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Phase instabilities in semiconductor lasers: A codimension-2 analysis
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We compute the normal form description of a semiconductor laser near its threshold, with the sole assumption
that the polarization be related to the electric field through the susceptibility (dependent on laser frequency and
population inversion). We prove both analytically and numerically the possible existence of a phase-unstable
regime, characterized by a periodic oscillation of the optical frequency and a constant intensity. This regime bears
close resemblance to the mode-switching behavior, with constant total output power, experimentally observed
in semiconductor lasers. In addition, our model predicts the appearance of a phase- and amplitude-turbulent
regime, compatible with experimental observations. Both regimes are well known in fluid dynamics under the
name Benjamin-Feir instability.
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I. INTRODUCTION

The ideal laser, unidirectional and operating on a single
longitudinal and transverse mode, unperturbed by external
noise, is reputed to operate in a stable continuous wave
emission regime at least in a neighborhood of its threshold.
This idealized picture originates on the one hand from the
physics of class A lasers [1] and from experimental realizations
where such a mode of operation is possible, and on the other
hand, from the theoretical support lent by the paradigmatic,
but ubiquitous, Maxwell-Bloch model based on the wave
propagation equation and two levels interacting with the
radiation field [2,3].

Real devices, however, behave in a way which is typically
far from this idealized picture and semiconductor lasers never
fulfill the framework of the perfect laser, unless serious
technical efforts are put into stabilizing their temporal and
spectral properties. Indeed, semiconductor lasers show, even at
threshold, a dynamics which is typically multimode and quite
complex. At first, the origin of this complexity was mainly
attributed to external noise sources. During the 1980s and
1990s intensive work classified various kinds of semiconductor
laser dynamics into two main categories: mode partition,
where the total laser power fluctuates among several coexisting
longitudinal modes [4,5], and mode hopping where only one
mode at a time is emitting [5,6]. Optical reinjection, whether
experimentally added or due to spurious backreflections, was
recognized as being responsible for an extremely complex
multimode dynamics [7], whose different regimes have been
clarified by detailed investigations (cf. [8] for a summary):
low-frequency fluctuations [9], mode hopping [10], coherent
collapse [11], and fast phase jumps [12] with antiphase
oscillations during the fast transient which wash out the details
of the dynamics [13].

This picture appeared to offer a complete description of
the physics and dynamics of multimode semiconductor lasers
until, in 2004, experimental measurements conducted in short
wavelength (λ = 830 nm) multiple quantum well (MQW)
devices showed the presence of a deterministic dynamics
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in the modal switching [14,15]: The spectrally resolved
measurements showed a periodic alternation from one mode
to the subsequent one with almost no modulation in the
total emitted output power (but nearly full modulation in
the modal, i.e., frequency-resolved emission) with a sequence
starting from the bluest to the reddest mode. As a function
of the experimental parameters the regular frequency (phase)
dynamics progressively develops an amplitude modulation,
which eventually terminates in irregular behavior. An essen-
tially similar mode of operation was reported also for long
wavelength (λ = 1.3 μm) MQW lasers [16], although the
details are somewhat less clear in this paper. It is important to
notice that this dynamics is not limited to MQW lasers, but that
similar modal alternations, with nearly constant laser output,
have also been reported in multimode quantum dot lasers [17].

In the absence of general modeling approaches, ad hoc
models were developed to explain this dynamics on the basis
of mode coupling induced either by four-wave mixing (FWM)
[14] or by other nonlinear effects such as cross saturation
(CS) and self-saturation (SS) [18]. This way, the individual
modes are coupled through the material gain in a way which is
obtained through a tailored description of the semiconductor
nonlinear response using either phenomenological functional
representations of its behavior, or expansions of the interaction
terms expressed through the electric susceptibility, often
expressed in approximate closed mathematical forms [19].

