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Entanglement plays a central role in the field of quantum information science. It is well known that the
degree of entanglement cannot be increased under local operations. Here, we show that the concurrence of a
bipartite entangled state can be increased under the local P7 -symmetric operation. This violates the property
of entanglement monotonicity. We also use the Bell-Clauser-Horne-Shimony-Holt and steering inequalities to

explore this phenomenon.
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I. INTRODUCTION

In conventional quantum mechanics, one of the axioms is
that the Hamiltonian of a closed system has to be Hermitian,
leading to the following properties: (1) The eigenvalues of
the Hamiltonian are real, and (2) the time evolution of the
system is unitary. In 1998, Bender and Boettcher [1] found
that the parity-time (P7)-symmetric Hamiltonian, which
is non-Hermitian, can still have real energy spectra under
some conditions. Later, they reconstructed the mathematical
form of the inner product by introducing C symmetry, such
that the evolution of the P7-symmetric system becomes
unitary [2]. In the Schrodinger equation, the necessary but not
sufficient condition for a Hamiltonian to be P7 symmetric
is V(x) = V*(—x) [3]. Recently, experimental realizations of
the P7 -symmetric Hamiltonian in classical optical systems
have been proposed and realized by using the spatially
balanced gain and loss of energy [4-13]. However, even
with the experimental success in classical optical systems,
there are still controversial results in some P7 -symmetric
quantum systems. For example, Bender et al. [14] found that
the evolution time between two quantum states under the
‘PT -symmetry operation can be arbitrary small. Lee et al. [15]
found that the no-signalling principle can be violated when
applying the local P7 -symmetric operation on one of the
entangled particles.

Quantum entanglement [16] is one of the most intriguing
phenomena in quantum physics. Its history can be traced back
to the challenge by Einstein, Podolsky, and Rosen (EPR) [17].
In 1964, Bell [18] proposed the famous “Bell’s inequality”
based on the local hidden variable (LHV) model. Subsequent
experiments [19] have successfully demonstrated violations
of Bell’s inequality, meaning that quantum mechanics and the
LHYV theory are incompatible. In response to the EPR paradox,
Schrodinger introduced a concept called “quantum steering.”
Steering was recently formalized as a quantum information
task by Wiseman et al. [20]. The steering inequality was further
introduced [21] to delineate the quantum steering from other
nonlocal properties. For many years, Bell’s inequality has been
used as an experimental tool [22] to examine the nonlocality.
Its relation with the steering inequality and entanglement has
also attracted great attention very recently [20,23].
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Motivated by these works, in this paper, we consider a
bipartite system in which one of the particles undergoes a
local P7 -symmetric operation. We examine the behavior of
the bipartite entanglement through the concurrence, Bell’s
inequality, and the steering inequality. Not only is the behavior
of entanglement restoration observed, but it is also found
that its value can exceed the initial one. This violates the
property of entanglement monotonicity [24,25] and is beyond
the description of non-Markovian dynamics. We also show
that the increase of entanglement is not a unique property of
the P7 -symmetric system by considering the non-Hermitian
Hamiltonian without P7 symmetry.

II. RESTORATION OF ENTANGLEMENT BY LOCAL
PT-SYMMETRIC OPERATION

As shown in Fig. 1, we consider a composite system
consisting of two identical qubits. Let qubit 1 undergo a coher-
ent Rabi oscillation governed by Hrayi,1 = hg (01,4 + 01,-),
where o7 4 (01,—) is the raising (lowering) operator and hg is
the coupling strength. The evolution of the entire system can
be obtained by solving the following equation:

) 1
p = E[H,p(l)], ey

where H = Hggpi,) ® I is the total Hamiltonian of the
composite system with [, denoting the identity operator of
qubit 2.

