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Multibarrier-tunneling invisible systems may be formed by a finite chain of building blocks that are tunneling
invisible. Here we study these systems as a function of the energy and of the distance among building blocks. We
find that the transmission coefficient exhibits a very complex behavior both around unity transmission and near
the border of energy gaps. Yet, tunneling invisibility remains for a broad range values of these parameters. We
investigate on the relationship of the energy spectra in these systems with the corresponding distribution of the
complex poles of the transmission amplitude on the energy plane, in particular with the formation of energy dips
and gaps in the transmission spectra. We find that these findings hold also in general for multibarrier resonant
tunneling systems.
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I. INTRODUCTION

An interesting area of investigation on fundamental proper-
ties of quantum mechanics has been opened with the possibility
of designing and constructing one-dimensional (1D) artificial
quantum structures. One of these properties is quantum
tunneling. There, the issue of total transparency of a tunneling
particle has attracted attention over the years. It is well known
that tunneling of a particle of a given energy through a
potential barrier yields in general a partial transmission. Full
transmission may occur in resonant tunneling systems, perhaps
the simplest one of them consisting of two barriers with a
well in between. There, unity transmission may be achieved
at some specific energies, the so-called resonance energies.
A similar situation occurs in multibarrier resonant tunneling
systems having N + 1 identical barriers alternating with N

identical wells. Here, the resonance levels group themselves
in minibands, the number of resonance levels in each miniband
being equal to the number of wells in the system [1]. In the
stationary regime, the time scale for the tunneling process
usually refers to the notions of the time delay and the dwell
time [2].

One also finds in the literature a number of approaches
that refer to exactly solvable potentials, usually named re-
flectionless or transparent potentials, where the transmission
coefficient attains a unity value at all incident energies
including the threshold energy [3–6]. A well-known example
is the Pöschl-Teller potential well which for very specific
values of the potential parameters exhibits unity transmission
at all energies [7]. These reflectionless potentials, however,
exhibit a time delay and hence are distinguishable from a
free evolving particle. More importantly, however, from a
physical point of view, is that reflectionless here depends on the
precise functional dependence of the potential and hence these
potentials might be difficult, if not impossible, to construct.

The above considerations suggest to ask to what extent one
may design potential profiles in one dimension, that in addition
to be totally transparent to a tunneling particle, cannot be
distinguished from a free evolving particle. In recent work we
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addressed the above question and found that indeed this may be
possible by an appropriate choice of the potential parameters
in systems that involve a combination of barriers and wells,
specifically, barrier-well-barrier systems. The transmission
coefficient as a function of energy in these systems rises
sharply from zero to unity and remains very close to this value
along the tunneling region and up to energies a few times
above the barrier height. We find that this is intimately related
to the distribution of the complex poles of the transmission
amplitude on the complex k plane. In particular, the presence
of a bound or antibound poles very near k = 0 and all complex
poles located far from the real k axis. Similarly, the dwell time,
that provides a measure of the time spent within the interaction
potential region, yields a value very close to that corresponding
to a free evolving particle. We have referred to these systems
as tunneling invisible systems [8,9]. See also related work in
Ref. [10].

Resonant tunneling and tunneling invisibility systems are
closely related to each other. One may go from one to the
other by modifying appropriately the potential parameters [8].
In resonant tunneling systems the individual barriers are nearly
opaque whereas for tunneling invisibility the opposite holds.

We shall refer to a given tunneling invisible barrier-well-
barrier system as a tunneling invisible building block (TIBB).
In Ref. [8], we considered multibarrier systems involving a
few TIBB’s to show that they may exhibit invisibility up to a
few times the barrier height. However, we did not investigate
in detail the properties of chains having many TIBB’s. This
is relevant because each TIBB is characterized by a length
that repeats itself to form the multibarrier system and this
necessarily leads, as is well known, to the occurrence of
energy regions where unity transmission is partially or totally
suppressed, that is, respectively, to transmission energy dips
or gaps.

It is the purpose of this work to investigate the properties of
multibarrier-tunneling systems formed by chains of TIBB’s.
We find that a contour map of the transmission as a function
of the energy and the distance among TIBB’s, exhibits a
very complex behavior that involves regions of tunneling
invisibility and energy gaps (Fig. 2). In this work we focus
in the formation of energy dips and gaps in the transmission
spectra and how they relate to the distribution of poles in the
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complex energy plane. In order to understand this we have
included in our study multibarrier resonant tunneling systems.