The second choice has gained in popularity, given its more
rigorous treatment of the material properties, and forms now
the basis on which other descriptions of modal dynamics rest.
Common to all these approaches is the implicit assumption that
the global field should be projected onto the ensemble of cavity
modes and that the laser’s response is properly characterized
by the sum of the individual modal intensities. This assumption
meets a restriction which has been common in experimental
systems, where, up until very recently, the intermode beating
was outside the reach of direct electrical measurements (and is
still today difficult to achieve). Indeed, the intermode spacing
is such that the high-frequency oscillations which would result
from the interference between modes are averaged out in the
detection process (both at the level of most transducers, as
well as by the electrical bandwidth of the sampling and storing
equipment).
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A new theoretical framework was proposed in 2006,
bringing into play two complex Ginzburg-Landau equations
(CGLEs) for the slowly varying amplitudes of the counterprop-
agating optical fields, coupled to an equation for the carrier
population dynamics [20]. The use of the full electric field,
rather than its projection onto the modal components, offers
the advantage of intrinsically preserving the phase information
without any approximations and of automatically including all
those nonlinear effects which are approximately described by
nonlinear expansions, such as FWM, CS, SS, etc. The model
appears to correctly reproduce the anticorrelated oscillations
of the modal intensities as well as the stationarity of the
incoherent sum (i.e., the sum of the modal intensities as
opposed to the intensity of the sum of the modes). However,
this model does not include the possible destabilization of
the monochromatic solution near threshold. Indeed, we have
integrated the model equations [21] in the same parameter
regimes shown in the paper [20] and have thereby proven
that the previous observations simply correspond to a (long)
transient: If the numerical integration runs for a sufficiently
long time (cf. Appendix A), the phase dynamics relaxes
toward a homogeneous, stationary steady state. Upon closer
inspection of the model [20], one remarks that second-order
spatial derivatives are kept for the diffusion contribution, while
those for dispersion are neglected. Certainly, the dissipative
contribution is essential to prevent small scale instabilities and
neglecting them leads to the spontaneous generation of strong
gradients and to quick numerical instabilities. However, this
does not imply that conservative contributions are negligible,
as we will prove later in the paper.

Building on this approach [20], but aware of the recent
proof [22] that a conceptually crucial physical mechanism may
entirely disappear when performing a cursory approximation
which retains only the resonant terms, we apply a standard
multiscale approach [23,24] directly onto the original set of
equations describing the semiconductor dynamics and not, as
in [20], onto the already reduced model. In our strategy, the
total response of the medium is expressed as a function of the
carrier density (in the usual way) and of the formal dependence
of the medium’s polarization on the total electric field (rather
than on the modal superposition of its components) through
the electric susceptibility. Since this dependence is treated
formally, one can later choose to use an expression based on
a mathematically approximated functional form [19], or on an
experimentally measured response.

A detailed physical discussion can be found in [25]. Here,
we concentrate on the mathematical derivation of the model, a
technical and lengthy task, which requires a clear identification
of all small quantities, and a good control of their respective
smallness. At first sight, our final equations are quite similar to
those of [20] and contain more or less the same terms, save for
small, but crucial differences. A closer look at the equations’
structure shows the existence of a new coefficient (which we
name β) capable of driving the CGLE into a phase-unstable
regime [26] (the phase instability is, for dissipative systems,
the equivalent of self-focusing in conservative systems). This
apparently minor change—resting on the complex nature of
an otherwise real parameter in [20]—entirely changes the
dynamics predicted by the model of the semiconductor laser.
Indeed the phase portrait of the CGLE has been carefully

explored over the years [27,28]: In the phase-stable regime,
nontrivial phase dynamics can be observed only in the presence
of large enough amplitude modulation. On the contrary, in
the pure phase instability regime the monochromatic solution
spontaneously destabilizes even near the laser threshold.
As observed experimentally, this gives rise to a periodic,
asymmetric oscillation of the electric field’s frequency, while
its intensity (and not the sum of the modal intensities) remains
nearly constant.

The semiconductor laser dynamics have both random and
deterministic features. Random aspects were first identified
and modeled [4–6,29–31] and naturally, when discovered
[14–17], the deterministic aspects were mainly interpreted
as being of different nature (except in [32]). Our treatment
does not make use of any external noise sources, but the
phase instability dynamics, which emerges from the coherent
derivation of the full equations, has long ago been recognized
to be a strong source of intrinsic noise [33]. Without refuting
the existence of genuine extrinsic noise sources [34,35],
our approach reconciles, in some way, the two apparently
contradicting aspects of the problem, since it shows that an
apparently random behavior can emerge from the deterministic
component. It also poses new questions on the relative
importance of the deterministic and material-related noise
sources.

