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Absence of collapse in quantum Rabi oscillations
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We show analytically that the collapse and revival in the population dynamics of the atom-cavity coupled
system under the rotating wave approximation (RWA), valid only at very weak coupling, is an artifact as the
atom-cavity coupling is increased. Even the first-order correction to the RWA is able to bring about the absence
of the collapse in the dynamics of atomic population inversion thanks to intrinsic oscillations resulting from the
transitions between two levels with the same atomic quantum number. The removal of the collapse is valid for a
wide range of coupling strengths which are accessible to current experimental setups. In addition, based on our
analytical results that greatly improve upon the conventional RWA, even the strong-coupling power spectrum can
now be explained with the help of the numerically exact energy levels.
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I. INTRODUCTION

The collapse and revival in the population dynamics of
the atom-cavity coupled system under the rotating wave
approximation (RWA) is an important issue in quantum optics
[1]. The collapse is attributed to the destructive interfer-
ence among various transitions between the atomic upper
and lower levels, and the revival is due to the quantized
nature of the photonic number states in the cavity. The
collapse and revival phenomenon was first predicted by Eberly
et al. [2,3], and was observed experimentally by Rempe
et al. [4].

The RWA is a very good approximation if the atom-cavity
interaction energy is much smaller than the characteristic
energy of the atom-cavity coupled system, i.e., if the ratio
of the coupling constant and the field frequency g/ω is much
less than unity, a parameter space often referred to as the weak
coupling regime. If the coupling constant is comparable to the
field frequency, i.e., g/ω ≈ 0.1, also known as the ultrastrong
coupling regime, the counter-rotating terms (CRTs) have to
be considered. The effect of the CRTs on the dynamics of
the atomic population inversion has been studied in the weak
coupling regime [5,6] as well as the deep strong coupling
regime with g/ω > 1 [7]. Zhang et al. examined the full
range of atom-cavity coupling finding that the collapse and
revival gradually disappear and reemerge periodically as the
coupling strength increases in the strong coupling regime [8].
Numerically exact calculations reveal that the collapse and
revival gradually lose prominence as the coupling is increased,
and vanish in the ultrastrong coupling regime. However, due
to the lack of an analytical apparatus analogous to RWA, an
in-depth understanding remains elusive on the dynamics of
atomic population inversion from the weak to the ultrastrong
coupling regime ( g/ω � 0.2).

For superconducting qubits, a one-dimensional
transmission-line resonator, or an LC circuit [9–13] can
play the role of the cavity, also known as the circuit quantum
electrodynamics (QED) systems. Recently, an LC resonator
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inductively coupled to a superconducting qubit [14–16] has
been realized experimentally. The qubit-resonator coupling
g/ω has been strengthened to ∼0.1, entering the ultrastrong
coupling regime, and evidence for the breakdown of the RWA
has been provided [14]. Therefore, the CRTs can no longer
be ignored. Recently, much attention has been devoted to
the qubit-oscillator system and the effect of the CRTs in the
ultrastrong coupling regime [17–22].

A two-level atom coupled to a single-mode cavity has long
been a subject of extensive study, for which two main schemes
are usually employed. One is based on the phontonic Fock
states as pioneered by Swain [23–27], and the other on various
unitary transformations or displaced oscillators [15,28–39],
which are equivalent to extended coherent states [40] or
extended squeezed states [19]. Very accurate solutions can
be obtained in the latter scheme, but as an infinite number of
phontonic Fock states are involved, certain important features
may be smeared out.

Recently, He et al. proposed a method of using only the
dominant parts in Swain’s wave function [41] in the corrections
to the RWA. The effect of the CRTs emerges clearly even in
the first-order correction. All eigenvalues and eigenfunctions
are derived analytically. The vacuum Rabi splitting has been
obtained successfully up to the remarkable coupling strength
of g = 0.4, suggesting that they could be convincingly applied
to recent circuit QED systems operating in the ultrastrong
coupling regime. In this work, we show that this method
can be improved further with easy-to-use eigenvalues and
eigenvectors similar to those in the RWA, and the atomic
population inversion from an initial field of coherent states
can then be studied in great detail.

