M)V †
3 V2 = 0. (A62)

Since V
†

1 V2 = −V
†

2 V1, V
†

2 V4 = −V
†

1 V3, and V
†

2 V3 = V
†

1 V4,
we obtain

2M − (I − M̃) − M̄ = 0, (A63)

where M̃ := V
†

1 V2MV
†

2 V1 and M̄ = V
†

1 V3MV
†

3 V1. Finally,
this implies I − M̃ = M̄ = M . This implies that n3 · h = 0;
namely, also n3 lies in the xy plane. As a result, we have

Ãk = αV1

(
eik1 + ωe−ik3 i(eik2 + θe−ik4 )

i(e−ik2 + θ∗eik4 ) e−ik1 + ω∗eik3

)
. (A64)

Repeating the same arguments as for Eq. (A36), we get

Ãk = 1

4

(
z′(k) −iw′(k)∗

−iw′(k) z′(k)∗

)
,

z′(k) : = ζ ∗eik1 + ζe−ik3 + η∗e−ik2 + ηeik4 ,
(A65)

w′(k) : = ηeik1 + ωηe−ik3 − ζe−ik2 + ωζeik4 ,

ζ : = 1 + ω

4
, η := 1 − ω

4
.

We now carry out the analysis for the automaton in
Eq. (A36), since the case of Eq. (A65) can be obtained from it
by simply exchanging k2 and k3.

In the general case of arbitrary ω, we have

Ah1 =
(

ζ ∗ 0
−iη 0

)
, A−h1 =

(
0 −iη∗
0 ζ

)
,

Ah2 =
(

0 iζ ∗
0 η

)
, A−h2 =

(
η∗ 0
iζ 0

)
,

(A66)

Ah3 =
(

0 −iω∗η∗
0 ζ ∗

)
, A−h3 =

(
ζ 0

−iωη 0

)
,

Ah4 =
(

η 0
−iωζ 0

)
, A−h4 =

(
0 −iω∗ζ ∗
0 η∗

)
,

with ζ = (1 + ω)/4 and η = (1 − ω)/4.
The unitary Ak can be rewritten as

Ak =
4∑

j=1

(−iAj sin kj + Bj cos kj ), (A67)

with

Ai = Ahi
− A−hi

, Bi = Ahi
+ A−hi

. (A68)

Considering the expressions in Eq. (A66), we can conclude
the following identities:

B1 = A1σz, B4 = A4σz,
(A69)

B2 = −A2σz, B3 = −A3σz.

Using now the trigonometric identities

sin(α + β + γ ) = sin α cos β cos γ + cos α sin β cos γ

+ cos α cos β sin γ − sin α sin β sin γ,

cos(α + β + γ ) = cos α cos β cos γ − cos α sin β sin γ

− sin α cos β sin γ − sin α sin β cos γ,

(A70)

we can rewrite Eq. (A36) as

Ãk = −iαx sxcycz − βx cxsysz − iαy cxsycz − βy sxcysz

− iαz cxcysz − βz sxsycz + iμ sxsysz + I cxcycz,

(A71)

where

sν := sin
kν√

3
, cν := cos

kν√
3
, ν = x,y,z, (A72)

and we used the condition
∑

i Bi = I , which is a consequence
of Eq. (19), and the definitions

αx := A1 + A2 − A3 − A4,

αy := A1 − A2 + A3 − A4,

αz := A1 − A2 − A3 + A4,

μ := A1 + A2 + A3 + A4, (A73)

βx := B1 + B2 − B3 − B4,

βy := B1 − B2 + B3 − B4,

βz := B1 − B2 − B3 + B4.

Exploiting Eq. (A69), we obtain

βx = (A1 − A2 + A3 − A4)σz = αyσz,

βy = (A1 + A2 − A3 − A4)σz = αxσz, (A74)

βz = (A1 + A2 + A3 + A4)σz = μσz.

