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Phase diagram for injection locking a superradiant laser
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We study experimentally and theoretically the response of a superradiant or bad-cavity laser to an applied
coherent drive. We observe two forms of synchronization (injection locking) between the superradiant ensemble
and the applied drive: one attractive and one repulsive in nature. In the region of repulsion, the atomic spin state
that stores laser coherence undergoes three-dimensional dynamics, as opposed to a two-parameter description
of the electric field in a traditional good-cavity laser. We derive a phase diagram of predicted behavior and
experimentally measure the response of the system across various trajectories therein.
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In a superradiant (or “bad-cavity”) laser, the atomic
coherence decays much more slowly than the optical cavity
field. As such, the atomic coherence primarily stores the
laser’s phase information and is initially established via
spontaneous synchronization of the individual atomic dipoles
[as in Fig. 1(a)]. Unlike in conventional good-cavity lasers,
coherence has been shown to persist with less than one, and
even zero, intracavity photons [1–3]. This bad-cavity regime
of laser physics has generated recent interest because it offers
a promising route for overcoming fundamental thermal mirror
noise in order to realize laser linewidths of 1 mHz or less [4].

More broadly, cold-atom–cavity systems are extremely
well-controlled experiments useful for observing many-body
phenomena with the cavity mode providing strong long-range
interactions between the atoms. For example, the spontaneous
spatial ordering [5–8] and realization of the Dicke model [9]
in cold-atom–cavity systems are examples of nonequilibrium
phase transitions and provide insight into our fundamen-
tal understanding of phase transitions in condensed-matter
physics [10]. Further, atomic ensembles coupled to many
cavity modes may allow the creation of exotic phases of matter
with emergent crystallization and frustration [11,12], and they
could serve as a model system for associative memories [13].
Superradiant lasers have been identified as an interesting
system in which to study the problem of synchronization of
quantum oscillators [14–16]. In all, superradiant atom-cavity
systems and related systems promise continuing interest for
both technological and fundamental reasons.

In this paper, we study the synchronization of a cold-atom-
based superradiant laser to an externally applied optical field
that is injected into the lasing cavity mode [Fig. 1(a)]. The
synchronization is analogous to injection locking in a good-
cavity laser, but in this superradiant system phase locking is
manifested as collective synchronization of an ensemble of
cold atoms to the applied drive. For a weak applied drive,
the system can be approximately mapped to a driven Van
der Pol self-oscillator, a canonical system in synchronization
physics [18,19]. We directly observe the two synchronization
behaviors predicted for such a system. However, when the
applied drive or detuning of the drive are large, we observe
two additional effects that are not explained by either the Van
der Pol model or traditional injection locking theory [20]. First,
the stimulated emission component at the self-lasing frequency
is repulsed from, rather than attracted to, the drive frequency.

Second, as the drive strength is increased, the stimulated output
power at the drive frequency actually decreases. These two
effects arise from the full three-dimensional (3D) description
of the atomic spin or Bloch vector dynamics, in comparison
with a two-dimensional description of a Van der Pol oscillator.
The third degree of freedom corresponds to the atomic
inversion, which is no longer approximately constant at large
detunings or drive strengths. In each regime, we show good
quantitative understanding of our system, providing a solid
foundation for future work in fundamental physics using
superradiant lasers.

Complex injection locking behaviors beyond the simple
Van der Pol description, including instability, chaos, and
repulsion, have been theoretically studied and observed in
lasers that operate in the crossover regime of laser physics
where the cavity decay rate and one or more atomic decay
rates are similar [21–23]. Frequency repulsion is predicted in
these lasers from a coupling between the injection locking
dynamics and relaxation oscillations [24]. In a distributed
feedback (DFB) laser, a one-sided frequency repulsion was
seen to arise from tuning of the cavity frequency [25]. In our
system, frequency repulsion and three-dimensional dynamics
are a direct consequence of injection locking deep in the
bad-cavity regime, a regime largely inaccessible by previous
work [26].

The apparatus for the superradiant laser and principles
behind its basic operation have been described in detail in
previous work [1–3,17]. The atomic gain medium consists of
N ≈ 1.1 × 106 87Rb atoms cooled to 10–20 μK and trapped
in a 1D optical lattice inside of an optical cavity with power
decay linewidth κ = 2π × 11.8 MHz. The atoms are tightly
confined to � λ (i.e., the Lamb-Dicke regime) along the cavity
axis, but only weakly confined perpendicular to the cavity axis.

