
PHYSICAL REVIEW A 90, 053839 (2014)

Coherent inelastic backscattering of laser light from three isotropic atoms
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We study the impact of double- and triple-scattering contributions on coherent backscattering of laser light
from saturated isotropic atoms in the helicity-preserving polarization channel. By using the recently proposed
diagrammatic pump-probe approach, we analytically derive single-atom spectral responses to a classical
polychromatic driving field, combine them self-consistently to double- and triple-scattering processes, and
numerically deduce the corresponding elastic and inelastic spectra, as well as the total backscattered intensities.
We find that accounting for the triple-scattering contribution leads to a faster decay of phase-coherence with
increasing saturation of the atomic transition as compared with double scattering alone and to a better agreement
with the experiment on strontium atoms.
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I. INTRODUCTION

Coherent transport of light in a disordered medium can
effectively be investigated by using a multiple-scattering
setting where a laser field is injected into a dilute cloud
of cold atomic scatterers [1,2]. Constructive interference of
counterpropagating multiple-scattered waves leads to coher-
ent backscattering (CBS)—the enhancement of the average
scattered light intensity in the backward direction [3]. The de-
generacy of the atomic dipole transitions and/or the nonlinear
atomic response to an intense driving field destroys the perfect
phase coherence of the interfering multiple scattered waves
and, consequently, causes a decrease of the CBS enhancement,
as reported in recent experiments [1,4,5].

The development of a multiple-scattering theory which
accounts for the electronic structure of the atoms is to this
day a subject of active investigations [6,7]. Besides CBS of
light, progress in this field is crucial to assess the possibility
to achieve Anderson localization of light [8,9], or for the
realization of random lasers [10–12] with cold atoms.

In the linear-scattering regime, transport theories based on
diagrammatic scattering approaches [13–15] yield excellent
agreement with the experimental observations on rubidium
(Rb) [1] and strontium (Sr) [2] atoms. For example, these
theories show that the reduction of the CBS signal for Rb atoms
occurs due to their ground-state degeneracy. Unfortunately,
it is very difficult to generalize those diagrammatic theories
to treat nonlinear inelastic scattering from saturated atoms.
So far, a nonlinear transport theory in the atomic medium
has been developed for two incident photons [16], which is
far below the saturation regime probed in the experiments
[4,5].

Quantum optical master equations and related approaches
[17–19] are powerful tools for describing the nonlinear
response of individual atoms to an intense laser field. These
methods have also been used to characterize a double-
scattering contribution to CBS from two saturated, dipole-
dipole interacting, randomly located atoms [20–23]. However,
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the exponential scaling of the atomic Hilbert space dimension
with the number of scatterers precludes the application of the
standard quantum optical methods to treat CBS off a dilute
cloud of cold saturated atoms.

Recently, a novel method was put forward [24,25] to deal
with the above problems. In this framework, the nonlinear
response of the atoms to the laser driving (pump) is accounted
for nonperturbatively, while the response to the weak coherent
fields (probes) scattered from the surrounding atoms is
incorporated perturbatively, within single-atom optical Bloch
equations (OBEs) under classical polychromatic driving.
Thereafter, the spectral response functions resulting from
solutions of the “polychromatic” OBE serve as building
blocks for a self-consistent, diagrammatic construction of the
multiple-scattering CBS signal. We will refer to this new
method as the diagrammatic pump-probe (DPP) approach.

Since all the building blocks are essentially single-atom
quantities, the problem of the exponential growth of the Hilbert
space dimension is circumvented in the framework of the DPP
approach. Therein, multiple scattering of light in ensembles
of saturated atoms is rendered into a form which befits
Monte Carlo simulations [26]. Therefore, it is a promising
method for the quantitative modeling of CBS of light off the
bulk atomic medium. Moreover, for double scattering from
two-level (scalar) atoms, the DPP equations yield analytical
solutions that are strictly equivalent to those following from
the two-atom master equation [27]. The analytical equivalence
between the two methods holds also in the case of triple
scattering, provided that the terms responsible for recurrent
scattering be dropped from the solutions of the three-atom
master equation [28].

The DPP method has recently been generalized to vector
atoms [29,30]. The numerical equivalence between the double-
scattering spectra, obtained within the DPP and the master
equation [23] approaches has been established for (isotropic)
strontium atoms [29]. By unifying the results of Refs. [28] and
[30], it has become possible to derive arbitrary single-atom
responses for atoms with arbitrary internal degeneracy [31]. In
particular, the single-atom spectral response functions needed
for the precise calculation of triple scattering from saturated
Sr atoms have thus become available.

The assessment of triple scattering from saturated vector
atoms is a challenging problem which has not yet been studied.
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Besides, such a study provides an opportunity to improve
on an earlier theoretical description [20] of the experiment
[4]. Indeed, in the “saturation” experiment, with an optically
thin cloud of Sr atoms [4], lowest-order multiple-scattering
sequences gave the main contribution to the CBS signal.
Although a theoretical model based on double scattering [20]
yields qualitatively correct results, they deviate quantitatively
from the experimental results.

In the present contribution, we use the DPP approach to
calculate triple-scattering CBS spectra from three isotropic
atoms in the helicity preserving (h ‖ h) polarization channel.
In passing, we also present the general expressions for arbitrary
elastic and inelastic spectral responses. These results can
be used in future simulations of radiation transport in cold
atoms with degenerate transitions. By using the obtained
triple-scattering spectra, as well as the already-available results
for double scattering [23,30], we deduce the CBS enhancement
factor as a function of the saturation parameter. To this end,
we combine double- and triple-scattering contributions, with
phenomenologically adjusted relative weights, into a total
signal. We show that the account of triple scattering leads to
a faster decay of the CBS enhancement with the saturation
parameter than when only double scattering is included.
Thereby, we attain a better agreement with the experiment
[4].

The structure of this paper is as follows: In the next section,
we introduce the three-atom CBS model and outline how the
double- and triple-scattering spectral signals from Sr atoms
can be calculated by using the DPP approach. Section III
presents our numerical results, such as triple-scattering elastic
and inelastic spectra, as well as the CBS enhancement factor,
as a function of the atomic saturation parameter. Finally, we
conclude in Sec. IV.

II. DIAGRAMMATIC PUMP-PROBE APPROACH

A. Model

Let us consider the toy CBS model depicted in Fig. 1. Three
immobile atoms, randomly located in free space, are driven by
a circularly polarized, near-resonant, continuous wave laser
field with the amplitude EL, wave vector kL, and frequency
ωL. We focus on the average, stationary, backscattered light
(spectral) intensity in the far-field, along the wave vector k =
−kL, in the parallel helicity polarization channel (h ‖ h); that
is, with flipped polarization.