The paper is organized as follows. In Sec. II we present the
derivation of the reduced dynamics near the laser threshold
[36]. In particular, we focus on the choice of scaling laws
(Sec. II C), on the derivation of the polarization expression
from the electric susceptibility, and on the organizational
structure of the whole calculation. Technical details are
reported in Appendices B and C. We then extract some
analytical solutions to the reduced equations and investigate
the linear stability of the basic continuous wave solution
(Sec. III A), showing the generic possibility (Sec. III B) for
the existence of a phase instability regime [26]. Developing in
Sec. III C the analogy with the CGLE (subject of numerous
investigations), we predict the existence of two unstable phase
regimes which differ by the dynamics of the intensity, either
constant or turbulent, and we propose that the “intrinsic noise”
generated by the phase instability may play the role usually
attributed in semiconductor laser dynamics to the physical
noise sources. Finally, before concluding (Sec. IV) we present
in Sec. III D numerical simulations of our model in the various
predicted parameter regimes and discuss them in relationship
with the experimental observations.

II. NORMAL FORM DESCRIPTION

A. Basic equations

The wave equation for an electric field E polarized along
the x axis and propagating along the z direction takes the form

∂ttE + 1

ε0
∂ttP = c2∂zzE − σ∂tE, (1)

where P is the medium’s polarization density, σ represents
Ohmic losses (and all other additional sources of energy
dissipation), ε0 is the vacuum’s permittivity, and c is the speed
of light (in vacuum).
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The evolution equation for the population inversion N reads

∂tN = γ (Np − N ) + D∂zzN + 2

�ωc

E∂tP, (2)

where ωc is the electric field’s operating frequency, Np

represents the pump rate, D is the material’s diffusion constant
for the carriers, and � is the reduced Planck constant. Although
analytical calculations [37] and experimental observations
(e.g., [38]) give direct access to the susceptibility, many
semiconductor models (e.g., [39]) begin by proposing an
approximate dynamics for the polarization variable. Here, fol-
lowing [40], we directly manipulate the polarization through

P̂ (ω) = ε0χ (ω,N )Ê(ω). (3)

B. At threshold

The simplest, basic solution to Eqs. (1) and (2) is given by
N = Np and E = P = 0. Looking for a nontrivial solution of
the form

E = Eei(ωt−kz), P = ε0Eχ (ω,Np)ei(ωt−kz) (4)

we obtain the following solvability condition which ensures
the existence of a nonvanishing solution:[ − ω2 − χ (ω,Np)ω2 + c2k2 + iσω

]
E = 0. (5)

We define Npc as the smallest value of Np for which the
equation

χi(ω,Npc) = σ

ω
(6)

possesses a solution in ω (χi stands for the imaginary part of
χ ). The values of ω satisfying this condition are defined as

±ωc. By construction, when this condition is satisfied

∂χi

∂ω

∣∣∣∣
±ωc,Npc

= 0 (7)

and

ω2
c

c2
[1 + χr (ωc,Npc)] = k2

c (8)

defines the critical eigenvector kc, where χr stands for the real
part of χ .

C. Scalings

Close to the laser bifurcation, there are three independent
slow characteristic times:

(1) A first one associated with the electric field amplitude’s
growth rate and related to the distance (dN = Np − Npc) to
the laser threshold.

(2) A second one related to the population inversion (γ −1).
(3) A third characteristic time which does not appear

explicitly. In fact, this characteristic time scale is associated
with the shape of the susceptibility curves near the resonance
frequency. Hence ∂χ

∂ω
|ωc,Npc

∝ 1



and ∂2χ

∂ω2 |ωc,Npc
∝ 1


2 , where

 is typically of the order of 1012 Hz for semiconductor
lasers. Close enough to the laser threshold and assuming
unidirectional emission, we expect the electric field amplitude
to be expressed as

E = Eei(ωct−kcz) + E∗e−i(ωct+kcz) + · · · , (9)

where E is slowly varying with space and time. The restriction
to slow spatiotemporal variations is equivalent to saying that
the corresponding Fourier component Ê(ω) is nonvanishing
only in a small neighborhood of the origin. Following the
approach developed in [41], we derive

P (t)