A dressing laser is applied transverse to the cavity to
induce spontaneous Raman transitions between two hy-
perfine ground states |↑〉 ≡ |5S1/2,F = 2,mF = 0〉 to |↓〉 ≡
|5S1/2,F = 1,mF = 0〉, with typical single-atom free-space
Raman transition rates γ = 2π × 100 Hz to 2π × 300 Hz. The
cavity frequency ωc is tuned to be on or near resonance with
the spontaneously emitted light’s frequency ωa . The effective
two-photon coupling to the cavity is characterized by the rms
value of the Jaynes-Cummings coupling constant g2 [27] and

single-atom cooperativity parameter C = 4g2
2

κγ
= 5 × 10−3.
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FIG. 1. (Color online) Experimental setup and level diagram.
(a) Atoms interact with both the externally applied drive (gray) and the
intracavity field generated by their collective emission (blue and red).
The superradiant laser responds primarily at two frequencies, the drive
frequency ωd and a self-lasing frequency ω�. (b) The characteristic
frequencies are displayed in a level diagram, and all lie within one
cavity mode of width κ . The Raman laser system is approximated
as a two-level laser incoherently repumped through intermediate
optically excited states (not shown) at rate W . W is also the primary
source of broadening of the lasing transition (shown as broadening
of |↓〉). In this work, the ratio of atomic and optical linewidths is
W/κ ≈ 5 × 10−2 to 5 × 10−3 � 1, placing the system deep into the
bad-cavity or superradiant regime. The state |↑〉 is a dressed state
consisting of a ground hyperfine state of Rb coupled nonresonantly
to an optically excited state as described in [1–3,17]. The applied
drive couples |↓〉 and |↑〉 with an on-resonance Rabi frequency �d .

The collective (or superradiant) emission rate for a single atom
scales as NCγ .

To maintain population inversion and steady-state emission,
additional lasers are applied to incoherently repump atoms
through optically excited states from |↓〉 back to |↑〉. The
characteristic repumping rate from |↓〉 (including Rayleigh
scattering) is W ≈ 2π × 60 kHz to 2π × 500 kHz. The
repumping process is the primary contribution to the atomic
transverse decoherence rate γ⊥ ≈ W/2 + 	D . We measure a
small additional contribution to the transverse broadening 	D

that is primarily due to Doppler broadening of the two-photon
transition from |↑〉 to |↓〉 resulting from the weak transverse
confinement of the atoms.

A conceptually simplified experimental diagram for this
work is shown in Fig. 1. The key distinct feature in this
work is the application of an additional coherent drive to the
superradiant laser’s cavity mode (Fig. 1). The drive couples
the upper |↑〉 and lower |↓〉 lasing states with a single-atom
Rabi frequency �d . The drive frequency ωd is detuned from
the effective atomic transition frequency ωa by δd ≡ ωd − ωa

[Fig. 1(b)]. The behavior of the system depends on the
relative magnitudes of drive strength �d , detuning δd , and
characteristic rates of the superradiant laser: the repumping
rate W and characteristic collective emission rate into the
cavity NCγ given by the collective cooperativity NC and
the single-atom decay rate γ from |↑〉 to |↓〉.

When no drive is applied, the laser emits at frequency ω�0

near, but not necessarily identical to, ωa . When the drive
is applied, the lasing frequency ω� is shifted by the atoms’
interaction with the drive by δ� ≡ ω� − ω�0 . Additionally,
the laser can emit at the drive frequency ωd . We detect the
light emitted from the cavity using heterodyne detection.
This gives complete information about the emission spectrum
and allows us to measure ω�, ωd , and the phases and
amplitudes of the electric fields emitted from the cavity at these
frequencies. Other frequency components in the laser emission
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FIG. 2. (Color online) The predicted phase diagram for the
driven superradiant laser is shown in a plane defined by the applied
drive strength �d and the drive detuning δd , normalized to the
repumping rate W , which is fixed to NCγ/2 here. The regions
are first divided by the number of distinct emission frequencies [(1)
or (2)]. Region (2) is further divided by the frequency shift of the
self-lasing component at ω�, which can be attracted (2A) or repelled
(2R) from the applied drive frequency ωd . When �d < 0.2 × W , the
laser synchronizes by smoothly coalescing in frequency with the drive
(dashed line). For larger drives, the self-lasing component remains
distinct and is quenched. The two trajectories (black arrows) refer to
the two parameter trajectories explored by the data in Fig. 3.

are expected and observed at sums and differences of ω� and
ωd . These additional components can become rather large
near synchronization (see Ref. [18]), but detailed treatment
is beyond the scope of this work.