To account for the waves’ polarizations, we use indices
q = ±1,0, which define the unit vectors êq in the spherical
basis:

ê±1 = ∓ 1√
2

(êx ± iêy), ê0 = êz, (1)

where êx , êy , and êz are the Cartesian unit vectors. Hence,
the laser wave coming in along the z axis, with circular
polarization êL = ê+1, is characterized by the index +1 and
the detected wave by the index −1.

We consider atoms with the dipole transition Jg = 0 ↔
Je = 1, where J is the total angular momentum of the
ground (g) and excited (e) states, with transition frequency
ω0. This isotropic transition, which corresponds to that of
Sr atoms probed in the experiment [4], is characterized by

FIG. 1. (Color online) Toy CBS model: three randomly located
atoms at positions rα are driven by a circularly polarized laser field
(red arrow) with wave vector kL. The atoms exchange photons via
the radiative dipole-dipole interaction (double wavy arrows). The
backscattered far-field with wave vector k = −kL (blue arrow) is
observed in the helicity-preserving polarization channel h ‖ h (that
is, with flipped polarization). Whereas the CBS signal originates from
one transition of the atoms (indicated by double blue arrows), all three
atomic dipole transitions are involved in the triple-scattering process
(see text).

equal Clebsch–Gordan coefficients associated with the three
components of the vector dipole operator; see Eq. (10) below.
Furthermore, each of the dipole transitions is characterized
by the reduced matrix element d and the linewidth of the
excited-state sublevel 2γ .

Throughout this work, we assume that the atoms are in
the far-field of each other; that is, kLrαβ � 1 (dilute regime),
where rαβ = |rα − rβ | is the distance between atoms α and
β (see Fig. 1). Therein, the smallness of the radiative dipole-
dipole interaction constant, which scales as (kLrαβ)−1, ensures
that each pair of atoms exchanges no more than a single
photon. Under this condition, the multiple-scattering signal
from saturated atoms can be expressed via a self-consistent
combination of single-atom building blocks [25].

In the h ‖ h channel, single scattering is filtered out and,
within our model, the main contribution to the detected signal
originates from double-scattering processes, including pairs of
atoms in Fig. 1. On top of that, there is a small correction due
to triple scattering, where all atoms in Fig. 1 are involved. In
contrast, in an atomic cloud, with a huge number (∼108) of
scatterers, double and triple scattering can have contributions
comparable in magnitude. This is precisely the situation we
will mimic with our toy model. To this end, we first evaluate
the double- and triple-scattering signals by using the DPP
approach. Thereafter, we combine them into the total signal
with statistical weights that are adjusted to the optical thickness
of the Sr cloud in Ref. [4]. We describe a Monte Carlo
simulation procedure, which we use to obtain the statistical
weights, in Sec. III C.

We now proceed with a presentation of the basic elements
of the DPP approach, on the example of double scattering.

B. Double scattering

Let us consider either pair of atoms from Fig. 1. There
are two generic processes surviving the disorder average [see
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(a) (b)

FIG. 2. Double-scattering processes surviving the disorder aver-
age: (a) background (ladder) contribution consisting of copropagating
fields; (b) interference (crossed) contribution resulting from the
interference of counterpropagating fields. Thick arrows depict the
incoming laser wave with frequency ωL. Thin solid and dashed arrows
depict scattered positive- and negative-frequency fields, respectively.
In general, the scattering processes are inelastic (ω1 �= ω′

1 �= ωD �=
ωL). The numbers ±1 encode the waves’ polarizations and correspond
to the helicity-preserving channel (see explanation in the text). Both
ladder and crossed contributions can be decomposed into pairs of
single-atom blocks which are enclosed in dotted frames: (a) (A) and
(B); (b) (C) and (D).

Fig. 2]. The first process, composed of the copropagating
positive- and negative-frequency amplitudes (here and hence-
forth depicted by solid and dashed arrows, respectively), see
Fig. 2(a), contributes to the background, or ladder, spectral
intensity at the frequency ωD . The second process describes
the interference between the counterpropagating amplitudes
and contributes to the so-called crossed spectral intensity; see
Fig. 2(b).

The main idea of the DPP approach is to express the
double-scattering (in general, multiple-scattering), stationary,
spectrally resolved CBS signal by using single-atom spectral
responses or building blocks [24,25]. In Fig. 2, we can select
four single-atom blocks, enclosed in dotted frames: (A), (B),
(C), and (D). The latter can be evaluated by solving the
single-atom OBE under classical bichromatic (in general,
polychromatic) driving; see Sec. II D.

To write down the OBE, we need to specify the polarizations
and frequencies of the fields with which the atom interacts
for each of the building blocks. Besides a laser-driven atom
(represented by a gray circle), each of the building blocks
(A)–(D) in Fig. 2 includes up to two incoming thin arrows and
(always) two outgoing thin arrows. The incoming and outgoing
thin arrows depict the weak (probe) fields received from
another atom, and the re-emitted fields, respectively. Since the
injected laser field can be strong enough to induce nonlinear
inelastic scattering from individual atoms, we furnish thin
arrows in Fig. 2 with frequency values, which generally
differ from the incident laser frequency ωL. To express the
polarization-sensitive character of CBS from vector atoms, we
equip the arrows with the polarization indices. In accordance
with our selection of the polarization channel (see Sec. II A),
the laser and the backscattered fields carry indices +1 and −1,
respectively. Then, taking into account that we consider the
dipole transition Jg = 0 ↔ Je = 1, with the nondegenerate
ground state, we can unambiguously determine the two polar-
ization indices of the intermediate arrows. Namely, regardless

of the arrow’s type (solid or dashed), its start and end are
supplied with indices +1 and −1, respectively (see Fig. 2).