By direct calculation we can get

αx =
(

ζ ∗ − η∗ + ζ − η i(η∗ + ζ ∗ + ω∗η∗ − ω∗ζ ∗)
−i(η + ζ + ωη − ωζ ) −ζ + η − ζ ∗ + η∗

)

=
(

Re ω i
2 (1 − ω∗2)

− i
2 (1 − ω2) −Re ω

)
,

αy =
(

ζ ∗ + η∗ − ζ − η i(η∗ − ζ ∗ − ω∗η∗ − ω∗ζ ∗)
−i(η − ζ − ωη − ωζ ) −ζ − η + ζ ∗ + η∗

)

=
(

0 −iω∗
iω 0

)
,
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αz =
(

ζ ∗ + η∗ + ζ + η i(η∗ − ζ ∗ + ω∗η∗ + ω∗ζ ∗)
−i(η − ζ + ωη + ωζ ) −ζ − η − ζ ∗ − η∗

)

=
(

1 0
0 −1

)
,

μ =
(

ζ ∗ − η∗ − ζ + η i(η∗ + ζ ∗ − ω∗η∗ + ω∗ζ ∗)
−i(η + ζ − ωη + ωζ ) −ζ + η + ζ ∗ − η∗

)

=
( −iIm ω i

2 (1 + ω∗2)
− i

2 (1 + ω2) −iIm ω

)
. (A75)

Let us now consider the point symmetries of the Bravais
lattice, namely the symmetries of the cubic cell. There are two
groups that are transitive over S+ and have no trivial transitive
subgroups: (1) the group L3 generated by the rotations around
the four ternary axes along the diagonals of the cube; (2) the
group L2 of binary rotations around the three principal axes
of the cube. Using the covariance under any of these groups,
thus permuting and/or changing the signs of the α matrices, it
is easy to see that an identity must hold,

2Re ωI = {αx,αz} = 0, (A76)

namely, ω = ±i. This condition selects two solutions that can
be expressed in terms of the following matrices:

α±
x := −σy, β±

x := ±iσy,

α±
y := ∓σx, β±

y := −iσx,
(A77)

α±
z := σz, β±

z := ∓iσz,

μ± := ∓iI.

By conjugating with exp(−iπσz/4) (which is a local conjuga-
tion on the automaton, changing only the representation), we
get the simpler representation

α±
x := σx, β±

x := ∓iσx,

α±
y := ∓σy, β±

y := −iσy, (A78)

α±
z := σz, β±

z := ∓iσz,

which satisfies

β±
x = ∓iα±

x , β±
y = ±iα±

y , β±
z = ∓iα±

z . (A79)

In this representation, the automata in Eq. (A71) with
unitary operator Ã±

k corresponding to ω = ±i become

Ã±
k = 1

4

(
z(k) −w(k)∗
w(k) z(k)∗

)
,

z(k) := ζ ∗eik1 + ζe−ik2 + ζe−ik3 + ζ ∗eik4 ,
(A80)

w(k) := ζ ∗eik1 + ζe−ik2 − ζe−ik3 − ζ ∗eik4 ,

ζ = 1 ± i

4
,

and can be written as

Ã±
k = Id±

k − iα± · a±
k , (A81)

where

(a±
k )x := sxcycz ∓ cxsysz, (a±

k )y := cxsycz ± sxcysz,
(A82)

(a±
k )z := cxcysz ∓ sxsycz, d±

k := cxcycz ± sxsysz,

while α± is the vector of matrices defined in Eq. (A78). The
dispersion relation is given by

ωA±
k = arccos(cxcycz ± sxsysz). (A83)

In the new representation, the matrices Ahi
read

Ah1 =
(

ζ ∗ 0
ζ ∗ 0

)
, A−h1 =

(
0 −ζ

0 ζ

)
,

Ah2 =
(

0 ζ ∗
0 ζ ∗

)
, A−h2 =

(
ζ 0

−ζ 0

)
,

(A84)

Ah3 =
(

0 −ζ ∗
0 ζ ∗

)
, A−h3 =

(
ζ 0
ζ 0

)
,

Ah4 =
(

ζ ∗ 0
−ζ ∗ 0

)
, A−h4 =

(
0 ζ

0 ζ

)
.

As we already noticed, the isotropic automata among
the family of Eq. (A65)—more precisely the ones obtained
by conjugating with e−i π

4 σz —can be obtained by those in
Eq. (A81) by simply exchanging k2 and k3, namely kx and
ky . We then have

Ã′±
k = −iα±

x (sycxcz ∓ cysxsz) − iα±
y (cysxcz ± sycxsz)

− iα±
z (cxcysz ∓ sxsycz) + I (cxcycz ± sxsysz).