The paper is organized as follows. In Sec. II, we show
an improved version of the first correction to the RWA, and
give all eigensolutions similar as those in RWA. In Sec. III,
the atomic population inversion is calculated analytically. The
origin of the absence of the collapse up to the ultrastrong
coupling regime is examined in detail. The structure of the
exact power spectrum is discussed in terms of the corrections
to the RWA and the numerical exact energy levels. A brief
summary is given in Sec. IV.
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II. CORRECTED ROTATING-WAVE APPROXIMATIONS

The Hamiltonian of a two-level atom (a qubit) with tran-
sition frequency � interacting with a single-mode quantized
cavity of frequency ω takes the form,

H = �

2
σz + ωa†a + g(a† + a)σx, (1)

where g is coupling strength, σx and σz are Pauli spin-1/2
operators, and a† and a are the creation and annihilation
operators for the quantized field. Here we define δ = � − ω

as the detuning parameter, and focus on the resonance case of
δ = 0. The frequency of the cavity mode is set to unity as the
energy scale, i.e., ω = 1.

The RWA neglects the CRTs, a†σ+ + aσ−, rendering the
Hamiltonian diagonalizable with the eigenfunctions [1],

|kn〉RWA = 1√
2

(
(−1)k |n〉
|n + 1〉

)
, k = 1,2, n = 0,1,2, . . . ,

(2)

and the corresponding eigenvalues,

ERWA
kn = n + 1

2 + (−1)k
√

n + 1g, (3)

where k = 1,2 is the atomic quantum number, and n =
0,1,2, . . . is the photonic quantum number. Throughout this
appear, n and k are regarded as the level indices.

A unified expression in the first-order correction to the
RWA was proposed for the eigenvalues and eigenfucntions in
a recent work [41], which recovers the RWA expression in
the absence of the correction. In this paper, we employ an
improved selection rule for the roots of the derived univariate
cubic equation, and obtain a modified general expression with
details given below.

The first correction to the RWA wave function is to add a
new photonic state |n + 2〉 to the upper atomic level so that
the wave function can be written as

|kn〉 =
(

c
(0)
kn |n〉 + c

(2)
kn |n + 2〉

c
(1)
kn |n + 1〉

)
. (4)

From the RWA results, we note that an odd quantum number
n is for even parity, and an even n for odd parity, resulting in
a single univariate cubic equation,

E3 −
(

3n+ 7

2

)
E2+

[(
n+ 1

2

) (
3n+ 11

2

)
−(2n+ 3) g2

]
E

−
(

n + 1

2

)2 (
n + 5

2

)
+

(
2n2 + 6n + 7

2

)
g2 = 0, (5)

which is the same as Eq. (22) in Ref. [41]. In Sec. III B of
Ref. [41], however, a scenario of an even quantum number
n with even parity and an odd n with odd parity was also
considered, which does not arise in Hamiltonian (1) where
only one univariate cubic equation is needed to account for
all physical results. Note that Eq. (5) in principle gives three
roots. Comparing with the RWA results, we know that each n

corresponds to two eigenvalues, one of which is superfluous
and should be omitted. By fitting the numerically exact results,

two roots are chosen:

Ekn =
(
3n+ 7

2

)+
√

(6n+ 9)g2 + 4[cos θ+(−1)k
√

3 sin θ ]

3
,

(6)
where

θ = 1

3
arccos

(
−8 + 9ng2√

[4 + (6n + 9)g2]3

)
+ 2π

3
,

and the ratio of coefficients in the eigenfunctions (4) is

c
(0)
kn : c

(1)
kn : c

(2)
kn =

[
−

√
n + 1

�n(Ekn)

]
: 1 :

[
−

√
n + 2

�n+2(Ekn)

]
, (7)

with

�n(Ekn) = 1

g

[
n − Ekn + �

2

]
.

Equations (4) and (6) are the counterparts of RWA results,
Eqs. (2) and (3).

It is easily seen that the leading wave-function correction
|↑ ,n + 2〉 in the upper atomic level is produced by the
CRTs, a†σ+ + aσ−. This first correction to RWA, which
will be denoted as CRWA, is responsible for numerous
physical processes beyond the RWA, and with eigenvalues
and eigenvectors explicitly given, corresponding to the RWA
results one by one, applications of CRWA can be conveniently
made.

To better compare with the RWA, the CRWA eigenvalues
can be expanded in terms of the coupling constant g as follows:

Ekn = n + 1

2
+ (−1)k

√
n + 1g − n + 2

4
g2

− (−1)k
(n + 2)(3n + 2)

32
√

n + 1
g3 + O(g3), (8)

and the three coefficients in the normalized eigenfunctions
read

c
(0)
kn = (−1)k

√
2

2
+

√
2(n + 2)

16
√

n + 1
g

− (−1)k
√

2(n + 2)2

256(n + 1)
g2 + O(g2),

c
(1)
kn =

√
2

2
− (−1)k

√
2(n + 2)

16
√

n + 1
g

(9)

−
√

2(n + 2)(17n + 18)

256(n + 1)
g2 + O(g2),

c
(2)
kn = −

√
2n + 4

4
g − (−1)k

(3n + 2)
√

2n + 4

32
√

n + 1
g2

+O(g2).

