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Experimental realization of a dynamic squeezing gate
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Squeezing is a nonlinear Gaussian operation that is a key component in the construction of other nonlinear
Gaussian gates. In our implementation of the squeezing gate, the amount and the orientation of the squeezing
can be controlled by an external driving signal with a 1-MHz operational bandwidth. This provides another way
to view dynamic Gaussian processing. In particular, the gate can be immediately employed as the feedforward
needed for the deterministic implementation of the quantum cubic phase gate, which is a key piece of universal
quantum information processing.
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Quantum information processing with continuous-variable
(CV) systems has many tools. They could be divided
into two broad categories: Gaussian and non-Gaussian. The
Gaussian tools comprise Gaussian quantum states that can
be represented by a Gaussian Wigner function, Gaussian
measurements that project on Gaussian states, and Gaus-
sian operations that transform Gaussian states into different
Gaussian states [1]. The non-Gaussian tools category then
includes everything else. The non-Gaussian category is much
broader and much more powerful. There are many quantum
information protocols that cannot be implemented with Gaus-
sian tools alone; quantum computation [2,3], entanglement
distillation [4–6], and error correction [7] are just the three
most prominent examples.

As a consequence, there is an understandable interest in
all matters non-Gaussian. In quantum optics, which is the
experimental platform of choice when it comes to tests of CV
paradigms [8], the non-Gaussian features need to come from
interactions with discrete-variable physical systems [9–17] or
from discrete measurements [1,7,18,19]. These two general
approaches also differ with respect to quantum systems for
which they can be applied. While the interaction with discrete-
variable systems is best realized by a standing-wave mode
in a resonator, the discrete projective measurements work
better with traveling light. There is also another distinction.
The traveling modes of light are much more suitable for
implementation of Gaussian operations. This is significant
because the non-Gaussian resources are useful only when the
Gaussian tools are refined enough to operate without a hitch.
To present a specific example, consider the issue of universal
quantum information processing. In CV systems this means
the ability to implement a unitary operation with an arbitrary
Hamiltonian [2,20]. For this we need to have access to the
cubic operation—a quantum operation with the Hamiltonian
composed of the third power of quadrature operators—as well
as the complete range of Gaussian operations.

The Gaussian states, operations, and measurements are the
foundations on which the CV quantum information processing
is built. Homodyne detection, squeezed states, and Gaussian
linear operations in the form of displacement and passive linear
optics are already staples of the contemporary experimental
practice. The measurement-induced paradigm [21], which

employs the passive linear optics together with squeezed states
and linear feedforward, in turn allows implementation of the
Gaussian nonlinear operations such as squeezing [22,23],
quantum nondemolition interaction [24,25], and others
[26–28]. All these past implementations have one thing in
common: The nonlinearity is static. This is not too big of a
problem for the contemporary proof-of-principle experiments
that are built to implement a single specific task. However,
in order to move towards universal and fast information
processing, we need operations with a bandwidth higher than
what is allowed by the manual change of optical elements.
The most immediate examples are the proposed experimental
implementation of the cubic phase gate [7,29] and the
experimental preparation of the cubic phase state [7,30], both
of which can be considered to be important first steps towards
universal quantum information processing. These applications
require a nonlinear feedforward, a squeezing operation whose
strength and direction depend on measurement results. In this
Rapid Communication we present the experimental realization
of such an operation for a mode of traveling light. This ensures
that the operation can be used as part of a larger information
processing network, for example, as a feedforward in the
implementation of a cubic phase gate [7,29].

The implemented operation is a time-dependent nonlinear
Gaussian operation with an effective Hamiltonian Ĥ (t) =
κ(t)x̂2

in(t). This operation is in each instant applied to a different
input quantum state |ψ(t)〉in. Here κ(t) is the strength of
the quadratic operation and x̂in(t) is the quadrature operator
of |ψ(t)〉in. The operation transforms the pair of quadrature
operators as x̂(t) → x̂(t) and p̂(t) → p̂(t) + κ(t)x̂(t), which
can be decomposed into a sequence of a phase shift, a
squeezing, and another phase shift (see Ref. [31]). In this
Rapid Communication we employ a streamlined experimental
configuration that implements the desired transformation up to
a constant local squeezing, which could be effectively compen-
sated by the existing methods [22,23]. The scheme is depicted
in Fig. 1(a) and in the ideal case it works in the following
way: After we combine the input state |ψ(t)〉in with the x̂

eigenstate |x = 0〉S at a balanced beam splitter, we measure the
quadrature p̂θ (t) = p̂HD(t) cos θ (t) + x̂HD(t) sin θ (t) of one of
the modes by controlling the phase of the local oscillator
(LO) of homodyne detection (HD). Here θ (t) depends on
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FIG. 1. (Color online) (a) Schematic diagram of the dynamic squeezing operation. Here Ŝ denotes 3-dB squeezing of the x̂ quadrature.
(b) Illustration of input-output relation of the experiment. Quantum states are depicted as ellipses in the phase-space representation.

the external driving signal as θ (t) = arctan κ(t). We then use
the measured value pθ (t) to apply p̂ displacement to the
unmeasured mode with an electronic gain of

√
1 + κ2(t).