(A85)

It is more convenient to conjugate the two automata in the last
expression in such a way that σx is multiplied by the coefficient
in the second line and σy by that in the first line. This can be
achieved, e.g., by conjugating the spatial part of the automaton
with the rotation of −π/2 around the z axis, thus obtaining the
two following automata:

Z̃±
k = −iα±

x (sxcycz ± cxsysz) − iα±
y (cxsycz ∓ sxcysz)

− iα±
z (cxcysz ± sxsycz) + I (cxcycz ∓ sxsysz).

(A86)

These automata, however, are completely equivalent to the
ones in Eq. (A81), precisely, Ã±

k = Z̃∓
k .

Using the expressions in Eqs. (A81) and (A86), one can
easily verify that the two automata Ã±

k are covariant under
the group L2 of binary rotations around the coordinate axes.
Indeed, each rotation changes the sign of two components
kν , leaving the third unchanged. The coefficient of I does
not change under any of these transformations, while the
coefficients of the two Pauli matrices, corresponding to the two
directions changing sign, change their sign; the remaining one
is unchanged. For example, for the transformation (x,y,z) �→
(−x,−y,z) we have

sxcycz ∓ cxsysz �→ −(sxcycz ∓ cxsysz), (A87)

cxsycz ± sxcysz �→ −(cxsycz ± sxcysz), (A88)

cxcysz ∓ sxsycz �→ (cxcysz ∓ sxsycz). (A89)

These changes of sign can be compensated by conjugating the
automaton by iσz, which is the element of SU(2) representing
the same rotation. Being each automaton covariant under the
group L′

2 which acts transitively over S+, we conclude that
both automata are isotropic, with L = L2. Notice that none

062106-13



GIACOMO MAURO D’ARIANO AND PAOLO PERINOTTI PHYSICAL REVIEW A 90, 062106 (2014)

of the automata is covariant under L3 (one can easily see that
the permutation covariance is broken by the difference in the
relative sign between the two terms of the x,z components and
the y component of a±

k ). However, this is not required for the
automata isotropy.

We can now check that adding equations including the term
Ae gives Ae = 0. In fact, we must have

AeÃ
±
k + H.c. = 0, ∀ k ∈ B. (A90)

However, one can immediately check that AeÃ
±
k cannot be

anti-Hermitian for all k, by taking k = (0,0,0) and k =
(π/2,π/2,−π/2).

2. The PC case

We now show that it is impossible to satisfy the unitarity
conditions in Eq. (17) on a PC lattice. The generators h in
this case are six, which can be classified as S± = {±h1,±h2,

±h3}. First, consider the directions h′′ = hi ± hj . In this case,
Eq. (17) provides the following conditions:

A
†
hi

Ahj
+ A

†
−hj

A−hi
= 0, (A91)

A
†
hi

A−hj
+ A

†
hj

A−hi
= 0, (A92)

Ahi
A

†
hj

+ A−hj
A

†
−hi

= 0, (A93)

A−hi
A

†
hj

+ A−hj
A

†
hi

= 0. (A94)

Multiplying the conditions in Eq. (A93) by A
†
hi

on the left and
by Ahj

on the right,∣∣Ahi

∣∣2∣∣Ahj

∣∣2 + A
†
hi

A−hj
A

†
−hi

Ahj
= 0, (A95)

and exploiting the conditions in Eqs. (A92) and (A93) and
their adjoints, the left-hand side of Eq. (A95) can be rewritten
as follows: [∣∣Ahi

∣∣2,∣∣Ahj

∣∣2] = 0. (A96)

This implies that the |Ahi
|’s are all diagonal in the same basis

{|η+〉,|η−〉}, and we can write Ahi
in the form

Ahi
= αiVi |η+〉〈η+|, A−hi

= βiVi |η−〉〈η−|, (A97)

where Vi := Vhi
, and αi,βi > 0. In order to satisfy the

conditions in Eq. (A93) and (A94); however, one has to fulfill
also the equations