Knowledge of the polarization states of the intermediate
amplitudes is important when combining single-atom re-
sponses into multiple-scattering signals. Let a pair of atoms
be connected by a solid arrow (positive-frequency field),
whose start and end carry the polarization indices q and q ′,
respectively. Then the probability amplitude of the associ-
ated double-scattering process is proportional to the matrix
element [30]

←→
� q ′q ≡ ê∗

q ′ · ←→
� · êq, (2)

where
←→
� = ←→

1 − n̂n̂ is a projection operator on the plane

transverse to the line connecting the two atoms, with
←→
1 being

the identity operator and n̂ being the unit vector connecting
two atoms. Explicitly,

←→
1 = −ê−1ê+1 + ê0ê0 − ê+1ê−1, (3)

n̂ = eiφ sin θ√
2

ê−1 + cos θ ê0 − e−iφ sin θ√
2

ê+1, (4)

with angles (θ,φ) which fix the relative orientation of the two
atoms (to be averaged over). The probability amplitude of
the complex conjugate process (dashed arrow) is proportional

to (
←→
� q ′q)∗ = ←→

� qq ′ . Then, the double-scattering process
whereupon a pair of atoms is connected by one solid and one
dashed arrow with polarization indices q and q ′, respectively,
is proportional to the geometric average

〈←→� q ′q
←→
� qq ′ 〉 = 1

4π

∫ π

0
dθ sin θ

∫ 2π

0
dφ

←→
� q ′q

←→
� qq ′ . (5)

Once the atomic internal structure, the frequencies, and
the polarizations of all the incoming and outgoing fields
are specified, one proceeds with finding the expressions
for the building blocks (A)–(D) from perturbative solutions
of the generalized OBE (see Sec. II D). As shown in Ref. [30],
these blocks can be diagrammatically expanded into the elastic
and inelastic spectral response functions. Remarkably, the
diagrammatic expansions for vector atoms [30] are the same as
those for scalar atoms [32], apart from the arrows’ polarization
indices, in the vectorial case. Moreover, there is a systematic
way of obtaining the analytical expressions for the spectral
responses corresponding to scalar [28] and vector [31] atoms
alike (see also Appendix).

Finally, single-atom building blocks are self-consistently
reassembled into double-scattering diagrams [30,32], from
which the mathematical expressions for the frequency-
resolved signals are obtained. We refer to the double-scattering
ladder and crossed spectra as L(2)(ν) and C(2)(ν)(ν = ωD −
ωL), respectively.

The double-scattering contribution to CBS of light from
saturated isotropic atoms in the h ‖ h channel has been
thoroughly studied before [20–23,29,30,33,34]. In particular,
the master equation [23] and the DPP [29,30] approaches yield
numerically identical results for the double-scattering CBS
spectra from atoms with isotropic transitions. Therefore, we
now move on to the case of triple scattering.
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(a) (b)

(c) (d)

FIG. 3. Triple-scattering processes surviving the disorder aver-
age. The meaning of the notations is the same as in Fig. 2; (a),
(b) ladder; (c), (d) crossed contributions. Each of the diagrams
(a)–(d) can be split into three single-atom building blocks (dotted
frames). Building blocks (A)–(D) and (E)–(G) are obtained by solving
the generalized OBE under bichromatic and trichromatic driving,
respectively.

C. Triple scattering

In the triple-scattering scenario, all atoms from Fig. 1 are
involved in the scattering sequences. Due to the nonlinearity of
the atomic scatterers, there are two types of both the ladder [see
Figs. 3(a) and 3(b)] and the crossed [see Figs. 3(c) and 3(d)]
diagrams which survive the disorder average. More precisely,
if we replace all dashed arrows by solid arrows and vice versa
in Fig. 3(d), we obtain another type of crossed diagram. The
latter, however, is the complex conjugate of the one in Fig. 3(d).
Note that Fig. 3 features the building blocks (A)–(D) that
are familiar from the double-scattering case (see Fig. 2). In
addition, there appear three new building blocks (E), (F), and
(G), which describe spectral responses of the middle atom in
Figs. 3(a)–3(d). By inspecting the frequencies of the incoming
probe fields for these new building blocks, we see that the
blocks (E), (F), and (G) require a solution of the OBE for
trichromatic driving.

The diagrams in Fig. 3 generalize the already-treated case
of triple scattering from saturated scalar atoms [28]. As
discussed in Sec. II B, in the vector-atom case, we equip all
the arrows in the diagrams with polarization indices. However,
in contrast to the case of double scattering, selecting the
excitation- or detection-polarization channel does not uniquely
specify all the incoming and outgoing fields’ polarizations in
the triple-scattering case. Indeed, polarization indices of the
arrows received by the middle atom in the diagrams in Fig. 3
can generally take values ±1,0.

Some of these combinations do not survive the disorder
average and yield vanishing contributions. To identify these

combinations, note that the geometric weights for any of the
triple-scattering diagrams in Fig. 3, with fixed polarization
indices, are determined analogously as in the case of double
scattering; see Eq. (5). The only difference is that, for triple
scattering, the geometric configuration is specified by two
independent pairs of random angles. Therefore, the geometric
weights for triple scattering factorize into products thereof
for double scattering. For example, the geometric weight
corresponding to the ladder diagram in Fig. 3(a) reads (for
brevity, we omit the “+” in the subscripts referring to the
polarization index +1)

〈←→� q1
←→
� 1q ′

←→
� −1r

←→
� r ′−1〉=〈←→� q1

←→
� 1q ′ 〉〈←→� −1r

←→
� r ′−1〉.

(6)

The geometric weights for the remaining diagrams in Fig. 3
are defined analogously.

Using the definitions (2)–(5), it is easy to check that Eq. (6)
yields zero, unless q = q ′ and r = r ′. From Fig. 3(a), we see
that these indices describe the polarizations of the copropagat-
ing incoming and outgoing arrows, respectively. Certainly, the
same property holds also for the polarization indices which
describe the copropagating amplitudes in Figs. 3(b) and 3(d).
This restriction reduces the number of the building blocks that
actually need to be evaluated.

Another restriction on the polarization indices stems not
from the configuration average, but rather from basic atom-
light-interaction considerations. Namely, for the Jg = 0 ↔
Je = 1 transition, the polarization of the outgoing field must
coincide with the polarization of the incoming laser or of the
probe field(s). Otherwise, the spectral responses are identically
equal to zero. Taking again as example Fig. 3(a), we note that,
if q = q ′ = +1, then always r = r ′ = +1, since the laser field
is also chosen to have the polarization index +1. Accordingly,
when q = q ′ = 0 (−1), two possibilities emerge: r = r ′ = +1
and r = r ′ = 0 (−1).

Once we ensured that our choice of the polarization indices
in Fig. 3 gives rise to a nonzero contribution, we proceed
with diagrammatic expansions of the building blocks into
elastic and inelastic contributions. This is done in full analogy
with the double-scattering case (see Sec. II B). By using the
general formulas given in Appendix, we can then obtain the
expressions for the elastic and inelastic response functions
corresponding to the selected polarizations and frequencies of
the incoming arrows.