The predicted behavior of the emitted field of the laser
is summarized by the theoretical phase diagram in Fig. 2.
The phase diagram is calculated by numerically integrating
optical Bloch equations based on a simplified two-level model
for the superradiant laser (see [28] and Appendix A). For
simplification, the repumping rate W is set to a value that
optimizes the output power of the laser, Wopt = 1

2NCγ [4], so
that the characteristic rates governing the phase diagram are
the two ratios �d/W and δd/W .

The primary feature of the phase diagram is the synchro-
nization or nonsynchronization of the superradiant emission
to the drive. In the unsynchronized phase of region (2), the
atomic dipoles are not perfectly synchronized to the drive
and the spectrum of light contains two distinct frequency
components at the drive frequency ωd and the self-lasing
frequency ω�. In contrast in region (1), the atomic dipoles
become synchronized to the drive and all light emission
occurs at ωd . For the optimum repumping W = Wopt here,
the synchronization transition occurs roughly when �d = δd .

The unsynchronized region (2) is broken into two sub-
regions, delineated by the self-lasing’s attraction toward or
repulsion from the drive frequency. The region of attraction
( δ�

δd
> 0) is labeled (2A) in the phase diagram. The region of

repulsion ( δ�

δd
< 0) is labeled (2R). As δd or �d are tuned,

the behavior of the approach to synchronization depends on
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whether one enters region (1) from region (2A) or (2R). For
attractive synchronization [from (2A) to (1)], as the �d = δd

boundary is crossed, ω� is pulled toward the drive. For
drive strengths �d < 0.2 × W (dashed line in Fig. 2), the
self-lasing component synchronizes by smoothly coalescing
with the drive at ωd . When �d > 0.2 × W , the self-lasing is
driven to zero before coalescence can occur. In the repulsive
synchronization [from (2R) to (1) in the phase diagram], as
one approaches synchronization, ω� is repelled in frequency
from ωd and the self-lasing component is driven to zero so that
the superradiant ensemble is emitting power only at the drive
frequency ωd .

In the limit �d,|δd | � W , the laser inversion Jz is approx-
imately fixed, and the three-dimensional Bloch vector (Jx ,
Jy , Jz) describing the atomic ensemble can be reduced to an
effective two-dimensional object described by the transverse
coherence J− = Jx − iJy . In this case, the equation describing
the time evolution of J− is closely equivalent to that of a driven
Van der Pol oscillator, for which attractive synchronization
[(2A) to (1)] with and without coalescence (characterized by
saddle-node and Hopf bifurcations, respectively) has been
well studied [18,19]. We outline this mapping explicitly in
Appendix C.

However, when either �d or |δd | � W , the inversion Jz can
no longer be approximated as fixed and the dynamic response
of the full three-dimensional Bloch vector must be considered.
The response of the extra degree of freedom Jz leads to the
repulsive behavior in region (2R), which can be interpreted as
an ac Stark shift (Appendix C).

Experimental examples of the two synchronization transi-
tions are shown in Fig. 3, with approximate trajectories in
the phase diagram represented by black arrows in Fig. 2.
Figure 3(a) demonstrates attractive, coalescing synchroniza-
tion, and Fig. 3(b) represents repulsive synchronization. The
left plots are two-dimensional power spectra of the laser
emission. Each horizontal slice corresponds to a single power
spectrum of laser emission where color represents the optical
power in each frequency bin. The nominal detuning δd is
changed between experimental trials and plotted on the left
axis. On the horizontal axis, the drive frequency ωd is set to
zero so that in the absence of an applied drive (�d = 0), the
emission frequency ω� would follow the diagonal red line.
At sufficiently small detunings, synchronization occurs and
only power at ωd is observed. A faint spectral component in
Fig. 3 appears on the opposite side of zero from the self-lasing
component. We believe this small feature is an artifact of
nonlinearities in the detection system.