This transforms the quadratures of the output quantum state
to x̂(t) = x̂in(t)/

√
2 and p̂(t) = √

2p̂in(t) + [κ(t)/
√

2]x̂in(t).
With the exception of the constant 3-dB squeezing, which can
be efficiently compensated [23], this is exactly the desired
form. In reality, we need to approximate the x̂ eigenstate
|x = 0〉S with a squeezed vacuum state that can be for
our purposes completely characterized by its x̂-quadrature
variance Vx(t). Eventually we can derive the actual input-
output relations to be

x̂(t) = 1√
2
x̂in(t) − 1√

2
x̂S(t), (1a)

p̂(t) =
√

2

[
p̂in(t) + κ(t)

2
x̂in(t)

]
+ κ(t)√

2
x̂S(t), (1b)

where x̂S(t) denotes the x̂ quadrature of the squeezed vacuum
state and vanishes in the limit of infinite squeezing represented
by Vx(t) → 0. For the sake of brevity, from now on we will be
dropping the explicit notion of time dependence of κ , θ , and
other operators.

The input-output relations (1) can be verified by applying
the operation to a set of coherent states with differing
amplitudes. In our experiment, we have chosen our input
to consist of x̂-displaced coherent states, whose amplitudes
were changed in time. This allowed us to analyze the dynamic
behavior with respect to both the gate parameter and the input

state. In practical scenarios we can assume that the control
signal is changing more slowly than the input state. If we take
one such short interval in which the control signal is constant
relative to the fluctuations of the input state, the output state
behaves as depicted in Fig. 1(b). When κ is around zero, the
signal state is simply squeezed in the x direction and has
zero mean amplitude along the p axis. When κ is nonzero
in the time interval, the state is displaced in the p direction
proportionally to its initial displacement in the x direction
and it is also squeezed. The amount and the direction of the
squeezing both depend on the value of κ .

The design of our experimental setup is depicted in Fig. 2.
The light source is a continuous-wave Ti:sapphire laser
operating at 860 nm. The input coherent state is generated at
±5 MHz around the source-laser frequency with four acousto-
optic modulators (AOM). By properly locking relative phases
between the frequency-shifted beams, the coherent state is
displaced continuously at 5 MHz in the direction of the x axis.
(This technique was previously employed in the experiment
of Ref. [32].) On the other hand, the ancillary squeezed state
is prepared by an optical parametric oscillator (OPO). This
OPO is a bow-tie-shaped cavity 300 mm in length, containing
a periodically poled KTiOPO4 crystal to obtain second-order
nonlinearity. The OPO is pumped by a beam with a wavelength
of 430 nm and a power of 120 mW, which is generated by
another bow-tie-shaped cavity (second-harmonic generation,
SHG) containing a KNbO3 crystal. The bandwidth of the OPO
is 12.5 MHz in terms of the half width at half maximum, so our
setup sufficiently covers the bandwidth of the input coherent

FIG. 2. (Color online) Experimental setup.
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state. The typical squeezing level from dc to 10 MHz was
−3.1 dB. After the state preparations, we couple the input
and the squeezed vacuum at a balanced beam splitter (50:50),
measuring one port of the outputs by a homodyne detector
(HD1). The measured value is used for the feedforward system,
in which the beam of the other port is suitably displaced in
the p direction with an electro-optic modulator (EOM), an
auxiliary beam, and a slightly transmitting beam splitter (99:1).
To match propagation times of the measured signal and the
unmeasured optical beam, an optical delay line of 13 m in free
space is used. The beam pointing of the delay line is stabilized
by a piezoactuated optical mount with a feedback system.

We have a system of feeding a control signal κ , followed
by two nonlinear electronic circuits to produce arctan κ and√

1 + κ2. Here we use a sine wave with a frequency of 1 MHz
as the control signal κ . In the measurement process at HD1,
the phase θ of the local oscillator (LO1) is controlled by an

FIG. 3. (Color online) Experimental mean values and variances
compared with theoretical predictions (� = 1). (a) Supplied control
signal. (b) Mean x̂-quadrature values 〈x̂in〉 of the input coherent
states. Mean p̂-quadrature values are omitted because they are always
zero. (c) Mean quadrature values of the output: (i) 〈x̂〉 and (ii) 〈p̂〉.
(d) Variances of the output quadratures relative to that of the shot
noise: (iii) 〈�x̂2〉, (iv) 〈�p̂2〉, and (v) 〈�x̂2

π/4〉. Solid curves are
experimental results, while dashed curves are theoretical predictions.

EOM to follow the signal arctan κ . The measured signal is
then amplified by a factor of

√
1 + κ2. For more details on the

electronic circuits, which are key components of the dynamic
gate, see Ref. [31].