αiαjVi |η+〉〈η+|V †
j + βiβjVj |η−〉〈η−|V †

i = 0, (A98)

and upon multiplying both sides by V
†
i on the left and by Vj

on the right, one has

αiαj |η+〉〈η+| + βiβjV
†
i Vj |η−〉〈η−|V †

i Vj = 0, (A99)

that implies V
†
i Vj |η−〉 ∝ |η+〉, namely,

V
†
i Vj = nij · σ , (A100)

where σk denote the Pauli matrices in the basis η+,η−, and
where the complex vector nij is of the form nij = (aij ,bij ,0).
Now, using the identity

(a · σ )(b · σ ) = a · b I + i(a × b) · σ , (A101)

for consistency, one must have

nij · njk = 0, i nij × njk = nik, (A102)

which cannot be satisfied for all vectors nij coplanar, namely
of the form nij = (aij ,bij ,0). Therefore one cannot fulfill the
unitarity requirement for the PC lattice.

3. The rhombohedral case

The rhombohedral lattice corresponds to the presentation of
Z3 involving six vectors constrained by the relators h1 − h2 =
h4, h2 − h3 = h5, and h3 − h1 = h6. Since the relators that
are useful for the unitarity condition are those of length four,
we conveniently change the presentation to the equivalent one:

h1 − h3 = h4 + h5, h2 − h1 = h5 + h6,
(A103)

h3 − h2 = h6 + h4.

The unitarity conditions then involve the following conditions:

A
†
h1

A−h2 + A
†
h2

A−h1 = 0, A
†
h1

A−h4 + A
†
h4

A−h1 = 0,

A
†
h2

A−h3 + A
†
h3

A−h2 = 0, A
†
h1

Ah6 + A
†
−h6

A−h1 = 0,

A
†
h3

A−h1 + A
†
h1

A−h3 = 0, A
†
h2

Ah4 + A
†
−h4

A−h2 = 0,

A
†
h4

Ah5 + A
†
−h5

A−h4 = 0, A
†
h2

A−h5 + A
†
h5

A−h2 = 0,

A
†
h5

Ah6 + A
†
−h6

A−h5 = 0, A
†
h3

Ah5 + A
†
−h5

A−h3 = 0,

A
†
h6

Ah4 + A
†
−h4

A−h6 = 0, A
†
h3

A−h6 + A
†
h6

A−h3 = 0.

(A104)

As in the case of the bcc, for each condition of the kind
A

†
hi

Ahj
+ A

†
−hj

A−hi
, one has either (a) A

†
hi

Ahj
= 0 or (b)

Ahj
A

†
hi

= 0. However, no more than two couples (i,j ) with
the same i or j can satisfy the same condition (a) or (b).
This implies that all the couples appearing in Eq. (A104) must
be partitioned in two subsets corresponding to conditions (a)
and (b), consistently with the requirement that no more than
two couples with the same hi appear in the same set. It turns
out that there are only two ways of arranging the couples,
and both of them lead to commutation relations of the kind
[|Ahi

|,|Ahj
|] = 0. Then either A

†
hi

Ahj
= 0 or A

†
hi

A−hj
= 0.

Now from the relators

h1 − h5 = h4 + h3, h2 − h6 = h5 + h1,
(A105)

h3 − h4 = h6 + h2,

we can write the following equations involved by the unitarity
conditions:

A
†
h1

Ah5 + A
†
h5

Ah1 + A
†
h4

A−h3 + A
†
h3

A−h4 = 0,

A
†
h2

Ah6 + A
†
h6

Ah2 + A
†
h5

A−h1 + A
†
h1

A−h5 = 0, (A106)

A
†
h3

Ah4 + A
†
h4

Ah3 + A
†
h6

A−h2 + A
†
h2

A−h6 = 0.

If, e.g., A
†
±h1

A±h5 = 0, then A
†
∓h4

A±h3 = 0, and then

A
†
±h3

A±h4 �= 0. Continuing with this sequence of implications,

one comes to the contradiction that A
†
±h1

A∓h5 �= 0. A similar
contradiction can be derived in the opposite case, where
A

†
±h1

A±h5 �= 0.
This proves the impossibility of a unitary automaton on the

rhombohedral lattice.
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APPENDIX B: COUPLING OF WEYL AUTOMATA

In this Appendix we show the unique possible automaton
coupling two Weyl automata. The derivation is independent
of the dimension and can thus be applied to all the solutions
derived in the paper.

