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Atomic diffraction under oblique incidence: An analytical expression
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Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS–Univ Paris-Sud, UMR 8214 Bât. 351, Univ Paris-Sud, F-91405 Orsay, France

(Received 29 April 2014; revised manuscript received 25 September 2014; published 13 November 2014)

The semiclassical perturbation method developed by Henkel et al. [J. Phys. II 4, 1955 (1994)] to model
cold-atom diffraction by optical standing waves, is applied to the diffraction of fast atoms on crystal surfaces at
grazing incidence (GIFAD or FAD). We first show that the interaction time and interaction length embedded in the
obliquity factor is well suited to explain the transition from three-dimensional to two-dimensional (2D) diffraction.
The situation of a slightly misaligned primary beam, corresponding to oblique incidence in the effective 2D system,
is addressed pointing out discrepancies such as the absence of net deflection of the atomic beam. Guided by
time-reversal considerations, we propose an arbitrarily symmetrized form significantly improving the agreement
with experimental data recorded in oblique incidence.
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Since the development of quantum atom optics, in particular
interferometry with cold atoms and molecules [1,2], wave
matter diffraction phenomena have been observed on light
gratings, in transmission [3], and reflection [4]. In this context,
the development of a simple analytical formula to model
both situations as a thin phase grating by Henkel et al. [5]
has received considerable attention. In a different context,
diffraction of thermal atoms and molecules at crystal surfaces,
first observed by Estermann and Stern in 1930 [6], has
developed as a specific surface science technique able to reveal
the corrugation amplitude of the surface electronic density
in the sub-Å range. More recently, the diffraction of fast,
keV, atoms off crystalline insulator, metal, or semiconductor
surfaces at grazing incidence (GIFAD) has been demonstrated
both under static [7–10] and conventional thin-film growth
conditions [11]. Theoretically, extensive semiclassical tech-
niques based on the eikonal approximation with quantum
treatment of the rainbow [12,13], sophisticated wave-packet
approaches [9,14,15], and close coupling calculations [16]
have been developed reaching excellent accuracy but are
computationally too heavy to be used in real time during
experiments. At normal incidence, analytical formula already
exist that provided few picometer sensitivity on the corrugation
amplitude of simple lattice cell [15] or even super structure
such as the moire pattern of graphene [17], but no equation
is available that can reproduce even qualitatively diffraction
intensity when the beam is misaligned by a fraction of a degree
from the crystal axis.

I. ATOMIC DIFFRACTION BY A THIN PHASE GRATING

In Ref. [5] Henkel et al. study the reflection of atoms on
the evanescent field created above a dielectric by internal
reflection of a laser standing wave. We briefly recall their
results while renaming variables according to the context of
atom surface scattering. Only in plane diffraction, i.e., the 2D
problem is treated explicitly and the approximation starts from
the unperturbed atom trajectory corresponding to specular
reflection on an planar exponential atom-surface potential
V0(z) = Vpexp(−z/Rc). In this simple expression Vp is a
pre-exponential factor, which has no importance here, while
Rc is the range of the potential defining the characteristic
interaction time with the surface τint = Rc/viz, with viz the

velocity component toward the surface. The classical trajectory
is analytic [18] allowing semiclassical wave functions to be
derived. The action integral S(x) describing the momentum
transfer is expanded as a power series S(x) = S0 + εS1(x) +
ε2S2(x) + O(ε3) of the corrugated part of the potential taken
here as a perturbation; V (x,z) = Vp(z) ∗ [1 + εcos(2πx/ax)]
ax being the lattice parameter and Gx = 2π/ax the reciprocal
lattice vector. As a result, they derive the diffracted intensities
In for any oblique incidence:

In = kf z

kiz

J 2
n

[
2kizεRcχ

(
2RcGx

kix

kiz

)]
, (1)

where Jn is the Bessel function of the first kind of order
n, kf z/kiz a geometrical factor due to normalization of the
wave function, and χ (2RcGx

kix

kiz
) with χ (u) = u/sinh(u) is the

obliquity factor associated with the incidence angle θin defined
by tan(θin) = kix/kiz.