Thereafter, we self-consistently reassemble the individual
terms in the diagrammatic expansions of the building blocks
into the triple-scattering spectral signals, by complete analogy
with the case of scalar atoms [28]. Finally, upon summation
over all relevant values of the polarization indices, with the
corresponding geometric weights [see Eq. (6)], we obtain the
triple-scattering spectra. We will denote the ladder spectra
represented by Figs. 3(a) and 3(b) as L

(3)
1 (ν) (type-one

ladder) and L
(3)
2 (ν) (type-two ladder), and the crossed spectra

represented by Figs. 3(c) and 3(d) as C
(3)
1 (ν) (type one crossed)

and C
(3)
2 (ν) (type two crossed), respectively. We note that

permutations of three atoms give rise to six type-one ladder
diagrams, three type-two ladder diagrams, and six crossed
diagrams of each type. Then, up to a common prefactor which
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is absorbed into the statistical weight w3 (see Sec. III B), the
total triple-scattering ladder and crossed spectra are given by

L(3)(ν) = L
(3)
1 (ν) + 1

2L
(3)
2 (ν), (7)

C(3)(ν) = C
(3)
1 (ν) + 2Re

{
C

(3)
2 (ν)

}
. (8)

Before we present our results in Sec. III, we next recall the
generalized OBE under classical multichromatic driving—
the basic equations used to derive the single-atom spectral
responses.

D. Generalized optical Bloch equations

Let us recall that the single-atom spectral responses for
double and triple scattering can be obtained from solutions of
the generalized OBE under classical bichromatic [building
blocks (A)–(D) in Figs. 2 and 3] or trichromatic driving
[building blocks (E)–(G) in Fig. 3]. Since writing down
such equations for an arbitrary number of classical driving
fields involves no technical overhead, we present here the
generalized OBE for polychromatic driving. As a side remark,
we note that the spectral responses for polychromatic classical
driving can be used to describe transport of radiation in a dilute
medium of saturated atoms [26].

The generalized OBE can be conveniently obtained from
a master equation for the quantum-mechanical expectation
value of an arbitrary atomic operator Q. We assume that
the vector atom is driven by N + 1 coherent components,
of which one represents the laser field with frequency ωL

and polarization êL = ê+1; and the remaining N components
are weak probe fields with frequencies ω1, . . . ,ωN and
polarizations êq1 , . . . ,êqN

, where qk = ±1,0 [see Eq. (1)] and
1 � k � N . In the frame rotating at the laser frequency, the
time evolution of the quantum-mechanical expectation value
〈Q〉 is governed by the following master equation [30]:

〈Q̇〉 =
〈
−iδ[D† · D,Q] − i�

2
[(D† · ê+1) + (D · ê∗

+1),Q]

+ γ (D† · [Q,D] + [D†,Q] · D)

− i

2

N∑
k=1

[
gke

−iδk t
(
D† · êqk

) + g∗
k e

iδk t
(
D · ê∗

qk

)
,Q

]〉
.

(9)

Here, δ = ωL − ω0 and � = 2dEL/� is the (real) Rabi
frequency, which describes the coupling of the laser field to
the transition with a magnetic quantum number m = 1. The
gk are the weak (|gk| � γ ) probe-field Rabi frequencies, and
δk = ωk − ωL is the probe-laser-field detunings. Finally, D
and D† are the atomic lowering and raising vector operators,
respectively. They define the atomic dipole operator through
D = d(D† + D). In the spherical basis, the dipole lowering
operator corresponding to the Jg = 0 ↔ Je = 1 transition can
be expanded as

D = −ê−1σ12 + ê0σ13 − ê+1σ14, (10)

where σij ≡ |i〉〈j |, and |1〉 (|3〉) is the ground (excited) state
(sub)level with magnetic quantum number m = 0, whereas |2〉
and |4〉 are the excited-state sublevels with magnetic quantum
numbers m = −1 and m = 1, respectively.

By choosing operators Q from the complete orthonormal
set of operators for the isotropic transition (see, for instance,
Ref. [23]), we translate Eq. (9) into the generalized OBE under
polychromatic classical driving:

〈Q̇(t)〉 = M〈Q(t)〉 + L +
N∑

k=1

[
e−iδk t�(−)

qk
〈Q(t)〉

+ eiδk t�(+)
qk

〈Q(t)〉], (11)

where the matrix M describes the dipole’s radiative decay, as
well as its coupling to the laser field; the matrix �(−)

qk
(�(+)

qk
),

proportional to gk(g∗
k ), describes the coupling of the atom to

the positive-frequency (negative-frequency) probe-field com-
ponent with polarization qk . The explicit form of the 15 × 15
matrices M and �(±)

qk
, together with the 15-dimensional vector

L, can readily be defined by using Eq. (9), once the vector 〈Q〉
is specified.

General perturbative analytical solutions of Eq. (11) are
given in Appendix. In the next section, we present our results
that are obtained after a self-consistent combination of single-
atom responses, deduced from these solutions, into the triple-
scattering signals.

III. NUMERICAL RESULTS

A. Triple-scattering spectra

Let us consider the triple-scattering spectra L(3)(ν) and
C(3)(ν) [see Eqs. (7) and (8)], in different regimes of the laser-
atom interaction. In general, the spectra can be decomposed
into elastic and inelastic components,

L(3)(ν) = L
(3)
el (ν) + L

(3)
in (ν), (12)

C(3)(ν) = C
(3)
el (ν) + C

(3)
in (ν). (13)

Furthermore, each term on the right-hand sides of Eqs. (12)
and (13) can be expanded into a sum of the type-one and
type-two components [see Eqs. (7) and (8)]:

L
(3)
el(in)(ν) = L

(3)
el(in),1(ν) + 1

2L
(3)
el(in),2(ν), (14)

C
(3)
el(in)(ν) = C

(3)
el(in),1(ν) + 2Re

{
C

(3)
el(in),2(ν)

}
. (15)

Here, we study the behavior of the elastic and inelastic
spectra for different laser-field Rabi frequencies �. Since
the atomic response to the external driving depends also on
the detuning δ between the laser and the atomic transition
frequencies, it is convenient to use the saturation parameter

s = 1

2

�2

δ2 + γ 2
(16)

to describe different regimes of atom-laser interaction [19].
In particular, the elastic- and inelastic-scattering regimes are
characterized by the inequalities s � 1 and s � 1, respec-
tively. We will see below that, in the inelastic regime, the
triple-scattering spectra can exhibit negative values. This is not
unphysical, because triple scattering is only one contribution
(among double and higher-order contributions) to the total
multiple-scattering signal, which is strictly positive.
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FIG. 4. (Color online) (top) Triple-scattering elastic ladder and
(bottom) crossed intensities, together with their decompositions into
type-one and type-two components; see Eqs. (14) and (15), at resonant
driving as a function of saturation s. Solid lines show total elastic
signals L

(3)
el and C

(3)
el . Dashed lines show type-one ladder and crossed

elastic components, L
(3)
el,1 and C

(3)
el,1, corresponding to diagrams in

Figs. 3(a) and 3(c), respectively. Dashed-dotted lines show type-two
ladder and crossed elastic components, L

(3)
el,2/2 and 2Re{C(3)

el,2},
corresponding to diagrams in Figs. 3(b) and 3(d), respectively.