The spectrograms illustrate the qualitative differences
between the two types of synchronization. In Fig. 3(a), the
self-lasing frequency ω� is attracted toward and joins ωd as |δd |
becomes small. In Fig. 3(b), the two emission components re-
main distinct until the ω� component is extinguished. To more
clearly illustrate the attraction and repulsion, the measured
quantity δ� = ω� − ω�0 is plotted on the right. The plots are
overlaid with color and labeled to help identify the repulsion
(red) and attraction regions (blue) matching the phase diagram
of Fig. 2. For the trajectory at small �d , the laser goes from
synchronized (1), to attraction (2A), to repulsion (2R), as
predicted. For the trajectory at larger ωd , there is a single
transition from (1)- to (2R)-like responses. Both behaviors
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FIG. 3. (Color online) Experimental observation of coalescing
attractive (a) and repulsive (b) synchronizations. (Left) 2D spectro-
grams are taken with fixed drive strength �d as the detuning of
the drive δd is varied along the representative vertical trajectories in
Fig. 2. Darker colors indicate higher power in a frequency bin (i.e.,
PSD). The red line indicates the expected self-lasing trajectory in the
absence of an applied drive. (Right) Two panels show the frequency
shift δ� = ω� − ω�0 between the lasing frequency and the lasing
frequency when no drive is present. In each region, we qualitatively
identify attraction and repulsion by the sign of δ� and label and color
each region similarly to the phase diagram in Fig. 2. The behaviors
follow the prediction for their respective trajectories across the phase
diagram, which are represented by vertical lines in Fig. 2.

qualitatively agree with the prediction from the phase diagram
for a two-level laser, shown by the trajectories in Fig. 2.

The qualitative behavior of the data exhibits asymmetry
with respect to δd = 0, whereas the theoretical phase diagram
of Fig. 2 is symmetric. This is because the data did not strictly
follow the vertical trajectories shown in Fig. 2. As the detuning
δd was changed, the fractional amount of the fixed incident
drive power coupled into the cavity changed, following the
Lorentzian cavity resonance profile. The symmetry of this
effect about δd = 0 is broken by the fact that δc ≡ ωc − ωa 	= 0
(where ωc is the cavity resonance frequency), leading to the
observed asymmetry in the data of Fig. 3.

We now turn to the development of a perturbative descrip-
tion of the system far from synchronization and the break down
of this description as the system approaches and ultimately
crosses the synchronization threshold. Deep into region (2)
of the phase diagram, the superradiant laser’s response to the
drive is small and can be understood as a small modulation
of the initially undriven Bloch vector describing the atomic
coherence. The modulated Bloch vector then radiates an
additional field into the cavity at the drive frequency ωd ,
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FIG. 4. (Color online) Synchronization and gain saturation.
(a) Measured gain and phase response of the superradiant laser at the
drive frequency ωd . At large drive detunings, the response displays
linear small-signal gain (red fit to perturbative model overlayed).
The gain saturates (gray shaded region) at small detunings as the
laser approaches the synchronization transition. (b) The same gain
and phase response are represented in a phasor picture. Points
of small signal gain lie along the straight line, and the region
of saturation is approximately described by a curve of maximum
stimulated electric field (inner curve). (c) The stimulated output
powers Ps and P�, at the self-lasing frequency ω� (red) and at the
drive frequency ωd (blue), respectively, are displayed as the laser is
driven across a repulsive synchronization transition at approximately
�d/2π ≈ 40 kHz. Theoretical predictions (solid lines) show good
agreement with the data.

producing gain. In Fig. 4(a), we measure this power gain G and
phase response φ of the laser at the drive frequency ωd versus
the drive detuning δd . This corresponds to a vertical trajectory
on the phase diagram where, in this dataset, �d

W
≈ 0.04. A fit

to a perturbative model based on the optical Bloch equations
in Appendix B is shown in red.

At small detunings (gray region), the gain and phase
response begin to saturate, and deviate from the predicted
small-signal values. This is roughly the point when the
laser begins to synchronize to the drive and the emission at
frequencies other than ωd begin to disappear. In Fig. 4(a), we
have chosen a specific drive strength (�d

W
≈ 0.04) to illustrate

the transition from linear gain to saturation. If a smaller
(larger) drive strength is chosen, we observe that, as expected,
saturation occurs at a smaller (larger) detuning.

