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Efficiencies of quantum optical detectors
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We propose a definition for the efficiency that can be universally applied to all classes of quantum optical
detectors. This definition is based on the maximum amount of optical loss that a physically plausible device
can experience while still replicating the properties of a given detector. We prove that detector efficiency cannot
be increased using linear optical processing. That is, given a set of detectors, as well as arbitrary linear optical
elements and ancillary light sources, it is impossible to construct detection devices that would exhibit higher
efficiencies than the initial set.
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Optical detectors—devices for converting optical signals
into electric ones—are paramount not only in physics but also
in many aspects of our everyday life. In quantum optics and
its applications to information processing and communication,
detectors are particularly diverse and subject to intense study
[1–4] and development [5,6]. This is necessary to satisfy the
demands associated with various methods of quantum-optical
state measurement required for different quantum technology
applications.

A primary performance benchmark of any optical detector
is its quantum efficiency. In spite of its universality and
intuitiveness, this fundamental characteristic does not have
a uniform definition applicable to all classes of detectors. For
example, the quantum efficiency of a photodiode is defined as a
ratio of the number of photoelectrons to the number of incident
photons; that of a single-photon detector is the probability to
generate a “click” given a single input photon; for a balanced
homodyne detector, the efficiency is obtained by means of a
relatively complex calculation that includes the efficiencies of
its photodiodes, the mode matching of the signal and the local
oscillator [7], the electronic noise [8], and other parameters.

A further outstanding problem is the construction of optical
detectors with high efficiency. Efficient optical detection is
a primary requirement in applications ranging from quan-
tum information processing and communications [9–11] to
fundamental tests such as loophole-free locality violation
[12,13]. Although significant progress has been made in
recent years in photon detector technology [5], highly efficient
optical detectors remain expensive and unavailable for certain
wavelengths. It would therefore be useful to develop optical
means of increasing detector efficiency. That is, construct
an all-optical device involving lower-efficiency detectors that
behaves as a higher-efficiency detector.

It is possible to increase photon detection efficiency using
nonlinear optics. Examples include nondemolition detection
[14] and the controlled-NOT (CNOT) gate [15]. For quadrature
detection, the efficiency can be enhanced via optical squeezing
to amplify the quadrature that is in phase with the local
oscillator [16]. However, nonlinear optical processing is

*LVOV@ucalgary.ca

typically lossy and requires sophisticated technology. In con-
trast, linear optical elements with very low loss are routinely
manufactured. It would be therefore much more preferable to
increase the efficiency of a set of detectors using only linear
optical elements.

In this paper, we introduce a generalized definition of
detector efficiency. Thereafter, we are able to address the
principal question of this paper: Can the efficiency of a set
of detectors be increased using linear optics? We show that the
answer to this question is negative.

The efficiency of a photon detector can be defined in
terms of equivalent optical loss [17,18]. That is, for a given
detector, we look for equivalent configurations consisting of
another detector preceded by a loss channel (attenuator) of
transmissivity η [Fig. 1(a)]. The detector efficiency would be
the minimum (or infimum) value of η for all such equivalent
representations that are theoretically allowed.

Mathematically, the generalized efficiency of a detector

with a positive-operator-valued measure (POVM) �̂� is given
by

E( �̂�) = inf{η|∃ �̂�,Fη( �̂�) = �̂�}, (1)

where Fη( �̂�) represents a detector with POVM �̂� with an
attenuator of transmissivity η placed in front of it [Fig. 1(a)].
�̂� must be a theoretically allowed POVM, i.e., a set of non-
negative self-adjoint operators that sum to unity.

For a detector whose POVM �̂� is known, the loss
transformation Fη( �̂�) can be calculated as follows. For an
input quantum state ρ̂, the probability of obtaining a specific
(�th) measurement outcome is

p�(ρ̂) = Tr[ρ̂Fη(�̂�)]. (2)

On the other hand, the detection process shown in Fig. 1(a) is
equivalent to that in Fig. 1(b), so we can write

p�(ρ̂) = Tr[Eη(ρ̂)�̂�], (3)

where Eη(ρ̂) is the loss transformation of state ρ̂, which in
the Fock basis takes the form of the generalized Bernoulli

transformation [19,20]. This can then be used to derive Fη( �̂�)
in that basis as shown in the Appendix. For a diagonal POVM,
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(a) (b)

FIG. 1. Equivalent loss model of detector. (a) An inefficient

detector with POVM �̂� and efficiency η is equivalent to a detector

with POVM �̂� preceded by an attenuator with transmissivity η. (b) An
equivalent model of quantum state measurement with an imperfect
detector.

relevant for phase-insensitive detection, the map takes the form

〈n|Fη(�̂�) |n〉 =
n∑

k=0

(
n

k

)
(1 − η)n−kηk 〈k| �̂� |k〉 . (4)

To illustrate the results above, let us consider a nondiscrim-
inating single-photon detector of efficiency η, defined as the
probability for a single incident photon to generate a “click.”
This detector is described by the well-known POVM [21,
p. 118]