1. Elastic spectrum

When we speak of the elastic spectra, we refer to the
monochromatic components that are scattered at the laser
frequency. The elastic triple-scattering ladder and crossed
spectra are then proportional to δ functions: L

(3)
el δ(ν) and

C
(3)
el δ(ν), where the components’ intensities L

(3)
el and C

(3)
el

depend on the saturation parameter.
Figure 4 shows a plot of the elastic triple-scattering ladder

and crossed intensities as a function of s. The oscillatory
behavior of the ladder and crossed components is due to the
opposite contributions of the individual ladder and crossed
type-one and -two processes, respectively. For s � 1, the
elastic ladder and crossed intensities are positive and grow
linearly with s (see solid lines in Fig. 4). Further on, the
ladder and crossed elastic intensities are increasing with s

until s ≈ 0.1. For larger values of s, nonlinear scattering
leads to a decrease of the elastic intensities, which yields
negative contributions for s � 0.2. In the deep-saturation
regime, s � 1, as expected, the elastic intensities tend to zero
(remaining negative).

2. Inelastic spectrum

In contrast to the elastic components, the inelastic triple-
scattering ladder and crossed spectra L(3)

in (ν) and C(3)
in (ν) are

emitted over a range of frequencies. In Fig. 5, we present
several examples of inelastic spectra at δ = 0 and for different
values of the laser Rabi frequency �.

In the weakly-inelastic-scattering regime, the inelastic
spectra are dominated by two-photon processes [28]. At
exactly resonant driving, the ladder and crossed spectra then
consist of a single peak centered at the laser frequency, i.e.,
at ν = 0 [see Figs. 5(a) and 5(b)]. Furthermore, the crossed
component of the inelastic spectrum has a larger maximum
than the ladder one in this limit. As noted in Ref. [16], this can
lead to a CBS enhancement factor larger than two, provided
that the elastic component is filtered out.

At larger values of �, the increasing influence of higher-
order inelastic multiphoton processes leads to a reduction of
the enhanced backscattering. Partially, this happens owing to
the opposite interference character of type-one and type-two
crossed components [see Figs. 5(d) and 5(f)]. Moreover, in this
limit, the spectra split into several Lorentzian and dispersive
resonances [see Figs. 5(e) and 5(f)]. The number and positions
thereof can be understood from the dressed-state structure of
the relevant dipole transitions of the atoms, which are involved
in the corresponding triple-scattering processes, in full analogy
to the double-scattering case [23].

B. Total coherent-background-scattering signal

Integration of the double- and triple-scattering spectra (see
Sec. III A) over their frequency distributions yields the total
ladder and crossed intensities of the corresponding order:

L
(j )
tot =

∫ ∞

−∞
dνL(j )(ν), C

(j )
tot =

∫ ∞

−∞
dνC(j )(ν), (17)

where j = 2,3. The total double-scattering intensities have
been discussed in detail in Refs. [20,21]. We therefore move
on to the triple-scattering case.

Our plots of L
(3)
tot and C

(3)
tot as functions of the saturation

parameter s are presented in Fig. 6. In the elastic-scattering
regime (s � 1), the corresponding ladder and crossed com-
ponents show a monotonic increase and reach a maximum
around s ≈ 0.15, when inelastic processes start to set in.
Further increase of s results in a monotonic decrease of the
ladder component as s−2. The crossed component features
destructive-interference character in the saturation regime,
with a minimum at s ≈ 0.9. As for the ladder intensity, the
crossed components decay quadratically to zero for large s.

With the total double- and triple-scattering intensities being
defined, we calculate the total ladder and crossed intensities in
an optically thin cloud of cold atoms as

Ltot = w2L
(2)
tot + w3L

(3)
tot , (18a)

Ctot = w2C
(2)
tot + w3C

(3)
tot , (18b)

where w2 and w3 are the statistical weights which determine
the fractions of the double- and triple-scattering contributions,
respectively. Since the experimental values w2 and w3 are
unavailable, we obtain them on the basis of a Monte Carlo
simulation procedure, as described in the next section.
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FIG. 5. (Color online) Examples of (top) the triple-scattering inelastic ladder and (bottom) crossed spectra, together with their
decompositions into type-one and type-two components; see Eqs. (14) and (15), at resonant driving and for different values of the laser Rabi
frequency: (a), (b) � = 0.1γ , (c), (d) � = 1.0γ , (e), (f) � = 10.0γ . Solid lines show total inelastic spectra L

(3)
in (ν) and C

(3)
in (ν). Dashed lines

show type-one ladder and crossed inelastic components L
(3)
in,1(ν) and C

(3)
in,1(ν), corresponding to diagrams in Figs. 3(a) and 3(c), respectively.

Dashed-dotted lines show type-two ladder and crossed inelastic components L
(3)
in,2(ν)/2 and 2Re{C(3)

in,2(ν)}, corresponding to diagrams in
Figs. 3(b) and 3(d), respectively.

C. Determination of weights w2 and w3

To estimate the statistical weights w2 and w3 [see Eq. (18)],
we employ a Monte Carlo method. We simulate a random walk
of a “particle” inside a sphere confining randomly distributed
point “scatterers.” This roughly corresponds to multiple elastic
scattering of a photon in an atomic cloud. In accordance with
the experimental parameters [4], we choose the radius of the
sphere and the scattering mean-free path to be 0.7 and 0.75
mm, respectively. As noted in Ref. [4], these values are in
agreement with the measured optical thickness of 3.5.

FIG. 6. (Color online) Dashed line shows total triple-scattering
ladder intensity and dash-dotted line shows crossed intensities, L

(3)
tot

and C
(3)
tot , respectively [see Eq. (17)]. Solid line shows the total triple-

scattering CBS signal L(3)
tot + C

(3)
tot at resonant driving and as a function

of the saturation s.

A simulation of the random walk consists of generating
locations of the scattering events inside the sphere, with
an exponential step-length distribution. The latter ensures
consistency of the walk with the radiation transfer equation
[35]. After repeating this procedure one million times, the
percentage of single, double, etc. scattering events converges
to their constant values w1, w2, etc., respectively.

We note that this procedure ignores the scattering properties
of the atomic dipoles. These properties may, for instance,
lead to different dependencies of the statistical weights on
s in the saturation regime. However, we expect that, for not
too strong laser fields (as in the experiment of Ref. [4]), the
CBS signal is still dominated by the elastic component. In
this case, the relative weights of different scattering orders
should approximately be equal to those in a realistic atomic
cloud having the same root mean square radius and scattering
mean-free path.

