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Emergence of a metastable pointer-state basis in non-Markovian quantum dynamics
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We investigate the dynamics of classical and quantum correlations between two qubits. Each qubit is
implemented by a pair of phosphorous impurities embedded in a silicon substrate. The main decoherence
mechanism affecting these types of qubits is provided by the coupling of the phosphorous impurities to the
acoustical vibrations of the silicon lattice. We find that depending on the temperature of the substrate and the
initial state, three different dynamics can be found. These are characterized by the number of abrupt changes in
both classical and quantum correlations. We also show that the correlations do not disappear. Moreover, before
the classical correlations reach a constant value, they may experience successive abrupt changes associated with
the apparition of a metastable pointer-states basis. Then a constant value for the classical correlations is reached
when the preferred basis is established.
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Recently the study of classical and quantum correlations
has become a central subject of investigation. The study of
quantum correlations between quantum systems is a problem
as old as quantum theory. For many years it was widely
believed that quantum entanglement would be the only
relevant type of correlation for quantum information protocols.
However, it has been proved that efficient quantum protocols
can be performed in the absence of entanglement [1]. A
bipartite quantum system A-B can feature both quantum and
classical correlations between its constituent parts A and B,
respectively. All these correlations can be characterized by the
quantum mutual information [2,3]

I (ρ̂AB) = S(ρ̂A) + S(ρ̂B) − S(ρ̂AB), (1)

where S(ρ̂) = −Tr[ρ̂ log2(ρ̂)] is the von Neumann entropy [4].
Based on this expression it is commonly believed that the
correlations can be separated according to their classical and
quantum nature, respectively [2]. In this way the quantum
discord can be introduced as [2,3] and [5–8],

D(ρ̂AB) = I (ρ̂AB) − C(ρ̂AB), (2)

where C(ρ̂AB) are the classical correlations [2,6] defined by
the following maximization procedure: A complete set of
projector operators {�̂k} must be constructed for the subsystem
B. Then the quantity

C(ρ̂AB) = max
{�̂k}

[S(ρ̂A) − S(ρ̂AB | {�̂k})] (3)

must be maximized with respect to variation of the set of
{�̂k} where S(ρ̂AB | {�̂k}) = ∑

k pkS(ρ̂k), pk = Tr(ρ̂AB�̂k),
and ρ̂k = TrB(�̂kρ̂AB�̂k)/pk .

The competition between classical and quantum corre-
lations parts of a quantum system has attracted increasing
attention in recent years. It is widely believed that for
decoherence, caused by contact with an external reservoir, both
types of correlations of a system are continuously depleted
and transferred to the reservoir degrees of freedom. This
depletion happens on a characteristic time scale that defines

the decoherence time of the system, which is the effective
feature of the system’s coupling to the reservoir. An alternative
way to characterize the decoherence can be obtained from the
dynamical raise of the system’s entropy.

However, it has been pointed out that the former case is
not the general one, as dynamical transitions from quantum to
classical correlations may also be discontinuous [9,10]. This
has been demonstrated for a system experiencing decoherence
by a dephasing channel. Furthermore, it has been shown
experimentally [11–13] that classical correlations may change
abruptly to a nonvanishing stationary value. This feature has
been proposed to determine whether a quantum system has
reached its classical regime or not [12]. The appearance
of a stationary classical correlation is associated by the
emergence of a basis of pointer states in one of the two
subsystems [12], denoted also as “preferred basis for the
apparatus,” where the apparatus may be understood as one
of the two subsystems [14].

In this paper we show analytically that not only the
quantum-to-classical transition may be discontinuous, but that
these abrupt changes may also occur various times during the
dynamical evolution of the system. Therefore, there may exist
intermediate stages with constant classical correlation. Each
stage defines a distinct and metastable basis of pointer states.
Only after passing through these stages—after a sufficiently
long time—the final basis of pointer states is asymptotically
established.