�̂off(η) =
∞∑

n=0

(1 − η)n |n〉 〈n| , (5a)

�̂on(η) =
∞∑

n=0

[1 − (1 − η)n] |n〉 〈n| . (5b)

If we place an attenuator with transmissivity η′ in front of
that detector, transformation (4) will lead to

Fη′(�̂off(η)) =
∞∑

n=0

(1 − ηη′)n |n〉 〈n| = �̂off(ηη′), (6a)

Fη′(�̂on(η)) =
∞∑

n=0

[1 − (1 − ηη′)n] |n〉 〈n| = �̂on(ηη′);

(6b)

i.e., this setting is equivalent to a nondiscriminating single-
photon detector of efficiency ηη′.

By the same token, a detector with POVM (5) is equivalent
to a nondiscriminating detector of efficiency η/η′ preceded
by an attenuator with transmissivity η′. The POVM ele-
ments �̂off,on(η/η′) are non-negative for η′ � η and negative
(unphysical) for η′ < η. This implies that the generalized
efficiency (1) of detector (5) equals η, so our new definition
is consistent with the traditional one. One can use similar
arguments to show this consistency for other types of detectors.

The equivalent-loss approach to quantum efficiencies has
previously been applied to investigate the question of whether
linear optical processing can increase the efficiency of single-
photon sources. Originally investigated in Refs. [22,23], an
explicit definition of source efficiency was constructed, along
with a proof that linear optical processing cannot increase it
[24]. Later, this proof was extended to the case of multiple
sources [25]. Below, we address a similar problem for
detectors.

Suppose we are given a set of single-mode detectors with
efficiencies {ηi}, which we call “physical.” One may use these
detectors, an arbitrary number of linear optical elements,
such as beam splitters and phase shifters, as well as any
ancillary light sources, to construct a set of single-mode optical
state measurement devices which we call “virtual detectors”
[Fig. 2(a)]. Different virtual detectors do not share any optical
elements. In particular, each virtual detector uses a different
subset of the physical detectors. We show that the efficiencies
η′

i of these virtual detectors are bounded by the efficiencies of
the physical detectors:

η′
i

↓ � η
↓
i , (7)

where the downward arrow denotes sorting in nonincreasing
order.

Consider first a single virtual detector. It can be represented
by a scheme shown in Fig. 2(a). The mode â1 to be measured,
as well as the ancillary modes â2,...,M , are processed by an
interferometer. Such an interferometer can be represented in
the Heisenberg picture as a unitary transformation W of the
input- and output-mode annihilation operators:

âi =
M∑

j=1

Wij b̂j . (8)
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ˆ
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max
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FIG. 2. A single-mode virtual detector. (a) Generalized model.
The mode to be measured and the ancillary modes are processed
by an interferometer and impinge onto the physical detectors,
whose equivalent models are shown inside the dotted rectangles.
(b) Equivalent model of the virtual detector. The input mode is
subjected to immediate attenuation, which implies that the detector
efficiency cannot exceed ηmax.
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The output modes {b̂j } may be incident onto the physical
detectors or simply discarded. The latter case requires no
special treatment because discarding a mode is equivalent to
measuring it with a detector with efficiency zero.

Let ηmax be the highest efficiency of all physical detectors
used in a given virtual detector. According to our definition
of detector efficiency, the physical detectors are equivalent
to higher-efficiency detectors preceded by attenuators of
transmissivity ηmax. As our definition of efficiency uses an
infimum, the transmissivity may need to be taken as ηmax + ε

for arbitrarily small (but positive) ε. It is trivial to include
this ε, and it does not qualitatively change the proof. We
therefore omit it in the following discussion. As demonstrated
in Ref. [24], the attenuators can be commuted to precede the in-
terferometer. We now present a simpler argument to that effect.

Using the beam splitter model of loss [26], we decompose
the modes incident on them as

b̂j = √
ηmaxb̂′

j +
√

1 − ηmaxd̂j , (9)

v̂j =
√

1 − ηmaxb̂′
j − √

ηmaxd̂j , (10)

where modes d̂j are discarded. Putting Eqs. (8) and (9)
together, we write for the incoming mode

âi = √
ηmaxâ′

i +
√

1 − ηmaxd̂ ′
i (11)

with

â′
i :=

N∑
j=1

Wij b̂
′
j and d̂ ′

i :=
N∑

j=1

Wij d̂j . (12)

At the same time, Eq. (10) can be rewritten as

v̂′
i :=

N∑
j=1

Wij v̂j =
√

1 − ηmaxâ′
i − √

ηmaxd̂ ′
j . (13)

These results imply that the setup of Fig. 2(a) is equivalent
to that of Fig. 2(b). Indeed, Eqs. (11) and (13) signify a
beam splitter transformation. Additionally, modes v̂′

i can be
obtained from vacuum modes v̂j by means of a linear optical
transformation, so they must also be in the vacuum state.
Modes d̂ ′

i are related in a similar fashion to modes d̂j , and
so can be treated as discarded.