To characterize the output states, we employ another
homodyne detector (HD2). Since the initial states are all
Gaussian states and the operation is quadratic, the output state
is expected to be also Gaussian. Therefore, to characterize the
output state by homodyne detection, it is enough to see the
mean values and variances of three different bases: the x axis
x̂, the p axis p̂, and the angle of π/4 from the x axis x̂π/4.
The mean values and variances of the output quadratures are
obtained from the measurements repeated 10 851 times. The
control signal κ for each measurement is collected together.

Figure 3 shows the experimental mean values and variances
(normalized as � = 1). All the results are plotted in the same
time domain. Figure 3(a) represents the supplied control signal

FIG. 4. (Color online) Analysis of the output states in terms of
their diagonalized variance matrices. (a) Supplied control signal.
(b) Squeezing angles of the output states. (c) Maximally antisqueezed
variances and (d) maximally squeezed variances relative to the
shot-noise variance. Solid curves are experimental results calculated
from those in Fig. 3, while dashed curves are theoretical predictions.
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κ at 1 MHz. Figure 3(b) shows the mean x̂-quadrature values
〈x̂in〉 of the input states, continuously fluctuating at 5 MHz.
The values in Fig. 3(b) were measured after the balanced
beam splitter, whose attenuation is compensated numerically
by multiplying by

√
2. The mean values of the p quadrature

are confirmed to be zero before the measurement. Figure 3(c)
shows the mean values 〈x̂〉 and 〈p̂〉 of the output states.
From Eq. (1), 〈x̂〉 should be independent of κ , while 〈p̂〉
is proportional to κ〈x̂in〉. As expected, the oscillation of 〈p̂〉
behaves in phase or out of phase with the oscillation of 〈x̂〉
in accordance with whether κ is positive or negative and
vanishes when κ is zero. Similarly, as seen in Fig. 3(d),
the variances of the x̂ quadrature are constantly squeezed by
−1.3 dB, while the variances of the p̂ quadrature oscillate
at twice the frequency of the control signal κ in accord with
the relation 〈�p̂2〉 = 2〈�p̂2

in〉 + (κ2/2)〈�x̂2
in〉. Including the

variances of x̂π/4 quadrature, those characteristics agree well
with theoretical predictions plotted with dashed curves.

We have also analyzed the output states in terms of their
squeezing in both magnitude and direction. For each individual
time window we have reconstructed the variance matrices of
the output states as

V =
(

σ 2
x σxp

σxp σ 2
p

)
, (2a)

σxp = 1

2
〈x̂p̂ + p̂x̂〉 = σ 2

π/4 − 1

2

(
σ 2

x + σ 2
p

)
, (2b)

where σ 2
x = 〈�x̂2〉, σ 2

p = 〈�p̂2〉, and σ 2
π/4 = 〈�x̂2

π/4〉 are the
variances directly obtained from the measured data. The
variances of the squeezed and the antisqueezed quadratures,
which are denoted by σ 2

− and σ 2
+, respectively, are then found

as the eigenvalues of the variance matrix (2a),

σ 2
+ = σ 2

x sin2 φ + σ 2
p cos2 φ + 2σxp sin φ cos φ, (3a)

σ 2
− = σ 2

x cos2 φ + σ 2
p sin2 φ − 2σxp sin φ cos φ, (3b)

φ = 1

2
arctan

(
−2σxp

σ 2
x − σ 2

p

)
. (3c)

Here the parameter φ determines the direction of the
squeezing, with φ = 0 describing the situation in which x̂

quadrature is squeezed. We have compared the values (3)
obtained from the experimental data with the theoretical
predictions and the results can be seen in Fig. 4. Figure 4(a)
represents again the supplied control signal κ . Figure 4(b)
shows the angles of the squeezing axes φ. The square-wave-
like behavior of the resulting angles means that the output
states are properly rotated in phase space. Figures 4(c) and 4(d)
show the maximally antisqueezed variances σ 2

+ and the
maximally squeezed variances σ 2

−, respectively. The maximal
antisqueezing starts from about 3 dB where the control signal
vanishes and reaches about 7 dB with κ = ±2. For the maximal
squeezing, it starts from about −1.3 dB and reaches about
−1.8 dB. While these values are reduced from those of the
ideal case due to the finite squeezing of the ancillary states,
they still show a dependence on the control signal and agree
well with theoretical predictions (dashed curves).

In conclusion, we have experimentally demonstrated a
squeezing operation whose squeezing level and squeezing
direction can be continuously adjusted with an operational
bandwidth of 1 MHz. This dynamic squeezing gate can allow
implementation of an arbitrary dynamic Gaussian gate [33] and
significantly expands the possibilities of teleportation-based
quantum operations. On a more immediate time scale, the
squeezing gate is now ready to serve as the feedforward part
of the cubic phase gate [7,29]. Since the cubic phase state has
already been experimentally realized [19], the full implemen-
tation of the cubic phase gate required for the universal CV
quantum information processing can be expected.
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