ε0
=

∫
χ (ω)Ê(ω)eiωtdω

= e+i(ωct−kcz)
∫

χ (ω)Ê(ω − ωc)ei(ω−ωc)t dω + e−i(ωct−kcz)
∫

χ (ω)Ê∗(ω + ωc)ei(ω+ωc)t dω

= e+i(ωct−kcz)
∫ [

χ (ωc,N ) + ∂χ

∂ω

∣∣∣∣
ωc,N

(ω − ωc)

1!
+ ∂2χ

∂ω2

∣∣∣∣
ωc,N

(ω − ωc)2

2!
+ ∂3χ

∂ω3

∣∣∣∣
ωc,N

(ω − ωc)3

3!
+ · · ·

]
× Ê(ω − ωc)ei(ω−ωc)t dω + c.c.

= e+i(ωct−kcz)

[
χ (ωc,N )E + 1

1!

∂χ

∂ω

∣∣∣∣
ωc,N

(
∂t

i

)
E + 1

2!

∂2χ

∂ω2

∣∣∣∣
ωc,N

(
∂t

i

)2

E + 1

3!

∂3χ

∂ω3

∣∣∣∣
ωc,N

(
∂t

i

)3

E + · · ·
]

+ c.c. (10)

Looking for a solution of Eq. (1) under the form E = eλt eikz

where N = Npc + dN , λ = iωc + dλ, and k = kc + dk, and
taking full advantage of Eq. (10) we obtain

dλ

ωc

[
2i(1+χ ) + iωc

∂χ

∂ω
+ σ

ωc

]
= Npc

∂χ

∂N

dN

Npc

− 2
c2k2

c

ω2
c

dk

kc

,

(11)

where we have used the following notation convention: when
χ or any of its derivatives are evaluated at ωc, Npc we write χ ,

∂χ

∂N
. . . instead of χ (ωc,Npc), ∂χ

∂N
|ωc,Npc

. . . . Then taking into
account the smallness of the experimentally fixed parameters

γ

ωc

� 10−6, �10−3, �10−3, �10−3 (12)

[note that ( γ

ωc
)1/2 � ( 


ωc
) � ( σ

ωc
)] we obtain

dλ

ωc

∝
(




ωc

)
dN

Npc

,
dk

kc

∝ dN

Npc

, (13)
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which implies that the nth term in the power expansion,
Eq. (10) is proportional to(

ωc

∂χ

∂ω

)n(
∂t − iωc

iωc

)n

∝
(

ωc




)n(
dλ

ωc

)n

∝
(

dN

Npc

)n

(14)

and is, a posteriori, consistent with its convergence. From the
equilibrium condition for the carrier density, Eq. (2),

γ (N − Np) ∝ 2

�ωc

E∂tP =⇒ γNpc

dN

Npc

∝ ε0

�
χiE

2 (15)

we can estimate the leading amplitude term in the expansion
for the electric field

E ∝
√

ωc�Npc

ε0

(
γ

σ

)1/2(
dN

Npc

)1/2

. (16)

Hence, the amplitude and the time and space evolution of the
electric field possess a functional dependence on dN

Npc
.

The usual mathematical procedures to reduce the dynamics
to its essentials are based on a direct adiabatic elimination of
the fast variables and those situations where the characteristic
times are well separated have therefore been intensively
studied [42]. Here, we adopt a diametrically opposite, but
nevertheless well established [23,24], viewpoint: When ap-
proaching the laser threshold we seek to slow down the electric
field’s envelope dynamics (controlled by dN

Npc
) until it becomes

as slow as the population inversion’s (controlled by γ

ωc
). Note

that this choice is ideal for numerical simulations, since the
resulting unique characteristic time allows for the use of
efficient algorithms. This choice is also interesting from an
analytical point of view because it does not drastically shrink
the phase space, but, rather, fully analyzes it on a unique time
scale.

Even if the two characteristic times have to be small at the
same time, they are not forced to vanish with the same velocity.
As usual in codimension-2 analysis, there is not a rigorous,
fully satisfactory way of selecting the ratio r between the two
characteristic time scales

dN

Npc

=
(

γ

ωc

)r

. (17)

Several values of r are possible and each choice leads to a
slightly different end result. Globally, the final normal form
equations always contain the same terms, but each term’s rank
in the power expansion may change depending on the choice
of r .