In Fig. 4(b), the equivalent complex electric field response
Ed at the drive frequency is shown in a phasor diagram with
each point corresponding to the measured field at a given
detuning in Fig. 4(a). The drive response when no atoms
are present Ed0 is normalized to be real and of length 1. In

the perturbative limit, the additional stimulated field follows
a straight line. The line of small-signal gain is tilted due
to an additional phase shift of the stimulated field arising
from nonzero detuning of the drive from the optical cavity,
ωd − ωc 	= 0. At saturation, the stimulated field deviates from
the straight line and qualitatively follows a contour of constant
stimulated electric field (solid semicircle).

In Fig. 4(c), we show an example of how optical power is
“stolen” from the self-lasing frequency ω� and transferred to
the drive frequency. Here the drive strength �d is increased
at a fixed detuning δd/W = 2.2, and the vertical axis shows
the self-lasing power P� and the stimulated drive power
Ps ≡ Pd − Pd0 . Pd0 is the detected power at the drive frequency
in the absence of any atomic response, scaling as Pd0 ∝ �2

d ,
such that Ps represents the extra stimulated power at ωd . This
dataset corresponds to tuning the system along a horizontal
line in Fig. 2 that lies outside the plotted range and such
that the system crosses from the repulsive region (2R) to the
synchronized region (1).

Numerical solutions [solid lines in Fig. 4(c)] of the optical
Bloch equations (Appendix A l) give reasonable agreement
with the data. The theoretical model includes approximate
corrections for an additional cavity tuning effect [2], and the
absolute vertical scale of the theory has been scaled so that the
P� agrees with the data at �d = 0.

The synchronization point in these data is represented
by the sharp point when P� hits zero, with a discontinuous
first derivative in P� and Ps . At the synchronization point,
Ps is approximately the original output power of the laser
when �d is zero. At large drive strengths in Fig. 4(c), �d

becomes much larger than W and the total output power of the
laser decreases due to repumping-induced dephasing of the
rapid Rabi oscillations caused by the drive. This reduction in
stimulated output power is another unique aspect to injection
locking in the bad cavity laser.

We have observed two different types of synchronization
transitions of a superradiant laser to an external drive, one
attractive and one repulsive in nature. The synchronization
transition is analogous to a ferromagnet in the presence of
an applied magnetic field, the drive breaking a continuous
symmetry of the laser with respect to phase [29]. However,
the laser steady state is far from thermodynamic equilibrium,
making our well-controlled cold-atom–cavity system an in-
teresting avenue for continued study of nonequilibrium phase
transitions with modern approaches [10].

It is often useful to apply an external drive to a superradiant
laser. Such drives have been used, for instance, to probe the
frequency of the optical cavity in Raman-laser systems such
as ours (as was done in Ref. [17]) or perhaps in future narrow
linewidth superradiant lasers to reduce errors, inaccuracies,
and technical noise due to cavity frequency pulling. This work
establishes an understanding of how such a technical probe will
affect the system. Furthermore, the phase response within the
saturation region of Fig. 4(a) could be used as an error signal
for a form of active spectroscopy of the gain medium, in some
sense the inverse approach to that of Ref. [30], although the
fundamental signal-to-noise of such an approach is an open
question.

In the future, this work will guide the interpretation of
other proposed experiments in cold-atom–cavity systems.
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For instance, multiple superradiant subensembles each with
an independent transition frequency ωa can be engineered
to interact with each other through one or multiple cavity
modes [11–16]. Furthermore, while injection locking is well-
described by a mean-field description, and therefore can be
considered classical behavior, recent theoretical works propose
systems of multiple superradiant ensembles where quantum
noise becomes observably large and may serve to drive the
phase transitions and affect the average behavior [14–16].
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APPENDIX A: OPTICAL BLOCH EQUATIONS

The average behavior of the superradiant laser with an
applied drive can be understood with slight modifications to the
optical Bloch equations presented in [28]. The optical Bloch
equations describe the time evolution of expectation values of
the cavity annihilation operator â and the collective atomic
operators, Ĵz and Ĵ−, defined as

Ĵz =
N∑

i = 1

|↑i〉〈↑i | − |↓i〉〈↓|
2

, (A1)