Comparing Eq. (8) with the RWA counterpart Eq. (3), it is
found that the conventional RWA results are recovered if
only first-order (in g) terms are kept in Eq. (8). A similar
comparison between Eq. (9) and Eq. (2) reveals that the RWA
eigenstates appear explicitly in the expressions of the CRWA
counterparts. It makes sense that the coefficients c

(0)
kn and c

(1)
kn

of |↑ n〉 and |↓ n + 1〉 in the RWA states, respectively, are of
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order 1, and coefficients c
(2)
kn for the new state |↑ n + 2〉 are of

order g. It will be demonstrated that the CRWA expansions are
exact up to g2 (g) in energy (wave function). Here we keep one
higher order term in both the eigenvalues and eigenvectors,
which can be shown to reproduce Eqs. (6) and (4) with
sufficient accuracy, and will therefore be used to calculate
all CRWA results in this work. As the CRWA eigenvectors
are approximate, they are not all strictly orthogonal. For
example, for k1 �= k2, 〈k1n| |k2n〉 ∝ g4 �= 0. It is understood
that orthogonality is only observed in the weak coupling limit.

Following the standard procedure, we can also obtain the
ground state (GS) and its energy by adding one new bare state
to the RWA one |↓ 0〉 as

|GS〉 =
(

d1|1〉
d0|0〉

)
, (10)

where

d0 = 1 − 1
8g2 + 11

128g4,

d1 = − 1
2g + 3

16g3,

and

EGS = − 1
2 − 1

2g2 + 1
8g4. (11)

This GS eigenvector is regarded as the CRWA one, because
only one new phontonic state is added, analogous to the CRWA
excited states.

Similarly, we can also obtain the GS energy and state with
higher order corrections,

E
(2)
GS = −1

2
− 1

2
g2 − 1

8
g4 + O(g6), (12)

|GS〉(2) =
(

d
(2)
1 |1〉

d
(2)
0 |0〉 + d

(2)
2 |2〉

)
, (13)

with

d
(2)
0 = 1 − 1

8
g2 − 13

128
g4 + O(g6),

d
(2)
1 = −1

2
g − 1

16
g3 + O(g5),

d
(2)
2 =

√
2

4
g2 −

√
2

32
g4 + O(g6).

It is interesting to note that the eigenvalues (eigenvectors)
up to g2 (g) in the CRWA are not modified in the second
corrections of the GS state. The GS eigenvectors appear to
reveal the general property of the excited states with second-
order corrections, for which analytical expressions are elusive.

CRWA may not yield more accurate results than many
other approaches involving infinitely many photon states.
The advantage, instead, lies in the transparency in important
mechanisms of interest provided by the compact eigenstates
with only three photonic number states. Now with all CRWA
eigenvalues and eigenvectors at hand, we can revisit many
physical problems that have been studied using the RWA. In
this paper, we focus on the quantum dynamical effects, one
fundamental issue in quantum optics.

III. ATOMIC POPULATION INVERSION FROM
COHERENT STATE

A. The CRWA results

We first consider a two-level atom interacting with a
coherent field. The initially coherent state in the upper level
can be expanded in terms of the photonic number states,

|α〉 =
∑

n

βn|↑,n〉, (14)

where βn = exp(−|α|2/2) αn√
n!

is a Poisson distribution, α2 =
n is the average photon number.

It is well known that the atomic population inversion
exhibits collapse followed by periodic revivals in the RWA
[1]. It is intriguing to ask what would happen beyond
the RWA. Using the CRWA results given in Eqs. (8) and
(9), one can easily calculate the dynamics of the atomic
population inversion. The results are presented in Fig. 1 for
α2 = 10 and two coupling strengths g = 0.02 and 0.06. The
corresponding RWA results are also shown in Fig. 1 with
differences accounted for by the CRTs. To demonstrate the
validity of the CRWA, we compare in the inset of Fig. 1 the
numerically exact results with the CRWA counterparts in two
time periods of large oscillation amplitudes. Surprisingly, our
CRWA results are in excellent agreement with the exact ones
up to the ultrastrong coupling regime (with g in the order of
0.1). Actually, the agreement can be kept up to g = 0.2 (not

FIG. 1. (Color online) The atomic population inversion for an
initial coherent state for g = 0.02 and 0.06 using the CRWA
(solid red), the RWA (dashed-dotted blue), and numerically exact
calculations (dashed black) with an average photon number α2 = 10.
The reduced time τ = 2gt .
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shown here), a coupling strength almost doubling the current
experimentally accessible value.