We found that the statistical weights of single, double,
triple, and multiple (>3) scattering orders are 56%, 23%,
11%, and 10%, respectively. As expected, single scattering
dominates owing to the small optical thickness of the cloud.
However, this contribution is filtered out in the helicity-
preserving channel and does not enter Eq. (18). Furthermore,
the inequality w2 > w3 which holds for optically thin clouds,
together with the positivity of the total double-scattering
intensity [20], ensures positivity of the total signal including
double- and triple-scattering contributions. In particular, in the
linear-scattering regime (s � 1), where the inelastic intensity
scales as ∼s2 and thus can be neglected, we recover the
positivity of each scattering order (double and triple scattering)
by itself, as evident from the behavior of the elastic intensity
in Fig. 4. Positivity of the signal, in turn, justifies dropping
higher scattering orders (>3) whose evaluation requires more
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FIG. 7. (Color online) Dashed line shows total ladder intensity
and dash-dotted line shows crossed intensity, Ltot and Ctot, re-
spectively [see Eqs. (18a) and (18b)]. The solid line shows the
corresponding total CBS signal Ltot + Ctot for a mixture of double-
scattering contributions taken with the weights 0.23 and 0.11,
respectively, at resonant driving and as a function of the saturation
parameter s.

than three atoms, which is beyond the scope of this work.
As a concluding remark, we note that filtering out the
single-scattering contribution leads to a renormalization of the
weights w2 and w3 but does not change their ratio. Therefore,
in Eq. (18), we substitute w2 = 0.23 and w3 = 0.11.

D. Enhancement factor

This section is devoted to the presentation and discussion
of our numerical results for the CBS enhancement factor as a
function of the saturation parameter s. Given the total ladder
and crossed intensities, Eq. (18), the enhancement factor is
defined as

α = 1 + Ctot

Ltot
. (19)

Thus, the results for the total double- and triple-scattering
intensities, presented in Fig. 7, allow us to directly determine
the corresponding behavior of the enhancement factor α.

In Fig. 8, we present a plot of α vs s in the case of
exact resonance (δ = 0). Dashed lines in Fig. 8 represent the
enhancement factor for the double-scattering contribution, first
obtained in Ref. [20], and solid lines show our present results
for the double- and triple-scattering contributions derived
using Eqs. (18) and (19). We see that accounting for the
double- and triple-scattering contributions leads to a faster
decay of the enhancement factor with increasing saturation
of the atoms than does considering double-scattering alone.
However, this speedup of coherence loss, which is noticeable
at small s, becomes negligible in the saturation regime. As
seen from Fig. 8, our results for the combined double- and
triple-scattering signal, and that of the purely double-scattering
signal, almost merge for s � 8. This happens because, in the
saturation regime, the triple-scattering intensity decays faster
(as s−2; see Sec. III B) than the double-scattering intensity
(which decays as s−1 [20]).

FIG. 8. (Color online) Dashed line shows enhancement factor α

vs saturation s at resonant driving for the double-scattering contri-
bution. Solid line shows mixture of the double- and triple-scattering
contributions taken with the weights 0.23 and 0.11, respectively (solid
line). Inset compares the calculated and experimental enhancement
factor (dots with error bars, from Ref. [4]), in the range 0 � s � 0.8,
for detunings δ = 0 (blue) and δ = γ (red).

Even for small s, the initial slope of α(s), due to double
and triple scattering, is not steep enough to provide a good
quantitative agreement with the experimental observations [4].
To show this, in Fig. 8 we provide the inset with a magnified
plot of α vs s in the range 0 � s � 0.8. This range covers the
transition from the linear-scattering regime to the saturation
regime studied in Ref. [4]. In this experiment, the enhancement
factor was measured at resonant driving and for small laser
detuning (δ = γ ). Numerical results for the latter are depicted
in Fig. 8 by red lines. We see that, in both cases of the
resonant and detuned driving, the account of the double- and
triple-scattering contributions leads to a faster decay of the
enhancement factor with increasing saturation parameter,and
to a better agreement with the experiment than by considering
double-scattering alone. Despite that, there remain significant
deviations between the experimentally observed and the here
predicted behavior of the enhancement factor.

One possible reason for this is the missing account for
multiple-scattering processes of higher-than-third order which,
according to our simulations of the random walk, may add
contributions that are comparable in magnitude to triple scat-
tering. Another reason may be the role of the atomic medium
providing a mean-free path, which itself depends on frequency
and saturation. It remains to be seen in future work whether a
generalization of our approach to treat high scattering orders
in the effective medium can lead to a better quantitative
agreement between theoretical and experimental results.

IV. CONCLUSION

We studied coherent backscattering of intense laser light
from three atoms with a Jg = 0 ↔ Je = 1 transition by using
the diagrammatic pump-probe approach. We were motivated
by the need for an improved quantitative description of relevant
experiments [4] as well as by the fundamental interest in the
role of the higher scattering orders in the inelastic-scattering
regime.
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By combining self-consistently single-atom spectral re-
sponses to a classical mono-, bi-, and trichromatic fields,
we identified those double- and triple-scattering processes
which survive the disorder average and contribute to the
average backscattered light intensity. The expressions for the
corresponding single-atom responses were derived analyti-
cally for the general case of n weak-probe-field components
and subsequently applied to the particular situation described
above. We presented numerical results for the triple-scattering
elastic and inelastic spectra and for the total intensity, respec-
tively. Furthermore, to obtain the total detected double- and
triple-scattering signal that is emitted from a dilute cloud of
cold atoms, we deduced the statistical weights of the double-
and triple-scattering contributions by using a classical Monte
Carlo simulation of a photon random walk inside a sphere
containing point scatterers, such that the simulated medium’s
optical thickness corresponded to the experimental thickness
reported in Ref. [4].

One of the main quantities of interest in this work was
the CBS enhancement factor as a function of the saturation
parameter. We showed that the enhancement factor deduced
from the double- and triple-scattering signals exhibits a faster
decay as a function of the saturation parameter and yields a
better qualitative agreement with the experimental observation
[4] than the enhancement factor based on the double scattering
alone. Yet the experimentally observed enhancement factor
still decays considerably faster than that calculated in this
work.