This work is organized as follows. Section II deals
with multibarrier-tunneling invisible systems, in Sec. III we
consider the relationship between the transmission amplitude
and the distribution of its complex poles with the help of
some model calculations for resonant and invisible tunneling
systems. Section IV deals with the dwell time in multibarrier-
tunneling invisible systems and, finally, Section V provides
the concluding remarks.

II. MULTIBARRIER-TUNNELING INVISIBLE SYSTEMS

Let us consider a particle of mass m and energy E

impinging, from x < 0, on a quantum system characterized by
a potential profile V (x) of length L, i.e., V (x) = 0 outside the
region 0 < x < L. The Schrödinger equation of the problem
reads,

∂2

∂x2
ψ(x,k) + [k2 − U (x)]ψ(x,k) = 0 (1)

where k2 = (2m/�
2)E and U (x) = (2m/�

2)V (x). As is well
known, the solutions outside the interaction region may be
written respectively as,

ψ(x,k) =
{

eikx + r(k) e−ikx, x < 0

t(k) eikx, x � L
, (2)

where r(k) and t(k) stand, respectively, for the reflection and
transmission amplitudes. We denote by R(E) = |r(k)|2 and
T (E) = |t(k)|2, the corresponding reflection and transmission
coefficients. A convenient procedure to calculate the transmis-
sion coefficient in multibarrier-tunneling systems is the well
known transfer matrix method.

As discussed in Ref. [8], there are different ways to design
tunneling invisible systems. Without loss of generality, we
consider as TIBB, a system formed by two barriers with
a well in between. In order to keep ourselves on physical
grounds we characterize the system by typical parameters of
semiconductor heterostructures [11]. We consider an effective
electronic mass m = 0.067 me, where me is the electron mass,
and parameters of the potential: barrier heights V0 = 0.12 eV,
barrier widths b0 = 4.0 Å, well depth U0 = −0.12 eV, well
width w0 = 8.0 Å.

Figure 1 shows the signature of invisibility for the TIBB
with the above parameters in the transmission coefficient as a
function of energy in units of the barrier heights V0. One sees
that the transmission coefficient rises sharply to an essentially
unity value along the tunneling region.

A tunneling invisible multibarrier system may be formed
by a chain involving a finite number NBB of TIBBs. Here
we shall refer only to the case where the distance among the
TIBBs corresponds to a fixed value s. Notice that as the number
of NBB increases the system tends to a crystalline system.
Notice also that other possibilities of forming the chain would
be worth exploring, as random values of s or to choose the
values of s according to a specific algorithm as the Fibonacci
sequence.

Figure 2 exhibits a contour map of log10[1 − T (E)] as a
function of the energy in units of the barrier height E/V0 and
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FIG. 1. (Color online) Transmission coefficient as a function of
the energy in units of the corresponding potential height V0 for the
tunneling invisible building block (TIBB). The inset shows the TIBB
potential profile (see text).

of the distance among the TIBBs in units of the barrier width,
s/b0, for NBB = 500. Notice, for the color online figure, that
the range of values of T (E) for the yellow, green, blue, and
black colors corresponds to values larger than 0.999. Similarly,
the white color refers to values of T (E) smaller than 0.999
except the values of wine color that refer to vanishing values
of T (E). In addition to the complex patterns shown as a
function of s/b0, it is worth noticing the existence of a large
range of values of the distance among TIBBs, 0 � s/b0 � 12,
where tunneling invisibility holds. It is also worth noticing,
the appearance of energy gaps where T (E) ≈ 0. One sees
that, as the distance s increases sufficiently, the gaps may
appear even within the tunneling region. This resembles a
well-known signature of crystalline structures [12]. Although
it is not appreciated in the figure, it is worth mentioning that
for s = 0 the energy gap branches shown in Fig. 2 eventually
tend to a finite value of the energy.