Interestingly, a new oscillation appears during the collapses
with a coupling-independent frequency and an amplitude
roughly proportional to the coupling strength. This is to say, the
well-known collapse observed in the RWA is absent due to the
presence of the CRTs, even at a very weak coupling strength
(such as g = 0.02), where the RWA is usually considered to be
valid. While it is difficult for certain accurate approaches based
on an infinite series of number states to uncover this mysterious
phenomenon, here we will derive the atomic population
inversion analytically and discuss the detailed dynamics based
on the CRWA with only one new state added to the RWA one.

B. Detailed process in terms of CRWA

We can expand the initial coherent state in the upper level
in terms of the CRWA eigenstates, and then obtain the atomic
population inversion. We list here individual contributions
for the benefit of discussion leaving detailed derivations to
Appendix A:

W (t) = (2C − 1) + 2
∑
k=1,2

Sk cos[(EGS − Ek1)t]

+W (Rabi)(t) + W
(I )
sk (t) + W

(I )
dk (t), (15)

where

W (Rabi)(t) = 2
∞∑

n=0

Rn cos[(E2n − E1n)t], (16)

W
(I )
sk (t) = 2

∞∑
n=0

{I1n cos[(E1n − E1n+2)t]

+ I2n cos[(E2n − E2n+2)]t}, (17)

W
(I )
dk (t) = 2

∞∑
n=0

{I12n cos[(E1n − E2n+2)t]

+ I21n cos[(E2n − E1n+2)t]}, (18)

where all coefficients are given in Eq. (A3) in Appendix A.
In Eq. (15), the first constant term and the second terms for
transitions to the GS state are extremely small for g � 0.2,
and can be omitted. The main contributions to the atomic
population inversion are the three kinds of oscillations given
by Eqs. (16)–(18). Equation (16) depicts the modified Rabi
oscillations, which are not essentially different from the
usual one in the RWA. Equations (17) and (18) describe the
transitions between the (k,n) and (k,n + 2) levels, and those
between the (k,n) and (k′ �= k,n + 2) levels, respectively.

To show contributions individually, we calculate Eqs. (16)–
(18) independently. Figure 2(a) shows the three contributions
for g = 0.06. The black lines depict the atomic population
inversion for the transitions between the (k,n) and (k,n + 2)
levels, revealing the absence of the usual collapse. For the
transitions between the (k,n) and (k′ �= k,n + 2) levels, the
atomic population inversion, as shown by the red lines,
displays the collapse and revivals as in the Rabi oscillations.
The modified Rabi oscillations are shown as the blue lines. The

FIG. 2. (Color online) (a) Various contributions to the time-
dependent atomic population inversion: W

(I )
sk for transitions from

the levels in different n with the same k, and W
(I )
dk with differ-

ent k, modified Rabi oscillations W (Rabi)(t) at g = 0.06, α2 = 10.
(b) Comparisons with the approximate short-time dynamics given
in Eqs. (25) and (26). The reduced time τ = 2gt .

main results in Fig. 1(b) can then be completely reproduced
by summing up these three contributions.

To better illustrate the point, we collect the amplitude terms
up to order g and the energy difference terms up to order g2

in Eq. (A5), obtaining a concise expression for the atomic
population inversion:

W (t) =
∞∑

n=0

β2
n

⎡
⎣ cos[(E2n − E1n)t]

− gα2

2
√

n + 1

∑
k,k′=1,2

(−1)k
′
cos[(Ek,n+2 − Ek′,n)t]

⎤
⎦ ,

(19)

where

E2n − En = 2
√

n + 1g, (20)

Ek,n+2 − Ek,n = 2 − g2

2
+ (−1)k g(

√
n + 3 − √

n + 1),

(21)

Ek,n+2 − Ek′ �=k,n = 2 − g2

2
+ (−1)kg(

√
n + 3 + √

n + 1).