At normal incidence (θin = 0), the obliquity factor is equal
to 1 and can be forgotten. For weak contrast ε � 1 the
classical turning point Zt is shown to have a cosine depen-
dence Zt (x) = cst + εRccos(Gxx). Introducing the full (top
to bottom) corrugation amplitude hc = 2εRc the diffracted
intensity becomes In = kix

kiz
J 2

n (2kizhc) similar to [19] and to
the corrugated hardwall model where a Fresnel-Huygens
ray tracing model retrieves the intensities diffracted from a
corrugated mirror. At this normal incidence, the interest of
Eq. (1) appears therefore limited because the newly introduced
Rc parameter is entangled with the corrugation amplitude hc

without adding new prediction.
For incidence angle departing from normal, the obliquity

factor is less than one and corresponds a reduced coupling
leading to a reduced population of high diffraction orders.
The argument u describes the number of lattice sites span
within the range Rc. More precisely the interaction length
Lx simply defined as Lx = vixτint allows the argument u to
be be rewritten as u = 4πLx/ax = 2GxLx proportional to
the number Lx/ax of lattice sites within the range during
the interaction length. Since the interaction oscillates with a
spatial period ax , the obliquity factor describes the progressive
cancellation of all the contributions of successive lattice sites
as the angle of incidence becomes more and more grazing. This
was also discovered numerically by Farias et al. [20,21] when
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reducing down to 10 deg the angle of incidence of thermal
hydrogen with respect to the surface plane (θin = 80 deg to
the normal). Note also that the above defined trajectory length
was shown to be a very useful concept to derive a fundamental
parameter such as the energy and momentum exchange with
the lattice [12,22,23] or Auger neutralization rates at insulator
surface [24] or metals [25] in the context of grazing incidence.

II. GRAZING INCIDENCE FAST ATOM
DIFFRACTION (GIFAD)

GIFAD setups have been detailed in numerous papers [7–9].
It consists of a primary He+ ion beam extracted at the desired
final energy from a commercial ion source. The He+ ions
are converted to a fast neutral He0 atom via resonant charge
exchange inside an effusive gas cell. The He0 beam is then
collimated before entering the chamber hosting the target
surface. Figure 1 defines the two relative angles of the primary
neutral beam with respect to a selected low index direction of
the crystal surface. The diffracted beams are collected ≈1 m
downstream onto a position sensitive detector. In practice, both
� and φ angles hardly exceed 1 deg. It should be noted that
the geometry is exactly the one used in RHEED setup widely
used in the molecular beam epitaxy chamber to monitor thin
film growth where GIFAD can therefore be an alternative
technique [11].

Starting from the first GIFAD observations [7–9] it was real-
ized that diffracted intensities corresponding to the exchange
of reciprocal lattice vector Gx (Fig. 1) are not observed. In
terms of energy, and assuming Gx ∼ Gy , such an exchange
along x costs ki/G times more than when the exchanged
vector is perpendicular to the initial momentum (i.e., along y).
Interestingly the other argument raised [9,20,21], in addition to
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FIG. 1. (Color online) Schematic of the scattering geometry. A
fast He atom is incident with a total wave vector �ki close to the 〈110〉
direction of LiF(100) surface with polar incidence angle φlab and
misalignment angle �lab. This 3D scattering problem can be reduced
to a 2D problem of the He atom probing, with a wave vector �ki,2D =
(kiy,kiz), the corrugation function ξ (y) under oblique incidence θ2D =
arctan(kiy/kiz). The diffracted beams are depicted with dashed vectors
with the specular one in red.

the energy increase, is that the associated coupling decreases
at the grazing angle for geometric reasons and this is exactly
what is described in the obliquity factor. For the geometry used
in Sec. III, the numerical value is vanishingly small forcing
specular reflection in the scattering plane. If any, diffraction
has be out of plane, as actually observed (from there on Gy

will be used instead of Gx). As a result the movement along the
x direction can be reduced to a pure translation and eliminated.
Of course, doing so one has to consider the effective interaction
potential defined as the average of the 3D V (x,y,z) potential
along the x direction [9]. The 3D egg boxlike turns into
a corrugated iron plate, both having the same exponential
range Rc. If we define the effective interaction parameters
as those in the (y,z) plane (the detector plane) one gets �k2D =
ki( sin(φlab), sin(�lab)) and tan(θ2D) = tan(�lab)/tan(φlab). The
most important result being that the effective interaction
energy can be continuously adjusted between a few meV to
few eV allowing the exploration of the electron density on
a range of distances to the atomic plane comparatively wider
than HAS. The progressive transition from 3D to 2D diffraction
have been studied in detail with wave packet technique [26,27]
and partially observed [28] using a surface with comparatively
large super lattice (large a involving many atoms per unit cell)
and rather oblique incidence.