We have investigated three distinct values of r: 3
2 , 1

2 , and
1
3 . Here, we explicitly discuss the case r = 1

2 , which turns
out to be a good compromise between physical accuracy and
computational difficulty. The other two remaining values are
considered in Appendices B and C.

The following scalings are now introduced:

γ = ωcε
2 definition of ε,

Np = Npc(1 + μ̃ε) with μ̃ � O(1),

σ = ωcεσ̃ =⇒ χi = σ

ωc

= εσ̃ ,


 = ωcε
̃,

D = ε
ωc

k2
c

D̃ (18)

with

N = Npc(1 + ε1S + ε2N2 + · · · ),

E =
√

ωcNpc�

ε0
(ε1E1 + ε2E2 + · · · ), (19)

P = ε0

√
ωcNpc�

ε0
(ε1P1 + ε2P2 + · · · ),

and

∂t = ωc

(
∂t0 + ε2∂t2 + ε3∂t3 + ε4∂t4 + · · ·︸ ︷︷ ︸

ε2∂T

)
,

∂z = kc

(
∂z0 + ε1∂z1 + ε2∂z2 + ε3∂z3 + · · ·︸ ︷︷ ︸

ε∂Z

)
. (20)

Further, we introduce the dimensionless partial derivatives

ωc

∂χ

∂ω

∣∣∣∣
ωc,N

= χω(N )

ε
, ω2

c

∂2χ

∂ω2

∣∣∣∣
ωc,N

= χωω(N )

ε2
, (21)

so that χω(N ) and χωω(N ) are now of order 1.
In rescaled units, Eq. (10) now takes the form

P = e+i(t0−z0)

⎡⎢⎢⎢⎢⎢⎣
χ (ωc,N )

+ 1
1!χω(N )(−iε∂T )

+ 1
2!χωω(N )(−iε∂T )2

+ 1
3!χωωω(N )(−iε∂T )3

+ · · ·

⎤⎥⎥⎥⎥⎥⎦ E + c.c. (22)

Taking into account all the previous scalings, Eqs. (1) and
(2) become

[
∂t0t0 + 2ε2∂t0t2 + 2ε32∂t0t3 + ε4

(
2∂t0t4 + ∂t2t2

) · · · ][ε1(E1 + P1) + ε2(E2 + P2) + · · · ]

= −εσ̃
[
∂t0 + ε2∂t2 + ε3∂t3 + · · · ][εE1 + ε2E2 + · · · ] + c2k2

c

ω2
c

[
∂z0z0 + 2ε1∂z0z1 + ε2

(
2∂z0z2 + ∂z1z1

) + · · · ][ε1E1 + ε2E2 + · · · ],[
∂t0 + ε2∂t2 + ε3∂t3 + · · · ][ε1S + ε2N2 + ε3N3 + · · · ]

= ε2[ε(μ̃ − S) − ε2N2 − ε3N3 · · · ] + εD̃
[
∂z0z0 + 2ε1∂z0z1 + ε2

(
2∂z0z2 + ∂z1z1

) + · · · ][εS + ε2N2 + ε3N3 + · · · ]

+ 2[εE1 + ε2E2 + · · · ]
[
∂t0 + ε2∂t2 + ε3∂t3 + · · · ][εP1 + ε2P2 + ε3P3 + · · · ]. (23)
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D. Resolution of the hierarchy of equations

The previous system of equations (23), together with the
expansion (22), has to be solved order by order. We thus
obtain a hierarchy of linear partial differential equations which
can be successively solved, provided that suitable solvability
conditions are satisfied. It is worth noting that the aim of the
computation is not to find all the solutions, but, on the contrary,
to find under which conditions a given expansion—which is
to be chosen in the most convenient way—is solution.