(22)

The first term in Eq. (19) is the conventional Rabi oscillation,
which can be approximated by cos(2gt

√
α2 + 1)e− 1

2 (gt)2
at
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short times (gt < α). The collapse occurs at tcollapse ∼ 1/g

due to the exponential factor, and the usual Rabi frequency
is 2g

√
α2 + 1. The second term in Eq. (19) includes four

oscillations. All are from the transitions between (k,n) and
(k,n + 2) levels, which, despite being ubiquitous in exact
dynamics even for weak coupling, are absent in the RWA.
In fact, the interlevel oscillations, also known as the intrinsic
oscillations, are even captured by semiclassical descriptions
of two-level atoms coupled with a classical field.

Now we focus on the energy difference, i.e., the frequency
of the oscillations. It is observed that the energy differences
with the same k [Eq. (21)] are very small, and those with the
different k [Eq. (22)] are large. Regrouping the summation in
the second term of Eq. (19) yields

W
(I )
sk (t) = gα2 sin

[(
2 − 1

2
g2

)
t

] ∞∑
n=0

β2
n√

n + 1

× sin[g(
√

n + 3 − √
n + 1)t], (23)

W
(I )
dk (t) = −gα2 sin

[(
2 − 1

2
g2

)
t

] ∞∑
n=0

β2
n√

n + 1

× sin[g(
√

n + 1 + √
n + 3)t]. (24)

Note that they share a common fast oscillation with a weakly
g-dependent frequency of 2 − 1

2g2. However, their envelopes
are given by different infinite summations.

Considering the weight βn in the summation, the dominate
term in the envelope of Eq. (23) is from the n = α2 term, so
the short-time dynamics is roughly described by

W
(I )
sk (t) ≈ gα2

√
α2 + 1

sin

[(
2 − 1

2
g2

)
t

]
sin

[
gt√

α2 + 1

]
.

(25)

As shown in Fig. 2(b) by the green line, Eq. (23) describes
the short-time dynamics very well. It is well known that the
first collapse under the RWA persists up to the revival time
τrevival = 2πα. For α2  1, the argument in the second sin
function in Eq. (25) at the revival time is about π . So in the
RWA collapse regime, this fast oscillation in the CRWA is
enveloped sinusoidally with a half period with a maximum
amplitude of about gα. For the given parameters, the first
revival time is τrevival ≈ 20, and the half period for the first
envelope should be also approximately 20, which is just in
excellent agreement with Fig. 2(b). Actually for any average
photonic number, there is no finite collapse regime for the fast
oscillations in the short-time dynamics. It follows that there is
absolutely no collapse in the absence of RWA.

While the other intrinsic oscillations described by Eq. (24)
at short times can be approximated by

W
(I )
dk (t) ≈ −gα sin

[(
2 − 1

2
g2

)
t

]
sin(2gαt) exp

[
− (gt)2

2

]
.

(26)

The detailed derivation is presented in Appendix B. It is also
demonstrated by the blue line in Fig. 2(b) that the above
approximation can capture the short-time dynamics quite well.
Note that the intrinsic oscillations from the transitions between

(k,n) and (k′ �= k,n + 2) levels also collapse at the same
time as the Rabi oscillations thanks to the same decay factor
exp[−(gt)2/2] such that they do not contribute to the absence
of the collapse at all.

To sum up, the transitions between levels of n and n + 2
with the same k bring about a fast intrinsic oscillation with
amplitude gα, which is remarkable so that the collapse actually
never occurs in the real system. Previous collapse is only an
artificial result from the theoretical RWA. As exhibited in Fig. 1
even for g = 0.02, a visible intrinsic oscillation appears in the
usual RWA collapse regime. As the coupling strength in the
current circuit QED systems has reached g = 0.1, the absence
of collapse can be checked experimentally.

We believe that a first-order perturbation technique in the
path integral framework [6] would give similar results to order
g at weak coupling. Their findings were attributed to the
CRTs as a whole, and mechanisms relevant to the transitions
are elusive due to the fact that detailed information on the
eigenstates is not available in the path integral approach which
integrates out all bosonic degrees of freedom. In addition,
compared with the exact solution, our CRWA results may not
be better than the second-order perturbative one, but an infinite
number of phontonic Fock states are involved in the second-
order perturbation theory, depriving its analytical clarity.

C. Power spectrum

To probe further various oscillations in the atomic popula-
tion inversion, we calculate the power spectrum F (ω) defined
as follows:

F (ω) =
∣∣∣∣
∫ ∞

0
W (t) exp(−iω t)dt

∣∣∣∣
2

. (27)

The power spectrum will be calculated exactly and analyzed
using our CRWA results, in which various transitions can be
identified separately.