Since for a single TIBB there are no energy gaps, one may
ask the question of how the energy gaps are formed. We find
that a given energy gap requires of a certain number NBB

of TIBBs. This is illustrated in Fig. 3, which exhibits a plot

FIG. 2. (Color online) Contour map of log10[1 − T (E)] as a
function of the energy in units of the barrier height, E/V0, and the
distance among TIBBs in units of the barrier width, s/b0, for a chain
of NBB = 500 TIBB. The plot shows that for values of s/b0 � 12
tunneling invisibility holds. Notice that for larger values of s/b0, a
forbidden gap may appear within the tunneling region (see text).
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FIG. 3. (Color online) Plot of the transmission coefficient T (E)
as a function of the energy in units of the barrier height, E/V0, and a
distance among TIBB s/b0 = 25 for distinct numbers of TIBB, NBB

as indicated in the figure. Here the gap band lies inside the tunneling
region. Notice that its energy position is independent of NBB . The
inset exhibits the structure of the T (E) around the gap band (see
text).

of the transmission coefficient as a function of E/V0 and a
fixed value of s, s0 = 25b0 for systems having a different
number of building blocks, NBB = 50,100,500, as indicated
in the figure. One sees that the energy position where the
transmission diminishes to form the energy gap is independent
of the number of NBB’s. This is better appreciated in the inset.
It is worth emphasizing that as the number of NBB’s diminishes
to a single TIBB so does the transmission energy dip which
tends essentially to a unity value.

As discussed in detail in Ref. [8], tunneling invisibility
follows from a distribution of overlapping resonances corre-
sponding to complex poles of the transmission amplitude. In
the next section we investigate the question of the formation
of the transmission energy dips and gaps by analyzing the
relationship of the transmission spectra with the complex poles
of the transmission amplitude.

III. COMPLEX POLES AND TRANSMISSION ENERGY
DIPS AND GAPS

We find it convenient to write the transmission amplitude
t(k) in terms of the full outgoing Green’s function to the
problem, G+(x,x ′; k) [1],

t(k) = 2ikG+(0,L; k)e−ikL. (3)

This allows one to obtain a representation for the transmission
amplitude as an expansion involving the poles and residues of
the outgoing Green’s function. This procedure leads exactly
to the same results of standard numerical calculations, as the
transfer matrix method [11].

It is well known that the function G+(x,x ′; k), and hence the
transmission amplitude t(k), possesses an infinite number of
complex poles kn, in general simple, distributed on the complex
k plane in a well-known manner [13]. Purely positive and
negative imaginary poles kn ≡ iγn correspond, respectively, to
bound and antibound (virtual) states, whereas complex poles
are distributed along the lower half of the k plane. They may

be calculated by using iterative techniques as the Newton-
Raphson method [14] as discussed, for example, in Appendix
B of Ref. [15]. It is worth mentioning that in general there are
not approximate analytical expressions for any pole kn except
for distant poles, kn ≈ nπ/L − i(2/L) ln(n) with n � 1 (see
also [13]). The outgoing Green’s function G+(0,L; k) may
be expanded as an infinite sum in terms of its poles [1,16].
In the case of the transmission spectra of a miniband with
well-defined resonant peaks it is only required to take into
account the number of poles that correspond to the number of
wells of the system [17]. We have recently found, however,
that the expansion of G+(0,L; k) exp(−ikL) possesses better
convergence properties in the presence of strongly overlapping
resonances [18], as for tunneling invisibility [8]. It yields the
expansion for the transmission amplitude,

t(k) = 2ik

∞∑
n=−∞

rn

k − kn

e−iknL, (4)

where rn follows from the residue of G+(x,x ′; k) at the pole
kn [1,19]. It is worth pointing out that for a given energy
interval it is sufficient to take into account a finite number of
poles. The position of the poles kn on the complex k plane is a
function of both the parameters of the potential and the mass
of the particle. Consequently, by varying these parameters the
poles follow trajectories along the k plane.

A typical multibarrier resonant tunneling system may be
formed by a chain of N + 1 barriers of height V0 and
width b0 alternating with N wells of depth −U0 and width
w0. Possibly, the simplest multibarrier resonant tunneling
system corresponds to choose U0 = 0. This case leads to
the well-known behavior of the transmission coefficient as
an alternating succession of energy gaps and minibands,
each miniband involving N resonance levels. Using the
resonance formalism mentioned above it has been found that
the resonance poles of each miniband distribute themselves
forming collars on the energy plane [17].