The remaining mismatch between the experimental obser-
vation and theoretical prediction suggests a potential direction
of future research. It would be both important and challenging
to explore the truly multiple-scattering regime in a cold atomic
gas of saturated atoms—a goal which is within reach in
the framework of the diagrammatic pump-probe approach
[26].
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APPENDIX: GENERAL EXPRESSIONS
FOR SINGLE-ATOM SPECTRAL RESPONSES

1. Elastic spectral responses

a. General solution

The elastic spectral responses are obtained directly from the
perturbative solutions to Eq. (11). As shown in Ref. [31], the
nth-order (0 < n � 2N ) correction to the generalized Bloch
vector 〈Q(δ[q1]

1 , . . . ,δ
[qn]
n )〉(s1···sn) (sk = + or − corresponds to

the negative- or positive-frequency character of the kth probe
field, respectively) reads〈

Q
(
δ

[q1]
1 , . . . ,δ[qn]

n

)〉(s1···sn)

=
∑

π(j1,...,jn)

G(iζ )�
(sjn )
qjn

· · · G
(
isj1δj1 + isj2δj2

)

×�
(sj2 )
qj2

G
(
isj1δj1

)
�

(sj1 )
qj1

〈Q〉(0). (A1)

Here, G(z) = 1/(z − M) is the Green’s matrix governing the
internal dynamics of the laser-driven atom [see Eq. (11)], z ≡
z′ + iz′′ is the Laplace transform variable, 〈Q〉(0) = G(0)L is
the zeroth-order solution to Eq. (11), π (j1, . . . ,jn) denotes n!
permutations of the indices j1, . . . ,jn ∈ {1, . . . ,n}, and

ζ ≡
n∑

k=1

skδk. (A2)

The elastic spectral responses are the outgoing positive-
and negative-frequency amplitudes represented by two el-
ements of the vector 〈Q(δ[q1]

1 , . . . ,δ
[qn]
n )〉(s1···sn). These ele-

ments are selected through scalar products of the vector
〈Q(δ[q1]

1 , . . . ,δ
[qn]
n )〉(s1···sn) with the corresponding projection

vectors [30]. In our derivations of the triple scattering spectra,
we have used the solution (A1) for up to four incoming probe
fields.

Below, we present the proof of Eq. (A1).

b. Proof of equation (A1)

To this end, we use the method of induction. For n = 1, that
is, for one probe-field component specified by a set (δ

[qj1 ]
j1

,sj1 )
(see Sec. A 1), where j1 ∈ {1, . . . ,n}, Eq. (A1) reduces to〈

Q
(
δ

[qj1 ]
j1

)〉(sj1 ) = G
(
isj1δj1

)
�

(sj1 )
qj1

〈Q〉(0), (A3)

which coincides with the solution obtained in Ref. [30].
Next, we need to show that Eq. (A1) holds provided that it

holds for (n − 1) probe-field components:〈
Q

(
δ

[qj1 ]
j1

, . . . ,δ
[qjn−1 ]
jn−1

)〉(sj1 ...sjn−1 )

=
∑

π(j1,...,jn−1)

G(iζn)�
(sjn−1 )
qjn−1

· · · G
(
isj1δj1 + isj2δj2

)
�

(sj2 )
qj2

× G
(
isj1δj1

)
�

(sj1 )
qj1

〈Q〉(0), (A4)

where ζn ≡ ζ − sjn
δjn

and j1, . . . ,jn−1 ∈ {1, . . . ,n}.
To this end, we seek perturbative solutions of the general-

ized OBE describing the dynamics of a single atom subjected
to n weak-probe-field components [compare to Eq. (11)]:

〈Q̇(t)〉 = M〈Q(t)〉 + L +
n∑

i=1

eisi δi t�(si )
qi

〈Q(t)〉. (A5)

Analogously to the case of double scattering [24], the pertur-
bative solution to Eq. (A5) is given by the following expansion:

〈Q(t)〉 = 〈Q(t)〉(0) +
n∑

i=1

eisi δi t
〈
Q(δ[qi ]

i ; t)
〉(si )

+
∑

π(j1,j2),
j1<j2

ei(sj1 δj1 +sj2 δj2 )t 〈Q(
δ

[qj1 ]
j1

,δ
[qj2 ]
j2

; t
)〉(sj1 sj2 )

+ · · ·
+

∑
π(j1,...,jn−1),
j1<...<jn−1

ei(sj1 δj1 +...+sjn−1 δjn−1 )t

× 〈
Q

(
δ

[qj1 ]
j1

, . . . ,δ
[qjn−1 ]
jn−1

; t
)〉(sj1 ...sjn−1 )

+ eiζ t
〈
Q

(
δ

[q1]
1 , . . . ,δ[qn]

n ; t
)〉(s1...sn)

, (A6)
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where j1, . . . ,jn−1 ∈ {1, . . . ,n}, and the ordering of indices
in the above sums is to avoid repetitions [recall that

〈Q(δ
[qj1 ]
j1

, . . . ,δ
[qjn−1 ]
jn−1

; t)〉(sj1 ···sjn−1 ) are fully symmetric with
respect to permutations of all indices; see Eq. (A4)]. The subse-
quent terms on the right-hand side of Eq. (A6) represent zeroth-
, first-, . . . , nth-order time-dependent solutions of Eq. (A5).
We focus on the nth-order term 〈Q(δ[q1]

1 , . . . ,δ
[qn]
n ; t)〉(s1···sn),

whose steady-state form (A1) we need to prove. Inserting Eq.
(A6) into (A5) yields the following equation of motion for
〈Q(δ[q1]

1 , . . . ,δ
[qn]
n ; t)〉(s1···sn):

〈
Q̇

(
δ

[q1]
1 , . . . ,δ[qn]

n ; t
)〉(s1···sn)

= (−iζ + M)
〈
Q

(
δ

[q1]
1 , . . . ,δ[qn]

n ; t
)〉(s1···sn)

+�(s1)
q1

〈
Q

(
δ

[q2]
2 , . . . ,δ[qn]

n ; t
)〉(s2···sn)

+�(s2)
q2

〈
Q

(
δ

[q1]
1 ,δ

[q3]
3 , . . . ,δ[qn]

n ; t
)〉(s1s3···sn) + · · ·

+�(sn)
qn

〈
Q

(
δ

[q1]
1 , . . . ,δ

[qn−1]
n−1 ; t

)〉(s1···sn−1)
. (A7)

In the steady-state limit, the left-hand side of Eq. (A7)
vanishes, and we arrive at the following solution for the
nth-order correction:

〈
Q

(
δ

[q1]
1 , . . . ,δ[qn]

n

)〉(s1···sn)

= G(iζ )
[
�(s1)

q1

〈
Q

(
δ

[q2]
2 , . . . ,δ[qn]

n

)〉(s2...sn)