At order ε1 we obtain

∂t0t0 (E1 + P1) = c2k2
c

ω2
c

∂z0z0E1,

∂t0S = 0. (24)

Choosing

E1 = F (sv)e+i(t0−z0) + c.c., (25)

where sv = t2,t3,t4 · · · z1,z2,z3, . . . stands for all the slow
variables, and substituting into (22) leads to

P1 = χrFe+i(t0−z0) + c.c. (26)

Then the solvability condition for Eqs. (24) is

1 + χr (±ωc,Npc) = c2k2
c

ω2
c

, (27)

which is obviously satisfied because of Eq. (8) and

∂t0S = 0. (28)

At order ε2 we get

∂t0t0 (E2 + P2) = −σ̃ ∂t0E1 + c2k2
c

ω2
c

(
∂z0z0E2 + 2∂z0z1E1

)
,

∂t0N2 = D̃∂z0z0S + 2E1∂t0P1. (29)

Searching for E2 of the form

E2 = F2(sv)ei(t0−z0) + c.c. (30)

leads to

P2 =
[
χrF2+iσ̃F+ ∂χ

∂N
NpcSF − iχω∂t2F

]
ei(t0−z0) + c.c.

(31)
The solvability conditions are expressed by

∂t2F = −V ∂z1F + c0SF,

∂z0S = 0 (32)

with

c0 = −i
∂χ

∂N
Npc

χω

, V = 2c2k2
c

ω2
cχω

. (33)

Under these conditions, a possible solution is

F2 = 0, N2 = χrF
2e2i(t0−z0) + c.c. (34)

and

P2 = ei(t0−z0)

[
iσ̃F + 2ic2k2

c

ω2
c

∂z1F

]
+ c.c. (35)

At order ε3 we have

∂t0t0 (E3 + P3) + 2∂t0t2 (E1 + P1)

= +c2k2
c

ω2
c

[
∂z0z0E3 + (

2∂z0z2 + ∂z1z1

)
E1

]
,

∂t0N3 + ∂t2S = μ̃ − S + D̃∂z0z0N2 + 2E1∂t0P2. (36)

Assuming E3 = F3e
i(t0−z0) + F33e

3i(t0−z0) + c.c., we are left
with

P3 = ei(t0−z0)

⎡⎢⎣χrF3 + Npc
∂χ

∂N
[N2E1]1 + N2

pc

2
∂2χ

∂N2 S
2F

−iχω∂t3F − iNpc
∂χω

∂N
S∂t2F

− 1
2χωω∂t2t2F

⎤⎥⎦
+ e3i(t0−z0)

[
χ (3ωc,Npc)F33 + ∂χ

∂N
[N2E1]3

]
+ c.c.

(37)

The new terms of the form [N2E1]n represent in compact form
the contributions of order n (eni(t0−z0)) coming from the product
of N2 [Eq. (34)] and E1 [Eq. (25)].

[N2E1]1 = χr |F |2F. (38)

Then the solvability conditions take the form

iχω∂t3F = Npc

∂χ

∂N
χr |F |2F + N2

pc

2

∂2χ

∂N2
S2F

− iNpc

∂χω

∂N
S∂t2F − 1

2
χωω∂t2t2F

− 2i(1 + χr )∂t2F + c2k2
c

ω2
c

(−2i∂z2F + ∂z1z1F ),

∂t2S = μ̃ − S − 4σ̃ |F |2 − 4c2k2
c

ω2
c

∂z1 |F |2. (39)

In the carrier density equation, the term proportional to ∂z1 |F |2
represents radiation pressure. This force does exist in an actual
laser, but is normally compensated for by physical mechanisms
(e.g., the crystal matrix when dealing with a solid-state laser)
which are not taken into account in our initial description,
Eq. (2). The equation for ∂t3F contains a large number of
terms, fortunately small compared to those of ∂t2F . Some
represent additional saturation terms (|F |2F,S2F ), others are
just a straightforward renormalization of the group velocity
(∂t2F ). Here, we only retain those physical terms which are
not already present in Eq. (32): ∂z1z1F , which describes the
dispersion and, possibly, diffusion of the electric field, and
iS∂z1F , which stands for the drift of the selected wavelength
with S. Collecting all terms, we are left with

∂T F = −V ∂ZF + c0SF + iεc2iS∂ZF + εc1∂ZZF,

∂T S = μ̃ − S − 4σ̃ |F |2 (40)

with

c1 = iV

2

(
χωωV

χω

− 1

)
, c2 = −iχωωV c0

χω

+ Npc
∂χω

∂N
V

χω

.