The above considerations suggest analyzing the multibar-
rier resonant tunneling system, in a similar fashion to the
multibarrier invisible system, namely, as a succession of NBB

resonant tunneling building blocks (RTBB) that consist of
a barrier-well-barrier system. As an example we consider a
RTBB with parameters barrier height V0 = 0.25 eV, barrier
width b0 = 10 Å, well depth U0 = 0, and well width w0 =
50 Å. Figure 4 displays the transmission coefficient as a
function of energy in units of the potential height. Notice that
the resonance peak along the tunneling region is broad and
overlaps with resonances above the barrier height. The inset
to this figure exhibits the corresponding potential profile.

The upper panel in Fig. 5(a) exhibits a plot of the
transmission coefficient T (E) as a function of the energy
in units of V0, respectively, for NBB = 15 (solid line) and
NBB = 500 (dense background) with a separation among the
RTBBs given by s0 = w0. Notice that the energy span of the
corresponding minibands is independent of the number NBB .
In fact, a similar situation occurs for the invisible multibarrier
system as shown in the inset to Fig. 3. As a result of the
above considerations, it is sufficient to exhibit the distribution
of poles of each miniband for the case NBB = 15. As shown
in the lower panel of Fig. 5(a), the collars have a rounded
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FIG. 4. (Color online) Transmission coefficient as a function of
the energy in units of the corresponding potential height V0 for a
resonant tunneling building block (RTBB). The inset shows the RTBB
potential profile. See text.

shape. The panels in Fig. 5(b) exhibit a similar situation as in
Fig. 5(a), except that s0 = 1.4 w0. As may be appreciated, the
slight change in the value of s0 has a dramatic modification for
both, the transmission coefficient and the distribution of poles.
One sees that each of the previous minibands, with s0 = w0,
splits in two minibands for the case with s0 = 1.4 w0, and also,
that in the corresponding collars of poles, in addition to the
splitting of each of them in two collars, the shape of the second
and fourth collars acquire a peaked shape.

Notice that the energy gaps in the transmission spectra
shown in the upper panel of Fig. 5(a) subsist, in addition to the
new formed gaps described previously, in the upper panel of
Fig. 5(b), namely, the first, second, and third gaps of Fig. 5(a)
go, respectively, into the first, third, and fifth gaps of Fig. 5(b).

One may obtain a deeper understanding of the origin
of these new transmission energy gaps by noticing that
the multibarrier resonant tunneling system corresponding to
Fig. 5(a), formed by RTBBs, may be also described by a
succession of barrier-well (BW) building blocks of length
L0 = b0 + w0, which in fact constitutes the smallest possible
building block for the system. Using this procedure, the system
corresponding to Fig. 5(b) may be seen as a succession of
barrier-well-barrier-well (BWBW) building blocks where the
second well has a width 1.4w0 and hence the corresponding
length of the building block is L = 2L0 + η, with η = 0.4w0.
Notice that for η = 0, both systems are identical, however,
if η �= 0, the length of the smallest building block suffers a
dramatic change, namely, it goes from L0 to 2L0 + η. In other
words, the transmission spectra of the system changes abruptly
by modifying slightly a parameter of the system, in this case
the parameter s0.

Since the transmission amplitude is an analytical function
of the potential parameters of the system, the previous analysis
indicates that by varying gradually the value of the distance
from one value of s0 to another will provoke a gradual
splitting of both the transmission spectra characteristics and
the corresponding pole distribution. Figure 6 exemplifies this.
It exhibits the trajectories of the poles of the first collar in
Fig. 5(a) into the first and second collars of Fig. 5(b), by varying
the parameter s0 from s0 = w0 (circular dots) to s0 = 1.4w0

(square dots).
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FIG. 5. (Color online) (a) The upper panel exhibits the trans-
mission coefficient as a function of energy in units of the barrier
height, respectively, for systems formed with NBB = 15 (solid line)
and NBB = 500 (dense background) resonant tunneling building
blocks (RTBB) which are separated by the distance s0 = w0. One
appreciates a succession of allowed and forbidden energy regions
which is independent of NBB . The lower panel shows the distribution
of complex poles of the transmission amplitude t(E) for NBB = 15.
They form a collar that distributes itself along each allowed energy
region, the number of poles corresponding to the number of unity
peaks of T (E), as indicated by the lines joining the poles with
the real energy axis. (b) Refers to the case where the RTBB are
separated at a distance s0 = 1.4w0. The upper panel shows that each
of the former allowed transmission energy regions splits into two
new energy regions. The lower panel exhibits that each of the former
collars of poles breaks into two collars, one of them having a peculiar
shape (see text).