+�(s2)
q2

〈
Q

(
δ

[q1]
1 ,δ

[q3]
3 , . . . ,δ[qn]

n

)〉(s1s3...sn) + · · ·
+�(sn)

qn

〈
Q

(
δ

[q1]
1 , . . . ,δ

[qn−1]
n−1

)〉(s1···sn−1)]
, (A8)

where, by convention, limt→∞〈Q(· · · ; t)〉(··· ) = 〈Q(. . .)〉(··· ).
By comparing Eqs. (A8) and (A1), we notice that the former is
nothing but the recursive representation of the latter in terms
of the (n − 1)th-order corrections, provided that the (n − 1)th-
order corrections are given by Eq. (A4). This finally proves
that, if Eq. (A4) is true, then Eq. (A1) is also true. �

2. Inelastic spectral responses

a. General solutions

The inelastic part of the spectral responses arises from
the fluctuating part of the stationary atomic dipole cor-
relation function 〈�D

†
q(t)�Dr (t ′)〉, where �Dr = Dr −

〈Dr〉 (�D
†
q = D

†
q − 〈D†

q〉), q,r = ±1,0, and D
†
q = êq ·

D† (Dr = ê∗
r · D) is the qth (rth) component of the atomic

raising (lowering) operator (see Sec. II D). To find this
correlation function, we introduce two vectors:

fr (τ ) = 〈�Q(τ )�Dr〉, (A9)

hq(τ ) = 〈�D†
q�Q(τ )〉, (A10)

where τ = t ′ − t if t ′ � t , and τ = t − t ′ otherwise. Accord-
ing to the quantum regression theorem [18], both fr (τ ) and
hq(τ ) obey the same equation of motion, but with different

initial conditions [to be specified in Sec. A 2 b]. Omitting for
brevity the temporal argument, we can write

ḟr = Mfr + (
eis1δ1t�(s1)

q1
fr + · · · + eisnδnt�(sn)

qn
fr

)
, (A11)

and ḣq is equal to the right-hand side of (A11), with fr replaced
by hq . Equation (A11) coincides with the generalized OBE,
Eq. (11), up to a constant vector L. As a result, both vectors fr
and hq tend to zero in the long-time limit (that is, the temporal
correlations vanish).

As shown in Ref. [31], the nth-order correction (0 � n �
N ) to the Laplace transform solution f̃r (z′′) = limz′→0 f̃r (z) of
Eq. (A11) reads

f̃
(s1···sn)
r

(
δ

[q1]
1 , . . . ,δ[qn]

n ; z′′)
=

∑
π(j1,...,jn)

[
G(iz′′ + iζ )�

(sjn )
qjn

· · ·�(sj2 )
qj2

× G
(
iz′′ + isj1δj1

)
�

(sj1 )
qj1

G(iz′′)f(0)
r (0)

]
+

∑
π(j2,...,jn)

[
G(iz′′ + iζ )�

(sjn )
qjn

· · · �(sj2 )
qj2

× G
(
iz′′ + isj1δj1

)
f

(sj1 )
r

(
δ

[qj1 ]
j1

; 0
)] + · · ·

+ G(iz′′ + iζ )f(s1···sn)
r

(
δ

[q1]
1 , . . . ,δ[qn]

n ; 0
)
, (A12)

where the f(s1...sn)
r (δ[q1]

1 , . . . ,δ
[qn]
n ; 0) denote the initial condi-

tions of the corresponding order in the perturbative expansion
of fr [see Sec. A 2 b]. The solutions h̃

(s1···sn)
q (δ[q1]

1 , . . . ,δ
[qn]
n ; z′′)

follow after replacements, in the right-hand side of Eq.
(A12), of the initial conditions h(s1...sn)

q (δ[q1]
1 , . . . ,δ

[qn]
n ; 0) [see

Sec. A 2 b]. We skip the proof of Eq. (A12), which can be
done inductively in the same way as the proof of Eq. (A1)
(see Sec. A 1 b). Finally, in full analogy with the case of the
elastic building blocks (see Sec. A 1 a), the inelastic building
blocks are obtained by taking certain elements of the vectors
f̃
(s1···sn)
r (δ[q1]

1 , . . . ,δ
[qn]
n ; z′′) and h̃

(s1···sn)
q (δ[q1]

1 , . . . ,δ
[qn]
n ; z′′) [30].

b. Initial conditions

The initial conditions which enter the Laplace transform
solutions (A12), can be calculated from the perturbative
solutions of the generalized polychromatic OBE (A1). To see
this, we write Eqs. (A9) and (A10) in the following form:

fr (0) = 〈QDr〉 − 〈Q〉〈Dr〉, (A13)

hq(0) = 〈D†
qQ〉 − 〈D†

q〉〈Q〉. (A14)

The nonfactorized parts on the right-hand side of Eqs. (A13)
and (A14) can be represented as follows:

〈QDr〉 = A1〈Q〉 + L1, (A15)

〈D†
qQ〉 = A2〈Q〉 + L2, (A16)
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with the matrices

(A1)ij = 1
4 tr[μiDrμ

†
j ], (L1)i = 1

4 tr[μ†
i Dr ], (A17)

(A2)ij = 1
4 tr[D†

qμiμ
†
j ], (L2)i = 1

4 tr[μ†
i D

†
q]. (A18)

Next, we perform a perturbative expansion of both sides of
Eqs. (A13) and (A14). This yields

f(s1...sn)
r

(
δ

[q1]
1 , . . . ,δ[qn]

n ; 0
)

= A1
〈
Q

(
δ

[q1]
1 , . . . ,δ[qn]

n

)〉(s1...sn)

−
(〈

Q
(
δ

[q1]
1 , . . . ,δ[qn]

n

)〉(s1...sn)〈Dr〉(0)

+
∑

π(j1,...,jn−1|jn)

〈
Q

(
δ

[q1]
1 , . . . ,δ

[qn−1]
n−1

)〉(sj1 ...,sjn−1 )〈
Dr

(
δjn

)〉(sjN
)

+ · · ·
+

∑
π(j1|j2,...,jn)

〈
Q

(
δj1

)〉(sj1 )〈
Dr

(
δ

[q2]
2 , . . . ,δ[qn]

n

)〉(sj2 ...sjn )

+〈Q(0)〉〈Dr

(
δ

[q1]
1 , . . . ,δ[qn]

n

)〉(s1...sn)
)

, (A19)

where π (j1, . . . ,jk|jk+1, . . . ,jn) denotes the n!/[k!(n − k)!]
permutations between the two sets of indices {j1, . . . ,jk} and
{jk+1, . . . ,jn}. In the simplest case of no incoming probe fields,
Eq. (A19) reduces to

f(0)
r (0) = A1〈Q〉(0) + L1 − 〈Q〉(0)〈Dr〉(0). (A20)

The expressions for h(s1···sn)
q (δ[q1]

1 , . . . ,δ
[qn]
N ; 0) can be obtained

by analogy to Eqs. (A19) and (A20), after the replacements
A1 → A2, L1 → L2, and Dr → D

†
q .
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