Let us also consider a different scenario by replacing the

coherent Rabi process with a local P7 -symmetric operation
on qubit 1. The total Hamiltonian Hp7s can then be written
as [26]
Hpr = Hpr1® I = S(l Sllna _ slinot) L, ((2)
where Hpr ; is the Hamiltonian of qubit 1. The real number s is
ascaling constant, and the real number « is the non-Hermiticity
of Hpr 1. The condition |«| < 7 /2 keeps the eigenvalues of
Hpr ) real, i.e., P7T symmetric. The non-Hermitian Hamilto-
nian Hp7 | can be decomposed into a Hermitian part (H) and
an anti-Hermitian part (H_):

0 1 isino 0
HPT:S(l 0)‘8”2“( 0 —isina)®12
—H, +H. 3)
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FIG. 1. (Color online) The schematic diagram of the dynamics

of the two qubits. Qubit 1 undergoes either the Rabi process or a local

‘PT -symmetric operation, while qubit 2 remains isolated. The initial
condition is the maximally entangled state: (|00) + |11))/+/2.

To obtain the evolution of the system, Eq. (1) has to be modified
as [27,28]

o1 1
p=ZlHy,p(] + ﬁi{Hﬂp(t)}- “4)

The solution can also be obtained by introducing a time-
evolving operator [14,15]:

Uy() = e = L (COS“’ —a)

—isint’ >, )

cosa \ —isint’ cos(t’ + @)

where t' = AEt, with AE = E*;E’. Here, E. = +scosa
are the eigenvalues of Hpr ;.

In general, the evolution of a system with a non-Hermitian
Hamiltonian is not trace preserving:

9 _2 H 0 6
St(p) = —tr(pH_) #0. ©)

Thus, irrespective of whether one uses Eq. (4) or Eq. (5), to
obtain a solution, p(¢) has to be renormalized,

= p(1)
- 7
PO = o 0
or
T

— Tr[(Ui(1) @ L)p0)Ui(t) @ L)

because the observers live in the conventional quantum
world [15,27,28]. The quantum average of an observable .4
can then be calculated as

tr[Ap(1)]
(A) = r(Ap() = ———— )
tr[p(2)]
In standard quantum mechanics, tr[p(#)] =1, so Eq. (9)
coincides with the standard Born’s rule.
To evaluate the degree of the entanglement between the two
qubits, we use the concurrence [29]:

C(p) = Max{0.y/A1 — VA2 — Va3 —Vaa), (10)
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where {A;}, in decreasing order, are the eigenvalues of
p(oy, ® 0y)p*(0, ® 0y). Here, oy is the Pauli-y matrix, and
p* is the complex conjugate of p. To confirm the existence
of the entanglement experimentally, the Bell-Clauser-Horne-
Shimony-Holt (CHSH) inequality [18,22] and steering in-
equality [21,22] are commonly used. Therefore, it is useful
to calculate the maximal mean value of the Bell kernel
(Bmax) [30]:

(Bmax) = 2/ M(p) = 24/uy + us, (1)
where u; and u, are the two largest eigenvalues of TpT T,, and
TpT is the transpose of 7,,. The correlation tensor T, is given by
tij = Tr[p(o; ® oj)] fori,j = 1,2, 3, where o; and o; are the
Pauli matrices. If the correlation between the two qubits can

be described by the LHV model, the Bell-CHSH inequality
holds [30]:

(Bmax) < 2. 12)

The violation of the Bell-CHSH inequality indicates the failure
of the LHV model and can be viewed as a certification of
quantum entanglement [20].

If the correlation between two qubits can be described by
the LHS model, the steering inequality holds [22]:

N
Sv=>Y E[(B)i]< 1. (13)
i=1
where N(=2 or 3) is the number of mutua}lyA unbiasegl
measurement [31] (for example, the Pauli X,Y, and Z
matrices) performed on qubit 2, and

E[(B)3]= Y P(Ai=a) B} _, (14)

a==%1

is the average expectation of qubit 2. Here, P(A; = a) is the
probability of the measurement result of qubit 1, and

(B)a—a= ) bP(B; =blA; =a) (15)
b=%1

is the expectation value of qubit 2 conditioned on the outcome
of qubit 1. The violation of the steering inequality indicates the
failure of the LHS model and can also serve as an entanglement
certification [20].