Imposing unitarity on the matrix Ã′
k of Eq. (35), we obtain

the equations

|x|2I + y2BB† = I, |x|2I + z2C†C = I,

z2CC† + |t |2I = I, y2B†B + |t |2I = I,
(B1)

xzÃkC
† + yt∗BD̃

†
k = 0, x∗yÃ

†
kB + ztC†D̃k = 0,

zx∗CÃ
†
k + tyD̃kB

† = 0, xyB†Ãk + t∗zD̃†
kC = 0,

which imply

B†B = C†C = I, BB† = CC† = I,

y2 = z2, xÃk = −t∗BD̃
†
kC, (B2)

|x|2 + y2 = z2 + |t |2 = 1. (B3)

Specializing to k = 0 we obtain Ãk=0 = D̃k=0 = I , and then
by Eq. (B2) C = eiθB†, where eiθ := −ei arg[xt]. We can then
prove that

Ã′
k :=

(
xÃk yB

yeiθB† −x∗eiθB†Ã†
kB

)
, (B4)

and this is equivalent to the automaton

Ã′′
k :=

(
xÃk iyI

−iyeiθ I −x∗eiθ Ã
†
k

)
, (B5)

through conjugation by

Ũ =
(

I 0
0 iB

)
, (B6)

namely, Ã′′
k = Ũ Ã′

kŨ
†. Diagonalizing the matrix in Eq. (B5),

one can prove that it is not restrictive to take eiθ = ±1
and x > 0 (other choices would simply lead to a different
determinant for Ã′′

k). Indeed, the choice of sign for eiθ and
of the phase of x affect the spectrum of Ã′′

k only through
multiplication of the eigenvalues by a constant phase. Upon
choosing Ãk as one of the Weyl automata for d = 1,2,3, we
then obtain the Dirac automata

Ẽk :=
(

nÃk imI

imI nÃ
†
k

)
, (B7)

with n,m � 0 and n2 + m2 = 1.

The dispersion relation for these automata is easily calcu-
lated by performing the block-diagonal unitary transformation
Tk with blocks diagonalizing Ãk, leading to

Ẽ′′
k = TkẼkT

†
k =

⎛
⎜⎜⎜⎜⎝

ne−iωA
k 0 im 0

0 neiωA
k 0 im

im 0 neiωA
k 0

0 im 0 ne−iωA
k

⎞
⎟⎟⎟⎟⎠,

(B8)
and then diagonalizing the two 2 × 2 blocks Ẽ

′′j
k , j = e,o

corresponding to the even and odd rows and columns,
respectively, thus obtaining

ωE
k := arccos

[√
1 − m2 cos ωA

k

]
. (B9)

Notice that for mass m = 0 we have ωE
k = ωA

k . The group
velocities are

vE
k =

√
1 − m2 sin ωA

k√
m2 + (1 − m2) sin2 ωA

k

vA
k , (B10)

where vA
k is the group velocity of the corresponding Weyl

automaton A.
The projections �±

k on particle and antiparticle states,
corresponding to the degenerate eigenspaces of Ẽk, can be
calculated as follows. Consider the diagonal expression for
the unitary Ẽ′′

k in Eq. (B8),

Ẽ′′
k = (|ψ+

k 〉〈ψ+
k |e + |ψ+

k 〉〈ψ+
k |o)e−iωE

k

+(|ψ−
k 〉〈ψ−

k |e + |ψ+
k 〉〈ψ+

k |0)eiωE
k , (B11)

where |ψl
k〉〈ψl

k|j is the projection on an eigenvector of Ẽ′′
k , the

label j refers to the block to which the eigenvector pertains,
and the superscript sign l refers to the eigenvalue. Now since

Ẽ
′′j
k = n cos ωA

k I + i
{
mσx + s(j )n sin ωA

k σz

}
, (B12)

with s(o) = −1 and s(e) = 1, we have

∣∣ψl
k

〉〈
ψl

k

∣∣
j

= 1

2

⎧⎨
⎩I + l

mσx + s(j )n sin ωE
k σz√

1 − n2 cos2 ωE
k

⎫⎬
⎭ . (B13)