In Fig. 3, the numerically exact power spectrum for various
coupling strengths are given by solid black lines for the case
of α2 = 10. We also list the power spectrum individually
from different time-dependent components such as the Rabi
oscillations (green lines) and intrinsic oscillations (red lines)
in Eq. (19). It is very interesting that all the power spectra
obtained analytically in the CRWA can find their counterparts
in the exact spectrum, and the agreement is good up to g = 0.2.

Next, let us analyze the structure of the spectrum in the
CRWA in the time scale of τ = 2gt . The Rabi frequency is
centered around ωR/2π = √

α2 + 1/2π = 0.53, independent
of g, and therefore appear in the same position. The Rabi
oscillations in the CRWA are qualitatively the same as those in
RWA. A slight deviation from the exact ones with an increase
in the coupling strength is due to a small deviation of the
CRWA energy levels from the exact solutions.

The intrinsic oscillations from the CRTs are not captured
by the RWA. The two frequencies from intrinsic transitions
within same k, ωs

k , are given by Eq. (21), where two dominate
frequencies come from n ≈ α2 levels,

ωs
k =

[
2 − g2

2
+ (−1)kg(

√
α2 + 3 −

√
α2 + 1)

] /
2g.

(28)
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FIG. 3. (Color online) The power spectrum for g = 0.06,0.15,
and 0.2 with CRWA and numerical exact study at average photon
number α2 = 10 . The frequency unit is 2g.

Note that the third term in Eq. (21) is very small compared
to the central frequency ωc = (1 − g2/4)/g, and is weakly
dependent on n. So they appear sharply in the two sides of
the central frequency ωc. The other two frequencies from
transitions between different k’s, ωd

k , are given by Eq. (22).
Two dominate frequencies from n ≈ α2 levels are given by

ωd
k =

[
2 − g2

2
+ (−1)kg(

√
α2 + 3 +

√
α2 + 1)

] /
2g.

(29)
From Eq. (22), we note, however, that the third term is
comparable with the central frequency ωc, and is strongly
dependent on n. Therefore, broad peaks appear on the two
sides of the two dominant ones, ωd

k , in the power spectrum, as
demonstrated in the exact solutions. The peak positions from

the four dominant frequencies calculated from Eqs. (28) and
(29) also coincide with the exact ones.

For g = 0.06, the spectra calculated from the CRWA are
in excellent agreement with the numerically exact ones. As
the coupling strength is increased to g = 0.15 and 0.2, the
aforementioned four CRWA frequencies from Eqs. (28) and
(29) and the Rabi peak, which are in the low frequency
regime and dominate the atomic population inversion, remain
in agreement with the exact ones. Thus, we have demonstrated
that the main features in the power spectrum of the numerically
exact solutions can be explained analytically by the CRWA.
We note that a weak, broad spectral feature, which becomes
pronounced only at strong coupling, also appears at the high
frequencies, and cannot be reproduced in the CRWA.

After analyzing the structure of the wave function, it
becomes clear that the new intrinsic oscillation from the further
corrections to the RWA should take the form,

∼g2α2 exp(−α2)
∑

k,k′=1,2

∞∑
n=0

1√
n + 3

α2n

n!

× cos(Ek,n+4t − Ek′,nt), (30)

∼g3α2 exp(−α2)
∑

k,k′=1,2

∞∑
n=0

1√
n + 5

α2n

n!

× cos(Ek,n+6t − Ek′,nt). (31)

They are added to the total intrinsic oscillation gradually
with the increasing coupling. The amplitude in the mth order
corrections is of order gm, and therefore they only play a
minor effect at weak coupling. With the increasing coupling,
they gradually gain importance. We can in principle predict the
relevant frequencies of these higher-order intrinsic oscillations
that emerge with the increasing coupling.

From Eq. (27), it becomes immediately possible to obtain
the next four new intrinsic typical frequencies in the second-
order corrections to the RWA,

�s
k = [4 − g2 + (−1)kg(

√
α2 + 5 −

√
α2 + 1)]/2g, (32)

�d
k = [4 − g2 + (−1)kg(

√
α2 + 5 +

√
α2 + 1)]/2g. (33)

Note that the CRWA energy levels will still be used due to the
lack of analytical solutions in the second-order corrections to
the RWA. The peak positions calculated from the equations
above using the CRWA energy are in agreement with the
numerically exact ones for g = 0.15 and g = 0.2, as shown
in Figs. 3(b) and 3(c). The small deviation from the exact
spectra are attributed to the approximate CRWA energies. Were
numerically exact energy levels used, the agreement should be
much improved.