Our system is composed of two charge quantum bits
(qubits), implemented by electrons localized at donor impu-
rities, i.e., P, that are embedded in a semiconductor host, i.e.,
Si [15]. Each qubit consists of a pair of impurities sharing a
single electron. The quantum information is encoded as the
position of the electron within the pair of impurities. At or
below room temperature the dominant source of decoherence
of this implementation of qubits is off-resonant scattering
of acoustical phonons in the substrate. This decoherence
mechanism has been shown, both numerically [16] and in
analytically closed form [17,18], to provide a non-Markovian
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FIG. 1. (Color online) Schematic outline of the two donor-based
charge qubits (b = 1,2) formed by four donor sites in a semiconductor
material. Blue and red donor sites correspond to qubit states mb = − 1

2
and mb = + 1

2 , respectively. Each qubit b is located at position rb and
has an intersite distance vector db pointing from site mb = − 1

2 to site
mb = + 1

2 .

dephasing of the qubits. It also induces a disentanglement of
pairs of qubits with subsequent partial recovering of the initial
entanglement [19].

At sufficiently large distances between the qubits, Coulomb
repulsion and cross tunneling of electrons can be neglected.
Then the dynamics is generated by off-resonant scattering of
acoustical phonons at the donor-based charge qubits, which is
described by the spin-boson Hamiltonian,

H = �

∑
b

(ωbŜb,z + �bŜb,x) +
∑

k

�νkâ
†
kâk

+ �

∑
b

∑
k

Ŝb,z(gb,kâ
†
k + g∗

b,kâk). (4)

Here the spin- 1
2 operators Ŝb act on the states |mb〉 of the bth

qubit, where mb = ± 1
2 denotes the localization of the qubit’s

electron at one of the two impurity sites. Furthermore, âk are
the bosonic annihilation operators of longitudinal acoustical
phonons of wave vector k and linear dispersion relation νk =
sk with s being the speed of sound in the substrate. The qubits
have transition frequencies ωb and tunneling rates �b, and are
interacting with the phonons via the coupling rate

gb,k = D

�s

√
2�νk

Mo

∑
mb=± 1

2

mbe
−ik·(rb+mb db)[

1 + (
kaB

2

)2]2 ,

where D is the deformation constant of the substrate, M0 is
the unit cell mass, and aB is the corresponding Bohr radius in
the substrate.

The geometrical configuration of the N -qubit setup is
characterized by a vector r̂b with b = 1,2,3, . . . which labels
the position of the center of each qubit, d̂b is the interdonor
distance, for the sake of simplicity, this parameter as well as
Bohr radius are taken to be the same for each qubit, see Fig. 1.
Here also, we assume the distance between two adjacent qubit
is larger than the interdonor distance, this provides a condition
for preventing interqubit tunneling.

Applying electric potentials via suitably positioned elec-
trodes, the qubit’s transition frequencies can be raised to
surpass the tunneling rates ωb � �b, and tunneling can be
neglected so that fully analytic solutions of the spin-boson
dynamics can be found. Assuming then that the thermal
excitation of substrate phonons is sufficiently low to not
excite the qubit transitions kBT � �ωb, each qubit can be
individually manipulated to prepare a general initial state of
the qubits factorized with respect to the phonon state,

ρ̂ph+qubits(0) =
∑

{mb},{sb}
ρ{mb},{sb}(0)|{mb}〉〈{sb}| ⊗ ρ̂ph,th, (5)

where |{mb}〉 = |m1〉 ⊗ |m2〉 are the bipartite qubit states and
ρ̂ph,th is the thermal state of the phonons. The reduced density
matrix of the qubits can then be shown to evolve in time
as [17–19]

ρ{mb},{sb}(t) = ρ{mb},{sb}(0)f{mb},{sb}(t), (6)

where the time dependence is given by the functions [19]

f{mb},{sb}(t) = exp

[
−

∫ t

0
dt ′�{mb},{sb}(t

′)
]

. (7)

Here the decoherence rate of the bipartite qubit state results as

�{mb},{sb}(t) =
∑
b,b′

(mb − sb)(mb′ − sb′)γb,b′ (t), (8)

where the interqubit decorrelation rate is given by

γb,b′ (t) = 4
∑
mb

∑
sb′

mbsb′γ [t ; |(rb + mbdb) − (rb′ + sb′ db′ )|].