(41)

Note that for this particular scaling choice (r = 1
2 ), and

keeping terms up to O(ε3), diffusion does not play a role
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in the carrier density dynamics. No problem stemming from
the lack of a diffusion term was detected in our numerical
simulations. However, if needed, carrier density diffusion can
be recovered, either by extending the analysis to higher orders
in ε, or by selecting a different scaling choice (Appendix C).

III. DISCUSSION AND COMPARISON
WITH EXPERIMENTS

A. Homogeneous solution and linear stability

The system describing the laser dynamics, Eqs. (40), pos-
sesses a one-parameter family of nonvanishing homogeneous
solutions:

F =
√

μ̃

4σ̃
eiφ, S = 0. (42)

We now analyze the linear stability of the particular nonvan-
ishing solution φ = 0:

F =
[√

μ̃

4σ̃
+ η(fx + ify)

]
eikzeλ(k)t ,

S = ηseikzeλ(k)t , (43)

where k stands for the perturbation wave vector, η is the pertur-
bation amplitude (assumed to be small), and λ(k) represents the
temporal evolution. We are especially interested in the critical
eigenvalue (λφ) associated with the time translation invariance
symmetry of Eq. (40) and characterized by λφ(k = 0) = 0.
Looking for λφ as an expansion in k, we obtain

λφ = [l2k
2 + l4k

4 + O(k6)] + i[−V k + O(k5)], (44)

with

l2 = −ε
c0rc1r + c0ic1i

c0r

,

l4 = −ε2 c2
1i

(
c2

0r + c2
0i

)
2c3

0r μ̃
. (45)

Some important remarks are now in order:
(1) l4 is always negative and corresponds to small space

scale dissipation.
(2) l2 gives the usual Benjamin-Feir phase instability

criterion [26]. Negative values of l2 correspond to the stability
of the homogeneous nonvanishing solution, while positive
ones are associated with a phase-unstable regime with possible
oscillations in the optical frequency (as observed in [14–17]).

(3) The crucial difference between Eqs. (40) and those of
[20] lies in the existence of c1i , the imaginary part of c1.
Indeed, if c1i = 0 the leading term in Re{λφ} < 0 and the
monochromatic solution remains stable, as in [20], although
long transients (λφ ∝ ε

L2 , L laser length) may be mistaken for
multimode dynamics (cf. Fig. 3, Appendix A, and Ref. [21]).

(4) l2 > 0 if β < − 1
α
< 0, thus the instability is controlled

by the ratio c1i

c1r
rather than by the absolute value of |c1| (which

may be very small).
(5) In the phase-unstable regime, the wave vector with the

highest growth rate (max{Re(λφ)}) is approximately given by

k2
max � − l2

2l4
. (46)

Substitution of this expression into Im(λφ) leads to a periodic
oscillation of the electric field with frequency

� � V kmax. (47)

Notice that this frequency can become as small as desired
as l2 approaches zero. This feature closely matches the
experimental observations, since the frequencies with which
the lasing modes cycle [14,15] are at least three orders of
magnitude smaller than the inherent oscillation frequencies
typical of semiconductor lasers. As such, this observation was
one of the most striking characteristics of the experimental
findings [14,15] and one which was most difficult to interpret
physically.

(6) The coefficient c0 can be reexpressed as

c0 = −iNpc
∂χ

∂N

χω

= Npc
∂χi

∂N

χω

(1 − iα), (48)

where α is almost [43] the usual alpha factor; ∂χi

∂N
is positive

because, near the threshold, the gain increases with population
inversion. χω is real by construction and turns out to be positive
(e.g., by computing it from the simple analytical expression of
Ref. [19]).

(7) Examining c1, we obtain

c1 = iV

2

(
χωωV

χω

− 1

)
= −V χiωω

2χω

(1 − iβ), (49)

with

β = χω

V χiωω

(
χrωωV

χω

− 1

)
. (50)

The real part of c1 is associated with the curvature of the
gain curve with respect to the frequency. As χiωω < 0, the
real part is positive, as expected. This means that as soon
as the wave vector deviates from its critical value kc (and
therefore the frequency deviates from ωc), the gain decreases
as −c1r (k − kc)2.