In Fig. 2, we plot the dynamics of C, S3, and (B,x) for
both the coherent Rabi process and the local P7 -symmetric
operation. We set the initial state [/ 4p) to be one of the Bell
states: |Yap) = \%(lOO) + |11)). In Figs. 2(a) and 2(b), we can
see that the values C and (B,,x) remain unchanged when qubit
1 undergoes the coherent Rabi process. On the other hand,
C and (B, ) oscillate with time when performing the local
P7T -symmetric operation. Thus, the entanglement between
two parties can be restored when one of them undergoes the
‘P T -symmetric operation.

III. INCREASE OF ENTANGLEMENT BY LOCAL
PT-SYMMETRIC OPERATION

Let us consider qubit 1 embedded in an environment, while
qubit 2 is still isolated. From the angle of non-Markovian
dynamics [32], one can observe the behavior of entanglement
restoration if there exists some memory effect; i.e., quantum
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FIG. 2. (Color online) The dynamics of (a) the concurrence C, (b) the maximal mean value of the Bell kernel (B,,.), and (c) the steering
parameter S3. The black solid curve in each figure represents that qubit 1 undergoes the coherent Rabi oscillation, while the red dotted curve
represents that the local P7 -symmetric operation is performed on qubit 1. The blue dashed lines in (b) and (c) are the classical bounds [i.e.,
upper bounds in Eqgs. (12) and (13)] of (By.x) and Ss, respectively. In plotting the figure, the time 7 is in units of 1/AE, and the initial condition

is (|00) + |11))/+/2.

coherence is built between qubit 1 and the environment during
the evolution. So, one may speculate that the entanglement
restoration in Fig. 2 is similar to that derived from the
non-Markovian effect. However, we should note that the
entanglement restored from the environment cannot exceed
the initial one for any non-Markovian process [32]. Otherwise,
the property of entanglement monotonicity is violated; i.e.,
entanglement cannot be created (or increased) by performing
any local operation [24,25]. In this section, we will show that
the degree of the entanglement can exceed the initial value for
the local P7 -symmetric operation.

The first step is to prepare the quantum state which is not
maximally entangled. To accomplish this, let us start from the
maximally entangled state, \%(|OO) + |11)), and subject qubit
1 to a Markovian amplitude damping (with rate y) for a time
t., as shown in Fig. 3. By solving the following Lindblad-
form [33,34] master equation,

Y _ _
pe = 520, peoy — oo pe — peoy o), (16)

FIG. 3. (Color online) The schematic diagram of the dynamics
of the two qubits. Qubit 1 is subjected to an amplitude damping for
a time .. At the time 7., the damping is turned off, and the local
‘PT -symmetric operation is then performed on qubit 1. The initial
state of the system is (|00) + |11))/+/2.

one can obtain the state p.(z.) at the cutoff time z,:

e Ve 0 e Vi/?
1 0 0 0 0
pC(tC) = E 0 0 1 — e Ve 0 ’ (17)
eve/2 0 0 1

with the concurrence C = e~ 7%/, which is a monotonically
decreasing function of ¢.. For comparisons, we choose . =
0.5, 1, and 1.6 (in units of 1/y) to have three different initial
states:

03033 0 0 03804
o 0 0 0
plle =05=1 o o 01967 o | ¥
03894 0 0 0.5
01839 0 0 03033
0o 0 0 0
plte=D=1 o o 03161 o | U9
03033 0 0 0.5
and
01009 0 0 02247
o 0 0 0
pelte =10)=1"4 (399 o |- GO
02247 0 0 0.5