IV. SUMMARY

In summary, using the CRWA, we have studied analytically
the atomic population inversion from an initial coherent field.
The often-seen collapse in the RWA is found to be wiped out
by intrinsic oscillations attributed to the transitions between
(k,n) and (k′ = k,n + 2) levels. As the intrinsic oscillations
are ubiquitous in atom-cavity coupled systems as long as
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the CRTs are taken into account, it is concluded that the
collapse is just an artifact of the RWA. In addition, we
have analyzed the power spectrum of the atomic population
inversion, finding the analytical CRWA spectrum in excellent
agreement with that from the exact solutions in the ultrastrong
coupling regime. As the coupling is further increased, the main
characteristic frequencies can be well accounted for by the
CRWA. Second-order corrections to the RWA are shown to
be able to explain additional features in the power spectrum
calculated from the exact solutions. Finally, our prediction on

the absence of the collapse can be checked experimentally in
the ultrastrong coupling regime.
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APPENDIX A: DERIVATION OF THE ATOMIC POPULATION INVERSION

The initial coherent state in the upper atomic level can be expanded as

|ψ(0)〉 = exp(−α2/2)|↑〉
∑
n=0

αn

√
n!

|n〉 = |↑〉
∑
n=0

βn|n〉. (A1)

In terms of CRWA eigenstates, the time-dependent state in |↑,n〉 can be expressed in detail as follows. For n = 0,∑
k=1,2

[
β0

(
c

(0)
k0

)2 + β2c
(2)
k0 c

(0)
k0

]
e−iEk0t ,

for n = 1, ∑
k=1,2

[
β1

(
c

(0)
k1

)2 + β3c
(2)
k1 c

(0)
k1

]
e−iEk1t + β1(d1)2e−iEGSt ,

and generally n � 2, ∑
k=1,2

[
βn−2c

(0)
kn−2c

(2)
kn−2 + βn

(
c

(2)
kn−2

)2]
e−iEkn−2t + [

βn

(
c

(0)
kn

)2 + βn+2c
(0)
kn c

(2)
kn

]
e−iEknt .

Then the upper part of time-dependent wave function can be written as

|ψ(t)〉 =
∑
n=0

∑
k=1,2

[
βnc

(0)
kn c

(2)
kn + βn+2

(
c

(2)
kn

)2]
e−iEknt |n + 2〉 +

∑
n=0

∑
k=1,2

[
βn

(
c

(0)
kn

)2 + βn+2c
(0)
kn c

(2)
kn

]
e−iEknt |n〉 + β1(d1)2e−iEGSt |1〉

=
∑
n=0

∑
k=1,2

[hkne
−iEknt |n + 2〉 + fkne

−iEknt |n〉] + β1(d1)2e−iEGSt |1〉, (A2)

where

fkn = βn

(
c

(0)
kn

)2 + βn+2c
(0)
kn c

(2)
kn = βn

[
1

2
+ (−1)k

1

8

(n − 2α2 + 2)√
n + 1

g − 1

8
α2g2

]
,

hkn = βnc
(0)
kn c

(2)
kn + βn+2

(
c

(2)
kn

)2 = βn

[
− (−1)k

1

4

√
n + 2g + 1

8

√
n + 2

n + 1
(α2 − n − 1)g2

]
.

The probability of finding the atom in the upper level is then obtained:

P (t) = C +
∑
k=1,2

Sk cos[(EGS − Ek1)t] +
∑
n=0

{Rn cos(E2n − E1n)t + I1n cos(E1n − E1n+2)t

+ I2n cos(E2n − E2n+2)t + I12n cos(E1n − E2n+2)t + I21n cos(E2n − E1n+2)t},
where

Rn = 2(f1nf2n + h1nh2n) = 1

2
β2

n

[
1 −

(
α2

2
+ 1

16

(n − 2α2 + 2)2

n + 1
+ 1

4
n + 1

2

)
g2

]
,

I1n = 2h1nf1n+2 = 1

2
β2

n

{[
−1

8

(n + 4 − 2α2)√
n + 1

√
n + 3

+ 1

4

(α2 − n − 1)

n + 1

]
α2g2 + 1

2

α2g√
n + 1

}
,

I2n = 2h2nf2n+2 = 1

2
β2

n

{[
−1

8

(n + 4 − 2α2)√
n + 1

√
n + 3

+ 1

4

(α2 − n − 1)