For grazing incidence and small misalignment angles,
the effective 2D oblique incidence angle can be written
as tan(θ2D) ≈ �lab/φlab so that for φlab = 1 deg, a 1 deg
misalignment angle yields a 45 deg effective oblique incidence.
This outlines that quasinormal effective incidence requires that
�lab is orders of magnitude smaller than φlab which is extremely
demanding in terms of mechanical accuracy, particularly when
thermal treatment is required. This explains that many GIFAD
images are recorded with a slightly oblique incidence.

The systematic experimental investigation of the diffracted
intensity as a function of the misalignment angle � was first
reported on LiF surface [29] followed by a detail analysis
and associated calculation with close coupling equations [14].
Note that during such a � scan the modulus of the effective
wave vector k2D is not constant (only kiz is constant).
Both studies indicate that the diffracted profile becomes
strongly asymmetric (I+n 	= I−n) resulting in a net deflection
of the diffracted beam taken as a whole, i.e., the average
deflection angle 〈�out〉 − �in ∝ 
nnIn is not zero and shows
a characteristic behavior with a linear dependence around
� = 0, allowing automatic alignment of the crystal [14]. The
prediction of Eq. (1) would here be a flat horizontal line
because it predicts a symmetric population of the diffraction
orders (I+n = I−n).

In their work on beam deflection [14], the authors use
time-reversal symmetry [30] to link the data corresponding
to oblique incidence to those recorded under normal incidence
taking into account the modified energy in the effective (y,z)
plane. This symmetry is not present in Eq. (1), it does not
predict the same scattering probability for 0 → n and n → 0.
This shortcoming probably derives from the fact that the
obliquity factor is evaluated only along the specular trajectory.
One could try to imagine half trajectories where the action
integral would be evaluated separately on the way in and
out. This being beyond our forces we have tried to force
the time symmetry by modifying arbitrarily formula (1) so
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that it gives the same result if one exchanges the labels “i”
and “f ” [31]. In practice the initial momenta kiy and kiz

are replaced by their average between initial and final values
kiz → kz = (kiz + kf z)/2 and kiy → ky = (kiy + kfy)/2, with
kfy = kiy + nGy and kf z =

√
k2
iz − 2nGykiy − n2G2

y , Eq. (1)
becomes

In = kf z

kiz

J 2
n

[
2kzhcχ

(
2RcGy

ky

kz

)]
. (2)

It should be noted that the argument inside the Bessel function
now depends on the diffraction order.

III. RESULTS AND DISCUSSION

We now compare the prediction of Eq. (2) in the case of
fast atom diffraction on a LiF(100) surface when the incident
beam is aligned close to the 〈110〉 direction. This surface
and direction has been extensively studied and quasisinusoidal
equipotential curves have been reported in the sub eV effective
energy range with a corrugation amplitude small enough to
prevent multiple scattering. The parameters Rc = 1.18 Å and
hc = 0.325 Å have been fitted to reproduce the DFT potential
of LiF surface given in [32].

In Fig. 2 we show the diffraction chart for semiclassical
calculations in oblique incidence obtained from Eq. (1)
[Fig. 2(d)] and from Eq. (2) [Fig. 2(b)] together with the
experimental data and a quantum calculation based on the close
coupling formalism [14] for 4He at Ei = 460 eV incident at
φin = 0.93◦ aligned close to the 〈110〉 direction of LiF(100).
For the specular order, both semiclassical models give the
same diffracted intensity but for higher diffraction orders (i.e.,
for larger oblique incidence angle θi) the diffracted intensity
is no longer symmetric with respect to kiy = 0 in the case of
Eq. (2). In order to emphasize the link with classical mechanics
we have calculated the extrema of the momentum transfer
from the classical equation of motion. The result is shown
as dashed lines in Fig. 2(b) and the position of the rainbow
angle where the momentum transfer is maximum is highlighted
(kiy,rainbow ≈ 4Gy). At this value of misalignment, Fig. 3
compares, in a more quantitative way, diffraction intensities
[experiment, quantum, and semiclassical from Eq. (2)].