Ĵ− =
N∑

i = 1

|↓i〉〈↑i |. (A2)

Ĵz and Ĵ− represent the atomic inversion and transverse
coherence, respectively. The optical Bloch equations govern
the time evolution of the expectation values of these operators,
Jz = 〈Ĵz〉, J− = 〈Ĵ−〉, and E = 〈â〉. The atomic response can
be visualized as a three-dimensional Bloch vector with x and
y projections of the vector given by J− = (Jx − iJy)/2. E is
a complex representation of the optical cavity electric field
such that |E|2 is the average number of photons inside the
cavity. The nonlinear equations are closed by approximating
that the expectation values of products of operators can be
factorized into products of expectation values. Assuming
uniform coupling to the cavity mode, the coupled equations
for a two-level system with an applied drive can be written as

Ė = −
(κ

2
+ iδc

)
E − ig2J− + κ

2
Edi

eiδd t , (A3)

J̇− = −γ⊥J− + i2g2JzE, (A4)

J̇z = −WJz + N

2
W + ig2(J−E∗ − J ∗

−E). (A5)

The equations are written in a frame rotating at the atom’s
natural transition frequency ωa . Edi

is proportional to the
amplitude of the electric field of the applied drive incident on
the optical cavity. δc = ωc − ωa is the detuning of the cavity

from the natural atomic transition frequency ωa . The rest of
the equation parameters are defined in the previous text. The
Rabi frequency of the drive is related to these parameters
by �d = 2g2Edi

1+δ̃2
c

, where quantities Ã ≡ A
κ/2 . The measured

intracavity field when no atoms are present is Ed0 = Edi

1+iδ̃d,c
,

where δd,c is the detuning of the driving electric field from the
cavity resonance, δd,c = ωd − ωc.

We have numerically solved these equations to derive the
phase diagram of Fig. 2 and to create theoretical curves for
Fig. 4. The two-level model does a reasonable job of predicting
the behavior of synchronization versus �d and δd . However,
due to the true multilevel structure of the laser, these equations
cannot be used to predict the total output power of the system.
When these equations are not adequate, multilevel optical
Bloch equations from Ref. [28] can be used. Additionally,
to approximately account for dispersive shifts of the optical
cavity in our Raman laser, the cavity detuning δc is made a
function of Jz to generate the theory for Fig. 4(c). Details can
be found in Ref. [28].

APPENDIX B: DERIVATION OF SMALL-SIGNAL GAIN

The small-signal regions of gain and phase response, as
described in the main text, follow a simple form that can be
derived from the optical Bloch equations. We first assume κ

is larger than all other characteristic frequencies in the system
so that E adiabatically follows J−. We then assume that J−
primarily responds at two frequencies, ωa and ωd , and we
make the ansatz J− = J−a + J−de

iδd t . Lastly, we assume that
in this perturbative limit, Jz is unaffected by the weak drive

and retains its steady-state value with no drive, Jzss = W (1+δ̃2
c )

2Cγ
.

With these approximations, we find the small-signal complex
field response at the drive frequency. The total detected field
at the drive frequency, Ed = Ed0 + Es , has two contributions.
One contribution (Ed0 ) comes from the drive alone, and the
other (Es) from atomic stimulation. The small-signal form of
Es is given by

Es = −iEd0γ⊥
(
1 + δ̃2

c

)
δd (1 + iδ̃c)

. (B1)

In the limit δ̃c = 0, Es can be written in the form Es =
−i

√
αEd0

δd
, where

√
α characterizes the stimulated field gain.

From Eq. (B1) one expects α = γ 2
⊥.

Equation (B1) explains several features of the measured
small-signal gain shown in Fig. 4 of the main text. For δc = 0,
the stimulated field is in the orthogonal quadrature to the
driving field. However, when δc 	= 0, as is the case in the data
of Fig. 4(b), the response of the cavity to the driving atomic
dipole causes the stimulated field to be partially rotated into
the same quadrature as the driving field. This rotation breaks
the symmetry about δd = 0 for both the measured phase and
power gain shown in Fig. 4(a).