The changes in the transmission spectra and the pole
distribution shown in Figs. 5 and 6 deal with the effect of the
parameter s0, which modifies the total length of the system.
One may choose to modify, however, another parameter of the
system to obtain similar changes in the transmission spectra.
One of these is relevant to understand the energy gaps in
multibarrier invisible systems. It consists of a system formed
by a chain of TIBBs, as for the invisible system, except that
the vanishing depth of the wells Us corresponding to the
separation s among TIBBs acquire a depth U0. In doing so,
the system ceases to be invisible. This may be appreciated
by the oscillatory behavior of the transmission coefficient
along the tunneling region as shown in the inset to the
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FIG. 6. (Color online) This figure shows the trajectories followed
by the poles of the first collar displayed in Fig. 5(a) as a function of the
distance between RTBBs from s0 = w0 (circular dots) to s0 = 1.4w0

(square dots). One clearly sees that the first collar in Fig. 5(a) goes
into the first two collars of Fig. 5(b), showing the formation of the
new transmission energy gap (see text).

upper panel of Fig. 7(a). Since the system is not very large,
NBB = 15, the system exhibits, in a similar fashion as the inset
of Fig. 3, a transmission energy dip instead of an energy gap.
As shown in the accompanying lower panel to that figure, the
pole distribution tends to form a collar. Here, the collar includes
also the poles corresponding to bound poles. Taking Us = 0
the tunneling invisible system is restored along the tunneling
region, as shown by the transmission spectra exhibited in the
inset of the upper panel of Fig. 7(b). One sees, however,
in addition to the former energy dip, the apparition of a
new transmission energy dip together with the corresponding
splitting of the original pole collar into two collars, as displayed
in the lower panel to that figure. Clearly by increasing the
number of NBB’s, the above energy dips become energy gaps
as shown in the inset to Fig. 3. Notice that in this example the
transmission energy dips appear many times above the barrier
height, that is, at energies well above the tunneling region.

One might be tempted to consider the newly formed
transmission energy dips or gaps as a form of antiresonance,
as used to describe transmission (or conductance) minima
in quantum dots [20,21], quantum wires [22] or in quantum
chaos [23,24]. Antiresonances, however, refer to zeros of the
transmission amplitude whereas in our case, the transmission
energy dips or gaps arise from a complex interference process
involving many poles and residues in the expansion of the
transmission amplitude given by Eq. (4), which has been
studied in detail in Refs. [15,25]. Our findings may be of
interest in studies on wave transport in one-dimensional
disordered systems where transmission energy dips have been
reported [26].

IV. DWELL TIME

The dwell time is defined according to the expres-
sion [2,27,28],

τd (E) = 1

J0

∫ L

0
|ψ(x,E)|2dx, (5)
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FIG. 7. (Color online) (a) The upper panel exhibits the transmis-
sion coefficient as a function of energy in units of the barrier height,
for a multibarrier system formed by TIBBs which are separated by
a parameter s having a depth Us = U0. One appreciates that the
system ceases to be tunneling invisible and also the existence of
an energy dip nearly 30 times above the barrier height. The lower
panel shows the distribution of complex poles of the corresponding
transmission amplitude t(E). Here again as in Fig. 5, the lines joining
the poles with the real energy axis are given to help the eye. They
form a collar that distributes itself along the allowed energy region.
(b) Refers to the case where the depths Us = 0, which restores
invisibility. The upper panel shows the apparition of a new energy
dip corresponding, as shown in the lower panel, to a distribution of
poles forming two collars. The insets in both figures above exhibit
a zoom of the corresponding transmission coefficient in the energy
range 0 < E/V0 < 1 (see text).