With these three initial states, we let the system undergo
the local P7 -symmetric operation [Eq. (2)] to obtain the
entanglement dynamics. In Fig. 4, we plot C, S3, and (Bax)
under the local P7 -symmetric operation. From (B, (or
S3), we can see that it is possible to certify the entanglement
(values above the classical bound shown by the horizontal
green line) at a later time, even if initially the entanglement
is not certified (values below the classical bound). We can
also see that the degree of the entanglement C can exceed
the initial value under the local P7 -symmetric operation.
This violates the property of entanglement monotonicity; i.e.,
entanglement cannot be created (or increased) by performing
any local operation [24,25].

To understand this thoroughly, let us examine the reduced
density state of qubit 2. In conventional quantum mechanics,
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FIG. 4. (Color online) The dynamics of (a) the concurrence C, (b) the maximal mean value of the Bell kernel (B,,.), and (c) the steering
parameter S; when the local P7 -symmetric operation is performed on qubit 1. The black dashed, red solid, and blue dotted curves represent
the results of different initial states of the P7 -symmetric evolution given by Egs. (18), (19), and (20), respectively. The green horizontal lines
in (b) and (c) are the classical bounds [i.e., upper bounds in Egs. (12) and (13)] of (B,..«) and S3, respectively. In plotting the figure, the time ¢

of the P7 -symmetric evolution is in units of 1/AE.

a local operation on qubit 1 cannot alter the reduced state of
qubit 2. Under the local P7 -symmetric operation, however,
the reduced density states of qubit 2 at ¢’ = 0 and /2 are

10
pu(0) = (5 1) 1)

2

and
1 isina
jT ~ 1 0 N
pB(E) = ( _l,SZina (1+sin2a))’ (22)
(1+sin? &) 2

respectively, while the initial state is \%(lOO) 4+ |11)). This
means that the reduced density state of qubit 2 is changed
under the local P7 -symmetric operation on qubit 1. From this
viewpoint, we know that the local P7 -symmetric operation
is not a genuine local operation in the conventional quantum
world. More importantly, when we deal with a P7 -symmetric
Hamiltonian, renormalization [Eqs. (7) and (8)] is required
to ensure trace preserving. Such an action directly affects the
quantum state of the two qubits and results in the violation of
entanglement monotonicity [35].

To check whether the increase of entanglement is a unique
property only for the P7-symmetric Hamiltonian, let us

FIG. 5. (Color online) The concurrence as a function of time
when qubit 1 is under the Hamiltonian of Eq. (23). The black dashed,
red solid, and blue dotted curves represent the results of the different
initial states given by Egs. (18), (19), and (20) respectively. In plotting
the figure, the time 7 is in units of 1/AE, and € is set to 0.01.

consider the following Hamiltonian:

isina 1 1 0
m=s(UT ) teo 0) e

where € is a real number. If € is not equal to zero, H;
is no longer a P7-symmetric Hamiltonian but a normal
non-Hermitian Hamiltonian. As shown in Fig. 5, the entan-
glement can still be increased with the same initial conditions
given in Eqs. (18)—(20). The reason is the same as that of
the P7-symmetric Hamiltonian. When we deal with the
non-Hermitian Hamiltonian, the renormalization procedure
induces a nonlocal effect, and the entanglement monotonicity
is violated.

IV. CONCLUSION

In summary, we find that the degree of entanglement
between the two particles oscillates with time, when the local
‘PT -symmetric operation is performed on one of the qubits.
To check whether this is similar to results of non-Markovian
effects, we consider a maximally entangled state subjected
to Markovian damping for some time f7. and then replace
the damping with the local P7-symmetric operation. It
is found that the entanglement can be increased with the
local P7 -symmetric operation. This contradicts the fact that
entanglement cannot be increased by any local operation. We
also consider the non-Hermitian Hamiltonian without P7
symmetry and show that the increase of entanglement is not a
unique property of the P7 -symmetric system.
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