We can thus write an expression for Tk�
±
k T

†
k

Tk�
±
k T

†
k = |ψ±

k 〉〈ψ±
k |e + |ψ±

k 〉〈ψ±
k |o, (B14)

namely,

Tk�
±
k T

†
k = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 ∓ n sin ωA
k√

1−n2 cos2 ωA
k

0 ± im√
1−n2 cos2 ωA

k

0

0 1 ± n sin ωA
k√

1−n2 cos2 ωA
k

0 ± im√
1−n2 cos2 ωA

k

± im√
1−n2 cos2 ωA

k

0 1 ± n sin ωA
k√

1−n2 cos2 ωA
k

0

0 ± im√
1−n2 cos2 ωA

k

0 1 ∓ n sin ωA
k√

1−n2 cos2 ωA
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (B15)
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Finally, defining Uk such that UkÃkU
†
k = diag(e−iωA

k ,e+iωA
k ), one has

Uk|±〉〈±|U †
k = 1

2

{
I ± w(k)rσx + w(k)iσy + z(k)iσz√

1 − z(k)2
r

}
, (B16)

where xr,i denote the real and imaginary part of x, respectively. Finally, we have

�±
k = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 ∓ nz(k)i√
1−n2 cos2 ωA

k

∓ nw(k)∗√
1−n2 cos2 ωA

k

± im√
1−n2 cos2 ωA

k

0

∓ nw(k)√
1−n2 cos2 ωA

k

1 ∓ nz(k)i√
1−n2 cos2 ωA

k

0 ± im√
1−n2 cos2 ωA

k

± im√
1−n2 cos2 ωA

k

0 1 ± nz(k)i√
1−n2 cos2 ωA

k

± nw(k)∗√
1−n2 cos2 ωA

k

0 ± im√
1−n2 cos2 ωA

k

± nw(k)√
1−n2 cos2 ωA

k

1 ± nz(k)i√
1−n2 cos2 ωA

k

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B17)

Notice that the above expression is valid independently of
the dimension and the particular solution of the unitarity
equations.

APPENDIX C: DERIVATION OF THE WEYL AUTOMATON
FOR d = 1 AND d = 2

In this Appendix we derive the unique solution to the
unitarity equations (17) on Z2 and Z.

It is easy to see that for d = 2 the only two Bravais lattices
that are topologically inequivalent are the simple square and
the hexagonal. We seek a QCA for minimal dimension s = 2.
We remind the reader that Eqs. (A3) hold for any Bravais
lattice in any space dimension, whence Ah and A−h must have
orthogonal supports and orthogonal ranges.

The unitarity conditions of Eq. (17) (omitting normaliza-
tion) for both lattices read

A
†
hi

A−hi
= 0, Ahi

A
†
−hi

= 0,

A
†
hi

Ahj
+ A

†
−hj

A−hi
= 0, (C1)

A
†
hi

A−hj
+ A

†
hj

A−hi
= 0, (C2)

Ahi
A

†
hj

+ A−hj
A

†
−hi

= 0, (C3)

Ahi
A

†
−hj

+ Ahj
A

†
−hi

= 0. (C4)

Multiplying Eqs. (C3) and (C4) by A
†
hi

on the left and by Ahj

on the right and exploiting Eq. (C2), we obtain[∣∣Ahi

∣∣2,∣∣A±hj

∣∣2] = 0 ∀ i,j. (C5)

By condition Eq. (C1) we see that α+ = α− =: α. We can then
label the vertices in such a way that the identities

Ahi
= αViM, A−hi

= αVi(I − M) (C6)

hold, where M = |η+,i〉〈η+,i |. Notice, however, that the
relabeling may not correspond to a unitary conjugation, so
we have to check a posteriori that the relabeled automaton
is equivalent to the original one. Indeed, as we will see,
the relabeled automaton is related to the original one by
transposition.

Now the conditions Eq. (C1) are equivalent to

MV
†
i VjM + (I − M)V †

j Vi(I − M) = 0, (C7)

namely,

MV
†
i VjM = (I − M)V †

j Vi(I − M) = 0. (C8)

Defining σz := M − (I − M), we then have

V
†
i Vj = νij nij · σ , (C9)

with nij lying on the plane xy. Similarly, the conditions in
Eq. (C2) read

MV
†
i Vj (I − M) + MV

†
j Vi(I − M) = 0, (C10)

namely, νij = −ν∗
ij = ±i.