To quantify the small-signal gain experimentally, we mea-
sure the total output power of the laser at the drive frequency
for a large range of drive detunings δd . We fit the total output
power to the gain model shown in Eq. (B2). Equation (B2) is
the magnitude squared of Eq. (B1) with the Ed0 dependence
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(a)

(b)

FIG. 5. (Color online) Quantitative small-signal gain measure-
ments. (a) We measure the total transmitted power at the drive
frequency ωd and define power gain G as the measured transmitted
power normalized to the drive power transmitted through the cavity
on resonance with no atoms present. For these measurements, δd is
scanned over a frequency range greater than the cavity linewidth κ .
The data are fit to the model in Eq. (B2) (red line). Note that here,
the cavity resonance marked by the vertical solid line is a few MHz
higher than the atomic resonance. (b) From fits to data such as (a),
we plot the variation of the fitted gain coefficient α (see text) vs W .
The prediction α = γ 2

⊥ is shown in gray. The width of the gray band
corresponds to the uncertainty in an independent calibration of the
repumping rate W .

on δ̃d,c written explicitly,

G(δd,δ̃d,c) = G0

1 + δ̃2
d,c

×
{

1 − 2

√
α(δ̃c − δ̃0)

(δd − δ0)
+ α[1 + (δ̃c − δ̃0)2]

(δd − δ0)2

}
.

(B2)

For a single scan of δd , we allow fitting of the parameters G0,
α, δc, κ , and δ0. The fit model constrains the transmitted power
to be G0 when the drive is on resonance with the cavity in the
absence of an atomic response. The δ0 coefficient allows for
an arbitrary offset of the atomic transition frequency ωa from
zero. Figure 5(a) displays an example of this measured total
output power as a function of δd with the fit overlaid in red.
In Fig. 5(a), the data have been rescaled such that the fitted
coefficient G0 = 1. After this rescaling, the data represent the
total power emitted at the drive frequency, normalized to the
power transmitted through the cavity when the drive is on
resonance with the cavity and no atoms are present. Also, the
frequency axis of the data has been adjusted such that δ0 = 0.

We follow this procedure, measuring the output power
and fitting to Eq. (B2), for many repumping rates W . We
plot the fitted gain coefficients α versus W in Fig. 5(b). The
prediction that α = γ 2

⊥ = (W/2 + 	D)2 is overlaid in gray.
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FIG. 6. (Color online) Bloch vector interpretation of the phase
diagram. (a) The types of behavior for the driven superradiant laser
can be characterized by a phase diagram. The characteristic rates
that determine the lasing behavior are drive Rabi frequency �d ,
detuning δd , and repumping rate W . The regions correspond to the
number of distinct emission frequencies (1 or 2) and the frequency
shift (attraction or repulsion) of the carrier (A and R, respectively).
The behavior of the synchronization (a), attraction (b), and repulsion
(c) configurations are shown in a Bloch sphere picture. In the frame
of the atomic transition frequency ωa , the drive is represented by a
rotation ��d , with an orientation that rotates along the dashed green
trajectory at frequency δd . In the unsynchronized case, this modulates
the Bloch vector (red vector), causing drift toward or away from the
drive, with the average precession of the Bloch vector indicated in
each case via the large blue and red arrows. In the synchronized case,
the Bloch vector follows the drive all the way around the sphere.

Uncertainty in the prediction (width of the gray band) is
due to uncertainty in the experimental calibration of W . The
prediction shows reasonable agreement with the theory over a
significant range of W .

APPENDIX C: BLOCH VECTOR INTERPRETATION
OF PHASE DIAGRAM

The predicted phase diagram is shown in Fig. 6. The
behavior in each of the three regions can be visualized by
the behavior of the Bloch vector in each regime. In a frame
rotating at the atom’s natural transition frequency ωa , the
applied drive can be represented by a rotation of the Bloch
vector, ��d = �d [x̂ cos(δd t) + ŷ sin(δd t)]. |�d | is the angular
frequency of the rotation, and �̂d is the axis about which
the Bloch vector rotates. The azimuthal phase of the applied
rotation axis precesses at frequency δd . When �d � |δd |,
the drive acts primarily to slightly modulate the orientation
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of the Bloch vector [both Figs. 6(b) and 6(c)]. However,
when �d > |δd |, the applied modulation is so large that the
Bloch vector can actually follow the drive all the way around
the sphere. This is the synchronized region (1) in Fig. 6(a).
Near the synchronization transition, the repulsive (2R) versus
attractive (2A) behavior is determined by the size of the
repumping rate W compared to δd and �d .