n + 1

]
α2g2 − 1

2

α2g√
n + 1

}
,
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I12n = 2h1nf2n+2 = 1

2
β2

n

{[
1

8

(n + 4 − 2α2)√
n + 1

√
n + 3

+ 1

4

(α2 − n − 1)

n + 1

]
α2g2 + 1

2

α2g√
n + 1

}
,

I21n = 2h2nf1n+2 = 1

2
β2

n

{[
1

8

(n + 4 − 2α2)√
n + 1

√
n + 3

+ 1

4

(α2 − n − 1)

n + 1

]
α2g2 − 1

2

α2g√
n + 1

}
,

C =
∑
k=1,2

∑
n=0

|fkn|2 + |hkn|2 = 1

2
+ e−α2

g2
∑
n=0

α2n

n!

[
−1

4
α2 + 1

32

(n − 2α2 + 2)2

n + 1
+ n

8
+ 1

4

]
,

Sk = 2f1kd
2
1β1 = 1

4
e−α2

α2g2. (A3)

The atomic population inversion is therefore easily given by

WCRWA(t) = 2P (t) − 1, (A4)

collecting all contribution up to the g2 we have

WCRWA(t) = (2C − 1) + WGS(t) + W (Rabi)(t) + W (I )(t), (A5)

where

2C − 1 = g2
∑
n=0

β2
n

[
1

2
+ n

4
− α2

2
+ (n − 2α2 + 2)2

16(n + 1)

]
, (A6)

WGS = α2g2e−α2
cos

[(
2 − g2

4

)
t

]
cos

[(
1 − 15g2

64

)√
2gt

]
, (A7)

W (Rabi)(t) =
∑
n=0

β2
n

[
1 −

((
1

2
+ n

4
+ α2

2
+ (n − 2α2 + 2)2

16(n + 1)

)
g2

)]
cos(E2n − E1n)t,

W (I )(t) = −1

2
gα2

∑
k,k′=1,2

∞∑
n=0

β2
n√

n + 1
(−1)k

′
cos(Ek,n+2t − Ek′,nt)

+α2g2
∑
n=0

β2
n cos

[(
2 − 1

2
g2

)
t

] {
(α2 − n − 1)

n + 1
cos(g

√
n + 1t) cos(g

√
n + 3t)

−1

2

(n + 4 − 2α2)√
n + 1

√
n + 3

sin(g
√

n + 1t) sin(g
√

n + 3t)

}
. (A8)

APPENDIX B: APPROXIMATE SHORT-TIME DYNAMICS USING THE SADDLE-POINT METHOD

By using the saddle-point method, the asymptotic expansion of integrals of the following form is given by

F (n) =
∫ ∞

0
f (n)enS(n)dn =

√
− 2π

nS ′′(n0)
exp[nS(n0)][f (n0) + O(n−1)], (B1)

where n is very large, the zeros of S ′(n) are called the saddle points of S(n).
The envelope of Eq. (23) can be transformed to the following integral [c.f. Ref. [3]],

F (t) =
∞∑

n=0

β2
n√

n + 1
sin[g(

√
n + 1 + √

n + 3)t],

=
∫ ∞

0
dn

exp
[ − n + n − n ln

(
n
n

)]
√

2πn

1√
n + 1

sin[g(
√

n + 1 + √
n + 3)t],

where the Stirling’s approximation was used. By cos (x) + i sin (x) = eix , we have

F (t) = Im

{∫ ∞

0
dn

exp
[ − n + n − n ln

(
n
n

) + i(
√

n + 1 + √
n + 3)gt

]
√

2πn

1√
n + 1

}
,

= exp(−n)Im

(∫ ∞

0
dn

exp(nS(n))√
2πn(n + 1)

)
,
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where

S(n) = n

n
− n

n
ln

(
n

n

)
+ i

√
n + 1 + √

n + 3

n
gt.

The zero of S ′(n) give the saddle point n0,

ln

(
n0

n

)
= i

(
1√

n0 + 1
+ 1√

n0 + 3

)
gt

2
.

Considering short-time gt/
√

n̄ � 1, so n0
n

→ 1, we have

n0 ≈ n̄

(
1 + igt√

n̄

)
. (B2)

By using Eq. (B1), we have

F (t) = exp(−n)Im

(√
− 2π

nS ′′(n0)
exp[nS(n0)]

1√
2πn0(n0 + 1)

)
.

Inserting Eq. (B2), we finally obtain

F (t) ≈
√

1

n̄
sin(2g

√
n̄t) exp

[
− (gt)2

2

]
. (B3)
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