where J0 = (�k)/m stands for the incoming flux. This quantity
measures the amount of time that the incident particle spends
within the internal region L of the potential. One may write
it in units of τ0 = L/J0, the time it takes for a free particle to
traverse the distance L, and express it as [29,30]

τd

τ0
= 1

L

∫ L

0
|ψ(x,E)|2dx = T + 1

L
[T θ̇ + Rφ̇]

+ R1/2

kL
sin φ, (6)

where R stands for the reflection coefficient, θ̇ and φ̇ refer,
respectively, to the so-called transmission and reflection times,
the dot representing the derivative with respect to k of
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FIG. 8. (Color online) The dwell time τd for a multibarrier-
tunneling invisible system with NBB = 100 TIBBs with parameters
as given on the text, in units of the time τ0 = L/J0 that it takes for
a particle to traverse the distance L, which corresponds to the total
length of the system, and J0 = �k/m refers to the free incoming flux.
Notice that near the dip around E/V0 = 5, the dwell time exhibits an
oscillatory behavior which is particularly large at the dip edges (see
text).

the phases θ and φ of the corresponding transmission, and
reflection amplitudes t(k) and r(k).

For multibarrier resonant tunneling systems, near each
resonant peak in an energy miniband, it is well known that
the dwell time exhibits a Breit-Wigner shape, which implies
that τd � τ0 [1,28] and hence it will not be further considered
here.

Figure 8 exhibits a plot of τd (E) as a function of the
energy in units of the potential height V0 for a chain of
NBB = 100 TIBBs with s0 = 2b0 and parameters: barrier
heights V0 = 0.2 eV, barrier widths b0 = 4.0 Å, well depth
U0 = −0.2 eV, and well width w0 = 8 Å. Notice that the
barrier heights and the well depth are larger than for the
system discussed previously. The exact numerical calculation
of τd (E) is obtained by integrating the probability density

along the internal region of the potential using the transfer
matrix method. One sees that, except at very small energies
and energies around the energy dip near E/V0 = 5, τd (E) is
very close to τ0(E). The above result implies that the sum of
the last two terms on the right-hand side of Eq. (6) adds to a
vanishing contribution, although each term by itself may not
be small. One sees, therefore, that except around the energies
mentioned above, the time that the tunneling particle spends
within the internal region of the potential is indistinguishable
from that of a free evolving particle.

V. CONCLUDING REMARKS

It is worth commenting that tunneling invisibility holds
in multibarrier systems by choosing the inter-building-block
distance within a range of appropriate values, as displayed in
Fig. 2, and also that by choosing appropriately that distance,
one may control the energy range where the energy dips or
gaps will occur, which may even include the tunneling region.
Explaining the origin of the complex starlike patterns exhibited
by Fig. 2 near the border of unity transmission may require
using different techniques, may be similar as those employed
in the description of the onset to chaos [31]. This deserves to
be further studied. It is worth pointing out also the optic analog
of the vanishing transmission phase in multibarrier-tunneling
invisible systems with zero phase delay in negative-refractive-
index photonic crystal superlattices [32,33], which might be of
interest also to investigate. Finally, we would like to mention
that our results depend on general analytical properties of the
transmission amplitude for coherent processes and may open
the way to the design, experimental scrutiny, and applications
of these quantum systems.
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Ladrón de Guevara, Phys. Rev. B 67, 085321 (2003).
[21] Z. Z. Sun, R. Q. Zhang, W. Fan, and X. R. Wang, J. Appl. Phys.

105, 043706 (2009).