(9)

The interdonor decoherence rate is defined as

γ (t ; l) = 2πs

l

T

Ts

∑
σ=±1

σ

(
x3

6
+ x2

2
+ 5x

8
+ 5

16

)
e−2x,

with x = |l − σst |/a. This decoherence rate is proportional
to the substrate temperature T , where the temperature scale
is defined in terms of parameters of the substrate as Ts =
aρss

4h2/(kBD2), with ρs being the substrate mass density.
As the initial qubit state we consider a statistical mixture of

two Bell states (p ∈ [0,1]),

ρ̂qubits(0) = p | �+〉〈�+ | +(1 − p) | �+〉〈�+ | . (10)

Thus, the initial state can be expressed in the basis {| 1
2 , 1

2 〉,
| 1

2 ,− 1
2 〉, |− 1

2 , 1
2 〉, |− 1

2 ,− 1
2 〉} as an X state and remains in this

form throughout the nondissipative time evolution, as

ρqubits(t) = 1

2

⎡
⎢⎣

p 0 0 b(t)
0 1 − p c(t) 0
0 c(t) 1 − p 0

b(t) 0 0 p

⎤
⎥⎦,

where we defined b(t) = pf 1
2 , 1

2 ;− 1
2 ,− 1

2
(t) and c(t) = (1 −

p)f 1
2 ,− 1

2 ;− 1
2 , 1

2
(t). This density matrix reaches a stationary state

for t � d/s, where d is the characteristic distance between
donor sites, and b(t) and c(t) attain constant values that depend
on the geometric configuration of the qubit pair. In general
analytical solutions for the correlations of a two-qubit state are
yet unknown. However, for the X state present here, analytical
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FIG. 2. (Color online) Evolution of the classical correlation (red solid line), the quantum discord (blue dotted line) for an initial state
characterized by p = 0.8 and different temperatures, (a) T/TB = 0.01, (b) T/TB = 0.035, and (c) T/TB = 0.05. Geometrical parameters are
|d1| = |d2| = 10aB, |r1 − r2| = 20aB, ∠(d1,d2) = 45◦.

solutions for the correlations can be found following the lines
of Ref. [20]. The result for the classical correlations is

C(t) = 1 − K(w(t)), (11)

where

w(t) = max[|a|,b + c], (12)

with a = 2p − 1 and the function K reads

K(x) = −1 + x

2
log2

(
1 + x

2

)
− 1 − x

2
log2

(
1 − x

2

)
.

Furthermore, the quantum discord is obtained as

D(t) = 1 + p log2(p) + (1 − p) log2(1 − p) + K(w(t))

−pK

(
b(t)

p

)
− (1 − p)K

(
c(t)

1 − p

)
. (13)

The classical correlation (11) and the quantum discord (13)
of the state (10) are shown in Fig. 2 as functions of time. It can
be seen that three cases exist depending on the temperature.
For very low temperature the classical correlation is well above
the quantum discord, the latter being constant, see Fig. 2(a).
Increasing slightly temperature, the minimum of the classical
correlation merges with quantum discord, so that the latter now
shows a minimum, as seen in Fig. 2(b). Further increasing the
temperature leads to a third case where the classical correlation
becomes constant after an initial decay, see Fig. 2(c). The latter
case has been observed previously for dephasing qubits [9–12].

Whereas the above results have been obtained in a general
way, we may also derive these results by explicitly performing
the variation over the set of projectors in Eq. (3). In this way a
basis of two orthogonal states is obtained that maximizes the
classical information at a certain instant of time. Whenever the
classical information is constant as a function of time, this basis
is the basis of pointer states. Here the system is identified as the
two qubits, whereas the measurement apparatus is given by the
decohering environment. The latter represents a measurement
apparatus that continuously measures without recording the

outcomes. To study these features in more detail, we may
analytically determine the basis of pointer states, when it ex-
ists. Without loss of generality, the subsystem B is considered
as an apparatus that performs measurements on subsystem
A. Defining for subsystem B the arbitrary basis of two or-
thonormal states, |ψ1〉B = cos(θ/2)|− 1

2 〉B + eiφ sin(θ/2)| 1
2 〉B

and |ψ2〉B = cos(θ/2)| 1
2 〉B − e−iφ sin(θ/2)|− 1

2 〉B, the mea-
surement projectors can be constructed as �̂k = |ψk〉BB〈ψk|
(k = 1,2).

The classical information is of the form

C(t) = max
{θ,φ}

[G(θ,φ,t)],

where

G(θ,φ,t) = 1 + 1
2 [(1 + g) log2(1 + g) + (1 − g) log2(1 − g)],

with

g(θ,φ,t) =
√

a2 cos2 θ + sin2 θ [b2 + c2 + 2bc cos(2φ)].

As a consequence it can be shown that the extrema of G(θ,φ,t)
with respect to the position on the Bloch sphere (θ,φ) coincide
with the corresponding extrema of g(θ,φ,t). Note, that since
b,c � 0, g attains its possible maxima only for φ = 0,π . Thus,
maximizing g is equivalent to maximizing the expression

a2 cos2 θ + [b(t) + c(t)]2 sin2 θ.