1. Attractive regime: Mapping to the 2D Van der Pol oscillator

In the case |δd |,�d � W (i.e., 2A), the drive does not
significantly perturb the laser from its steady-state inversion
because any change in Jz caused by the applied field is
quickly healed by the repumping process [17]. When Jz is not
modified, the azimuthal phase φ is partially or fully dragged
in the same direction as the rotating axis �̂d [Fig. 6(a)]. The
lasing can be viewed as being captured by the applied drive.

Furthermore, in this regime of weak drive, |δd |,�d � W ,
the system can be mapped onto a Van der Pol self-oscillator
model with a nonlinear driving term,

j̇− = −iδj− + λj−(1 − |j−|2) + �(1 − β|j−|2), (C1)

with complex amplitude j and characteristic rates λ, δ, �, and
β. Equation (C1) has an equilibrium amplitude |j−|2 = 1. The
nonlinearity of the applied drive is governed by the parameter
β. For β = 0, this model has been well studied [18,19].

To explicitly show the mapping of the optical Bloch
equations [Eq. (A3)] onto this form, we first eliminate the
cavity field E by assuming operation in the deep bad-cavity
limit, and we assume that Jz is not perturbed by the drive.
Setting J̇z equal to zero gives the nominal steady-state value

Jzss = N

2
− Cγ

W
|J−|2. (C2)

One can then insert Jzss
into the J− equation in Eq. (A3), which

leads to

J̇− = − iδdJ− + J−

[(
NCγ

2
− W

2

)
− (Cγ )2

W
|J−|2

]

+ �d

2

(
N

2
− Cγ

W
|J−|2

)
. (C3)

For the case of optimal repumping, we set W = Wopt = NCγ

2 ,
and we normalize J− to its steady-state value defining j− =
J−/J−ss , where J−ss = N√

8
, giving

j̇− = −iδdj− + NCγ

4
(1 − |j−|2) + �d√

2

(
1 − |j−|2

2

)
.

(C4)

This equation is of the same form as Eq. (C1) with δ = δd ,
� = �d√

2
, β = 1

2 , and λ = NCγ

4 . We can define an effective

drive strength �′
d = �d√

2
(1 − |j−|2

2 ). For a weak drive, the laser

remains close to its steady state. One finds �′
d = 1√

8
�d , and

the system can be thought of as behaving similarly to the
standard driven Van der Pol oscillator of Refs. [18,19] with a
constant driving term.

2. Repulsive regime: 3D dynamics

When the drive is applied with a large detuning |δd | � W

[i.e., (2R)], the repumping at rate W cannot heal the changes
in the inversion Jz caused by the applied drive [17]. Jz can no
longer be considered static and thus introduces a third degree of
freedom (in addition to Jx and Jy) in the system. In this regime,
the Van der Pol model breaks down, and small oscillations in
Jz must be taken into account. The unhealed modulations of
Jz at frequency δd coherently interact with the applied rotation
due to the drive to cause the Bloch vector to acquire on average
a small precession in the opposite sense to the precession of
the drive rotation axis �̂d [shown in Fig. 6(c)]. The precession
rate is second order in �d and can be identified as an ac Stark
shift that leads to the observed frequency repulsion in region
(2R). To emphasize, this shift does not appear in region (2A)
because there the repumping process acts to smooth out the
modulations in Jz that are essential for creating the ac Stark
shift.

The ac Stark shift can be derived to leading order by
perturbatively allowing for small oscillations in Jz. In this way,
we can mathematically show the additional repulsive behavior
not evident in the two-dimensional model of Eq. (C1). The
optical Bloch equation for Jz allowing for modulation, and
written in the frame of the drive frequency ωd , is

J̇z = −WJz + N

2
W − Cγ |J−|2 − �dRe(J−). (C5)

We treat this equation perturbatively by assuming that J−
primarily oscillates at the self-lasing frequency. From this
we can derive a leading-order repulsion term giving a new
self-lasing frequency,

δ′ = δd + �2
dδd

2
(
δ2
d + W 2

) , (C6)

which arises from oscillations in Jz coupling into an average
frequency repulsion of the Bloch vector. This repulsive physics
is not present in the driven Van der Pol oscillator and arises
from the Bloch vector occupying a higher, three-dimensional
parameter space.
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