We see from Figs. 2 and 3 that the semiclassical approach
proposed here reproduces surprisingly well the experimental
data which is very encouraging for practical applications.
Of course a deeper analysis of this ad hoc modification is
certainly needed on the theoretical point of view. For instance,
the geometrical prefactor kf z/kiz is not symmetric either,
other symmetrized forms are also possible and may be easier
to justify, etc. More pragmatic, possible extensions beyond
pure sinusoidal corrugation function can also be investigated.
Intuitively, there is a reasonable hope that the actual constraint
is that the corrugation function integrates to zero over a lattice
unit, i.e., for symmetric cells. Another very useful extension
would be to link directly this model to the 2D row model
developed for grazing incidences [33], where the corrugation
amplitude may depend on the effective energy. Concerning the
limitations, these should the same as exposed in [5] knowing
that the intensities are supposed to be better described than the
associated phases. The limit for the semiclassical approach
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FIG. 2. (Color online) Diffraction charts for 4He with Ei =
460 eV and φlab = 0.93◦ incident on a LiF surface close to the 〈110〉
direction, i.e., ki = 942 Å−1 and kiz = 15.3 Å−1, Gy is 2.2 Å−1

corresponding to a deflection angle of 0.134 deg = sin−1(Gy/ky).
The interaction parameters are Rc = 1.18 Å and hc = 0.325 Å. (a)
Experimental data [14]. (b) Semiclassical calculations using Eq. (2).
(c) “Exact” quantum calculation [14]. (d) Semiclassical calculations
using Eq. (1). Note that both horizontal and vertical scale have the
same units (Gy) relevant for diffraction. In addition, the misalignment
angle �lab is reported also in degrees in the laboratory frame (red) as
well as the corresponding obliquity angle θ2D = tan(�lab)/ tan(φlab)
(blue). (a) and (c) have been adapted from [14]. The dashed line
in (b) correspond to the maximum transfer of momentum obtained
from classical calculations. The rainbow angle of kiy ≈ 4Gy used for
quantitative comparison in Fig. 3 is marked by the arrows labeled
“rb.”

λ2D � Rc is easily fulfilled for helium particles with E2D

above 1 meV because the range Rc is always on the order of
magnitude of few bohr radius (0.523 Å) [34]. This is because
Rc derives from fundamental atom-atom interaction potential
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FIG. 3. (Color online) Diffraction probabilities extracted from
Fig. 2 for kiy = 4Gy (rainbow position) for experiment (black
pattern), quantum theory (dashed pattern), and semiclassical theory
from Eq. (2) (blue pattern).
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which, in the asymptotic region probed here, is governed by
the simple overlap of the ground state wave function scaling
as I

1/2
p with Ip the ionization potential and Ip does not vary

significantly within the periodic table. As far as simple lattice
cells are concerned, the lattice parameter a is on the order of
10 atomic units so that the condition of weak corrugation
hc � ay is not too restrictive if no surface reconstruction
involving several atomic layers is present.

IV. SUMMARY AND CONCLUSION

We have shown that the perturbation method developed for
the diffraction on light grating [5] is well suited to account for
reflection on surfaces at normal incidence. We have suggested
that the obliquity factor has a strong physical support explain-
ing the collapse of in plane diffraction as the angle of incidence
becomes grazing. However, as is, this obliquity factor seems
to violate the time-reversal symmetry and fails to account
for the scattering asymmetry. By imposing a more symmetric
form we have shown that the agreement with experiment
is greatly improved. Our modified Eq. (2) should have the
same physical limitations as the original formula, i.e., it only
applies to diffraction in the semiclassical regime and from
weakly corrugated potential where multiple scattering events
do not occur. Optimistically, the good agreement presented

here suggest that � scans exploring large misalignment could
allow experiment measurement of the effective range Rc of the
interaction potential. If so, the technique would be very useful
because, once again, Rc is a very important physical parameter
governing the interaction length, the number of active sites, the
momentum, and energy transfer to the surface. This would pro-
vide a direct (self-consistent) link with the angular dependent
effective number of sites N (φ) included in the Debye-Waller
factor modified for grazing incidence [12,23,35]. This drastic
reduction of the original Debye-Waller factor by e−N(φ) is at
the heart of the ability of GIFAD to explore the surface at
high temperature [11,16] as required for operation inside a
molecular beam epitaxy chamber. This work was motivated
by the urgent need for a simple approach withstanding a slight
misalignment in the GIFAD diffraction data. Since the result
is analytic we believe that, in complement with more rigorous
methods, it will prove useful as a fast method to qualitatively
benefit from the picometer sensitivity of GIFAD.
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Nucl. Instrum. Methods Phys. Res. B 269, 1212
(2011).

[30] A. Bohm and M. Loewe, Quantum Mechanics: Foundations and
Applications (Springer, Berlin, 1986).

[31] B. Hinch, Surf. Sci. 221, 346 (1989).

[32] A. Schüller, H. Winter, M. S. Gravielle, J. M. Pruneda, and J. E.
Miraglia, Phys. Rev. A 80, 062903 (2009).
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