062101-6

http://dx.doi.org/10.1103/PhysRevA.55.3361
http://dx.doi.org/10.1103/PhysRevA.55.3361
http://dx.doi.org/10.1103/PhysRevA.55.3361
http://dx.doi.org/10.1103/PhysRevA.55.3361
http://dx.doi.org/10.1103/RevModPhys.66.217
http://dx.doi.org/10.1103/RevModPhys.66.217
http://dx.doi.org/10.1103/RevModPhys.66.217
http://dx.doi.org/10.1103/RevModPhys.66.217
http://dx.doi.org/10.1007/s11005-005-0002-1
http://dx.doi.org/10.1007/s11005-005-0002-1
http://dx.doi.org/10.1007/s11005-005-0002-1
http://dx.doi.org/10.1007/s11005-005-0002-1
http://dx.doi.org/10.1016/j.aop.2004.11.004
http://dx.doi.org/10.1016/j.aop.2004.11.004
http://dx.doi.org/10.1016/j.aop.2004.11.004
http://dx.doi.org/10.1016/j.aop.2004.11.004
http://dx.doi.org/10.1103/PhysRevA.51.934
http://dx.doi.org/10.1103/PhysRevA.51.934
http://dx.doi.org/10.1103/PhysRevA.51.934
http://dx.doi.org/10.1103/PhysRevA.51.934
http://dx.doi.org/10.1063/1.2259579
http://dx.doi.org/10.1063/1.2259579
http://dx.doi.org/10.1063/1.2259579
http://dx.doi.org/10.1063/1.2259579
http://dx.doi.org/10.1103/PhysRevA.79.052103
http://dx.doi.org/10.1103/PhysRevA.79.052103
http://dx.doi.org/10.1103/PhysRevA.79.052103
http://dx.doi.org/10.1103/PhysRevA.79.052103
http://dx.doi.org/10.1103/PhysRevA.88.052118
http://dx.doi.org/10.1103/PhysRevA.88.052118
http://dx.doi.org/10.1103/PhysRevA.88.052118
http://dx.doi.org/10.1103/PhysRevA.88.052118
http://dx.doi.org/10.1103/PhysRevA.82.032111
http://dx.doi.org/10.1103/PhysRevA.82.032111
http://dx.doi.org/10.1103/PhysRevA.82.032111
http://dx.doi.org/10.1103/PhysRevA.82.032111
http://dx.doi.org/10.1088/1751-8113/43/18/185301
http://dx.doi.org/10.1088/1751-8113/43/18/185301
http://dx.doi.org/10.1088/1751-8113/43/18/185301
http://dx.doi.org/10.1088/1751-8113/43/18/185301
http://dx.doi.org/10.1103/PhysRevA.4.1782
http://dx.doi.org/10.1103/PhysRevA.4.1782
http://dx.doi.org/10.1103/PhysRevA.4.1782
http://dx.doi.org/10.1103/PhysRevA.4.1782
http://dx.doi.org/10.1103/PhysRevB.56.4845
http://dx.doi.org/10.1103/PhysRevB.56.4845
http://dx.doi.org/10.1103/PhysRevB.56.4845
http://dx.doi.org/10.1103/PhysRevB.56.4845
http://dx.doi.org/10.1088/1751-8113/44/30/305302
http://dx.doi.org/10.1088/1751-8113/44/30/305302
http://dx.doi.org/10.1088/1751-8113/44/30/305302
http://dx.doi.org/10.1088/1751-8113/44/30/305302
http://dx.doi.org/10.1016/0375-9474(76)90554-6
http://dx.doi.org/10.1016/0375-9474(76)90554-6
http://dx.doi.org/10.1016/0375-9474(76)90554-6
http://dx.doi.org/10.1016/0375-9474(76)90554-6
http://dx.doi.org/10.1103/PhysRevB.67.085321
http://dx.doi.org/10.1103/PhysRevB.67.085321
http://dx.doi.org/10.1103/PhysRevB.67.085321
http://dx.doi.org/10.1103/PhysRevB.67.085321
http://dx.doi.org/10.1063/1.3075771
http://dx.doi.org/10.1063/1.3075771
http://dx.doi.org/10.1063/1.3075771
http://dx.doi.org/10.1063/1.3075771


MULTIBARRIER-TUNNELING INVISIBLE SYSTEMS PHYSICAL REVIEW A 90, 062101 (2014)

[22] W. Porod, Z.-a. Shao, and C. S. Lent, Phys. Rev. B 48, 8495
(1993).

[23] C. Zhang, J. Liu, M. G. Raizen, and Q. Niu, Phys. Rev. Lett. 92,
054101 (2004).

[24] I. Dana and D. L. Dorofeev, Phys. Rev. E 72, 046205 (2005).
[25] S. Cordero and G. Garcı́a-Calderón, J. Phys. A: Math. Theor.

43, 415303 (2010).
[26] M. Dı́az, P. A. Mello, M. Yépez, and S. Tomsovic, Europhys.
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