Our virtual detector is hence equivalent to a setup in which
an attenuator with transmissivity ηmax is placed in front of
input mode â1. This implies that ηmax is an upper bound for
the efficiency of this detector.

This result is readily extended to virtual detectors with
adaptive measurements; that is, detectors in which the con-
figuration of interferometer W can be modified dependent on
the results of the measurements by a subset of the physical
detectors. To see this, we model the adaptive virtual detector
as shown in Fig. 3. We would have the interferometer WM on
modes 1, . . . ,M , followed by interferometer WM−1 on modes
1, . . . ,M − 1, and so forth up to interferometer W2 on modes
1 and 2. Each interferometer Wk on modes 1, . . . ,k would
depend on the results of measurements of modes k + 1, . . . ,M .
This interferometer would then be followed by a measurement
on mode k.

As discussed above, each physical detector can be modeled
as having a beam splitter with transmissivity ηmax before it. In

1â
2â

WM

ˆMa

WM−1

WM−2

W2

W4

W3

FIG. 3. (Color online) A single-mode virtual detector with adap-
tive measurements for M = 7. The virtual detector is again shown
inside the dotted rectangle. The dotted lines from the detectors to the
interferometers indicate that the interferometers are controlled based
on the results of the detections.

the same way as above, the beam splitters after interferometer
W2 can be commuted to before W2, so that there are three
equal reflectivity beam splitters after interferometer W3. These
can then be commuted through W3, and so forth, until
we have beam splitters with transmissivity ηmax before the
first interferometer WM . Although the interferometers W2 to
WM−1 can depend on measurement results, the loss commutes
independently of the interferometers. This means that the
above argument holds, and the efficiency for this virtual
detector cannot exceed ηmax.

We now proceed to proving Eq. (7) for multiple virtual
detectors. We have so far shown that the efficiency η′

i of the
ith virtual detector cannot exceed the efficiency ηmax

i of the best
physical detector used in its construction; that is, η′

i � ηmax
i .

Let σ (i) and τ (i) be the permutations that define the sorting of
sequences ηmax

i and η′
i in nonincreasing order: η

max↓
σ (i) = ηmax

i

and η′
i
↓ = η′

τ (i), respectively. Then we obtain

η′
i

↓ = η′
τ (i) � ηmax

τ (i) = η
max↓
σ (τ (i)). (14)

Now consider the case that Eq. (7) were violated; that is,
η′

i
↓

> η
↓
i . That would imply that η′

k
↓

> η
↓
i for all k � i, which

would in turn imply that η
max↓
σ (τ (k)) > η

↓
i for all k � i. But, that

would imply that there are i values of η
↓
k that are larger than η

↓
i ,

which is a contradiction, because η
↓
i is sorted in nonascending

order. This contradiction implies that Eq. (7) must hold.
Linear optics are cheap and easy to manufacture. In addi-

tion, their properties are well understood, and linear processes
in general have high efficiency. It would be extremely fortunate
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if we could somehow use these processes to increase the
efficiency of sources or detectors, but this is not the case.
Nonlinear optics appears to be the only alternative.
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APPENDIX: POVM LOSS TRANSFORMATION

Here we determine an expression for the map Fη on the
detector POVM under loss. For full generality, we derive the
transformation for the case where the POVM is not diagonal,
so elements can be written in the Fock basis as

�̂� =
∞∑

m=0

∞∑
n=0

(�̂�)mn |m〉 〈n| . (A1)

Using conditions (2) and (3) on Fη, taking the trace over both
sides in the Fock basis and inserting identity matrices yields

∞∑
m=0

∞∑
n=0

〈m| ρ̂ |n〉 〈n|Fη(�̂�) |m〉

=
∞∑

m=0

∞∑
n=0

〈m| Eη(ρ̂) |n〉 〈n| �̂� |m〉 . (A2)

Substituting the expression for Eη(ρ̂) from the generalized
Bernoulli transformation [19,20] then gives

∞∑
m=0

∞∑
n=0

〈m| ρ̂ |n〉 〈n|Fη(�̂�) |m〉

=
∞∑

m=0

∞∑
n=0

∞∑
k=0

〈m + k| ρ̂ |n + k〉
√(

m + k

k

)(
n + k

k

)

× (1 − η)kη
1
2 (m+n) 〈n| �̂� |m〉

=
∞∑

m=0

∞∑
n=0

min(m,n)∑
k=0

〈m| ρ̂ |n〉
√(

m

k

)(
n

k

)

× (1 − η)kη
1
2 (m+n)−k 〈n − k| �̂� |m − k〉 . (A3)

Since the elements 〈m| ρ̂ |n〉 are arbitrary, Fη yields a trans-
formation described by

〈n|Fη(�̂�) |m〉 =
min(m,n)∑

k=0

√(
m

k

)(
n

k

)

× (1 − η)kη
1
2 (m+n)−k 〈n − k| �̂� |m − k〉 .

(A4)
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