For time intervals where a > b(t) + c(t) the maxima of
the classical correlation appears at the poles of the Bloch
sphere θ = 0,π . In this time interval, the classical information
is constant, as seen from Eqs. (11) and (12). Therefore, this
basis of eigenstates of σ̂z corresponds to a basis of pointer
states.

On the other hand, if a < b(t) + c(t) the maxima appear
at θ = π

2 so that the basis corresponds to eigenstates of σ̂x .
However, the classical information in general is not constant.
Only for very large times, when b(t) and c(t) reach their
stationary values, the classical information asymptotically
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reaches a constant value. This latter case again corresponds to
a basis of pointer states. As b(t) and c(t) depend on time via the
functions (7) and since these functions scale with temperature,
varying the temperature allows a change of the basis of pointer
states. This can be seen in the three cases depicted in Fig. 2: In
(a) for large times the classical correlation becomes stationary
and a basis of pointer states is asymptotically established
as eigenstates of σ̂x . Increasing temperature, see Fig. 2(b),
a metastable regime of σ̂z pointer states is observed for the
time interval where C is constant, which is replaced for large
times by the σ̂x pointer-state basis. Finally, for even higher
temperatures the previously metastable regime becomes stable
and the σ̂z eigenstates become the pointer states, see (c).

At intermediate temperatures between cases (b) and (c), i.e.,
when the metastable σ̂z pointer-state basis gradually becomes
stable, an interesting feature can be observed, as shown in
Fig. 3. When increasing temperature more than one metastable
regime can occur, e.g., three regimes in the case shown in
Fig. 3. For long times again a stationary σ̂x pointer-state
basis is reached asymptotically. The appearance of one or
more metastable regimes is due to the non-Markovian nature
of the evolution of the system [17–19]. Indeed, we have
checked that increasing the separation between the qubits, the
quantum correlations decay monotonically before reaching a
stationary (nonzero) value. This dynamics resembles the one
in Markovian systems. Also, the metastable pointer states do
not appear in this regime. The reason is the following: the
probability of a photon emitted by a qubit is absorbed by
the other qubit, decreases when increasing separation between
qubits. In other words, the phonons are more likely to spread
around the lattice, leading to a Markovian dynamics. Related
to the work of authors in Ref. [13] where double sudden
transitions in geometric quantum correlations are reported,
in our case we found multiple sudden transitions for quantum
discord [see Fig. 3(b)].

The order of magnitude of the temperature TP where
the abrupt transition between σ̂z and σ̂x pointer states
occur, can be estimated from the order of magnitude of
the stationary values b(∞) ≈ p exp(−16πT/Ts) and c(∞) =
(1 − p) exp(−16πT/Ts), and results from the condition |a| =
b(∞) + c(∞) as

TP/Ts ≈ − ln |2p − 1|
16π

. (14)

Indeed this estimate agrees with the fact that for the special
case of a pure initial state (p = 1/2) no abrupt transition can
occur.

The appearance of the metastable pointer-state basis is also
evidenced by the time evolution of the Von Neumann entropy
S(ρ̂AB). Within each metastable regime the Von Neumann
entropy reaches a local maximum, which is in agreement with
the metastability of the pointer-state basis. At large times the
entropy, similar to the classical correlation, reaches a stationary
value.

We have shown that for a system of two donor-based charge
qubits, the decoherence may lead to a time evolution where
a series of transitory stages appear, each stage establishing
a characteristic basis of pointer states. This scenario is
fundamentally different from single abrupt transitions of the
classical correlation, as shown in Refs. [9,10]. However, the
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FIG. 3. (Color online) Evolution of the classical correlation (red
solid line), the quantum discord (blue dashed line), and Von Neumann
entropy (black solid line) for an initial state with mixing parameter
p = 0.8 and T/TB = 0.0384.

latter case can be observed in our system for the case of higher
temperatures, as shown in Fig. 2(c). The system described
here, exhibits a phaselike transition with respect to a change
of temperature, where the equilibrium basis of pointer states
go from σ̂x eigenstates at T � TP to σ̂z eigenstates at T � TP,
where TP is estimated in Eq. (14). This feature opens the
possibility to engineer the basis of pointer states by tuning
the parameters of the physical system.
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