1. Hexagonal lattice

It is easy to show that the hexagonal lattice is incompatible
with unitarity. In fact, since

V
†

1 V3 = V
†

1 V2V
†

2 V3, (C11)

we have

n12 · n23 = 0, n13 = −in12 × n23, (C12)

which is impossible to satisfy with all nij ’s lying on the xy

plane. Therefore, there exists no QCA for the s = 2 on a
hexagonal lattice.

2. Square lattice

On the other hand, for the square lattice we have

V
†

1 V2 = in · σ , (C13)

and then

Ãk = Ah1e
ik1 + A−h1e

−ik1 + Ah2e
ik2 + A−h2e

−ik2 , (C14)

which is equal to

Ãk = αV1{Meik1 + (I − M)e−ik1

+ in · σ [Meik2 + (I − M)e−ik2 ]}, (C15)

namely,

Ãk = αV1

(
eik1 −ν∗e−ik2

νeik2 e−ik1

)
, (C16)
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where |ν|2 = 1. Now, if we impose the condition Eq. (19) we
simply have

V
†

1 = α

(
1 −ν∗
ν 1

)
, (C17)

which implies α = 1/
√

2 and

Ãk = 1

2

(
eik1 + eik2 ν∗(e−ik1 − e−ik2 )

−ν(eik1 − eik2 ) e−ik1 + e−ik2

)
. (C18)

Notice also that the automaton in Eq. (C18) for a given
ν = r + ij can be obtained from the automaton with ν = −i

just by a fixed rotation around σz, and then we now refer to the
choice ω = −i. We can express such automaton as

Ãk = 1
2 {(c1 + c2)I − i[(c1 − c2)σx

+ (s1 − s2)σy − (s1 + s2)σz]}, (C19)

where ci = cos ki and si = sin ki . However, in order to obtain
in the relativistic limit the canonical form of the Weyl equation,
we change the representation so that

Ãk = 1
2 {(c1 + c2)I − i[(s1 + s2)σx

+ (s1 − s2)σy + (c1 − c2)σz]}, (C20)

corresponding to the unitary mapping (σx,σy,σz) �→ (σz,σy,

− σx). In this representation, the solution corresponds to the
expression for the automaton

Ãk = 1

4

(
z(k) iw(k)∗

iw(k) z(k)∗

)
,

z(k) : = ζ ∗(eik1 + e−ik1 ) + ζ (eik2 + e−ik2 ),
(C21)

w(k) : = ζ (eik1 − e−ik1 ) + ζ ∗(eik2 − e−ik2 ),

ζ : = 1 + i

4
,

which can be written as

Ã±
k = Idk − iσ · ak, (C22)

where

(ak)x : = sxcy, (ak)y := cxsy,
(C23)

(ak)z : = sxsy, dk := cxcy,

where we introduced the representation

kx := k1 + k2√
2

, ky := k1 − k2√
2

. (C24)

The symbols ci and si denote cos ki√
2

and sin ki√
2
, respectively.

The dispersion relation is

ωA
k = arccos(cxcy). (C25)

Notice, however, that the form (C20) is manifestly covariant
for the cyclic transitive group L = {e,a} generated by the
transformation a that exchanges h1 and h2, with representation
given by the rotation by π around the x axis.

If we now consider the possible relabeling h2 �→ −h2,
using Eq. (C20) we can easily verify that it corresponds to
the transformation (σx,σy,σz) �→ (σy,σx,σz), which modulo
unitary conjugation amounts to transposition.

The only possible local coupling of two Weyl automata is
obtained, as for the 3D case, as

Ẽk =
(

nÃk imI

imI nÃ
†
k

)
, (C26)

with n2 + m2 = 1.
As in the 3D case, we can write the automaton Ẽk in terms

of the γ matrices as

Ẽk = Idk − iγ 0γ · ak + imγ 0, (C27)

where dE
k = ndA

k and aE
k = naA

k .
We also define the Cartesian components of k as follows:

kx : = 1√
2

(k1 + k2), ky := 1√
2

(k1 − k2). (C28)
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