(8) l2 can be reexpressed as

l2 = −εc1r (1 + αβ). (51)

Therefore from the point of view of the spatiotemporal
dynamics, the β coefficient is at least as important as the α

coefficient, since it is the product αβ which determines the
stability of the solution. This new β parameter turns out to be
an essential characteristic of semiconductor lasers. Evidence
of its existence and its analytical expression is the main result
of our analysis.

B. Does the phase instability regime exist?

In order to estimate realistic physical values for β, thereby
assessing the possibilities for l2 > 0, we consider the analytical
approximation for the susceptibility in MQW lasers [19,44]:

χ (ω,N ) = −χ0

[
2ln

(
1 − v

u − i

)
− ln

(
1 − B

u − i

)]
,

(52)

where χ0 is constant, v = N
Nt

, u = ω− Et
�



, and B is a constant

which depends on km the maximum wave vector contained in
the first Brillouin zone, on the effective electron mass meff and
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-46.2

-46.5

-46.8

3837 37.5
ln( E)

ln(N)

FIG. 1. Experimental data of the band-gap renormalization of a
103 Å GaAs/Ga1−xAlxAs quantum well at 300 K extracted from [45]
and replotted to provide the required information. The plot displays
ln(�E) versus ln(N ), where �E = Et (0) − Et (N ) is expressed in
Joule and N , the surface charge density, in m−2 [Eq. (53)]. The
continuous line is the linear best fit. The fitting parameters are ln(a) =
−70 ± 1 and b = 0.62 ± 0.03.

on 
. Band-gap renormalization effects due to the screened
Coulomb interaction between electrons and holes can be taken
into account by renormalizing the transition energy Et :

Et (N ) = �ωt − aNb =⇒ u = ω − ωt



+ ps

(
N

Nt

)b

, (53)

where ps=( aNb
t

�

) is the band-gap shrinkage parameter [19].

The coefficients a and b are material dependent and can be
experimentally determined from [45,46] (Figs. 1 and 2). For
the other parameters entering the evaluation of the stability
properties (52), we use Nt = 0.5 1015 m−2 (surface carrier
density at transparency), ωt = 0.63 × 1015 Hz, meff = me,
km = 0.58 × 1010 m−1, and χ0 = 1. With this set of data,

-46.2

-46.8

-47.4

36
ln( E)

ln(N)37 38

FIG. 2. Experimental data of the band-gap renormalization of an
80 Å (white squares) and a 150 Å (black diamonds) InxGa1−xAs/InP
quantum well at 77 K extracted from [46] and replotted to provide
the required information. The plot displays ln(�E) versus ln(N ),
where � E = Et (0) − Et (N ) is expressed in joule and N , the surface
charge density, in m−2 [Eq. (53)]. The continuous lines are the linear
best fits. The fitting parameters are ln(a) = −60.93 ± 0.06 and b =
0.386 ± 0.002 (black diamonds), and ln(a) = −60.4 ± 0.2 and b =
0.367 ± 0.006 (white squares).

TABLE I. Determination of the Benjamin-Feir stability criterion
in the absence (a = b = 0) and in the presence of band-gap
renormalization for various classes of devices.

Band gap α β 1 + αβ

a = 0, b = 0 −1.00 −0.9068 1.907
Lach et al. [45] 3.421 −0.9065 −2.10
Kulakovskii and et al. [46], 80 Å 5.118 −0.9060 −3.64
Kulakovskii and et al. [46], 150 Å 4.085 −0.9061 −2.71

we select a loss rate (here we use σ = 1013 Hz), then solve
Eq. (6) and determine the critical pump parameter Npc as well
as ωc and kc through Eq. (8). This allows us to build Table I
which provides direct information on the stability. We remark
that the Benjamin-Feir stability criterion shows a sudden sign
change, from l2 < 0 to l2 > 0, when band-gap renormalization
effects are taken into account. Hence, we conclude that, for
the classes of devices which we are explicitly considering
here, band-gap renormalization induces a phase instability. As
band-gap renormalization effects are mainly density carrier
corrections, it is mostly the α coefficient which is modified
[43], while β remains almost constant, as clearly shown in
Table I.

C. Analogy with the complex Ginzburg-Landau equation

Other approximate properties of Eqs. (40) may be inferred
from the comparison with the CGLE, for which vast literature
exists [47]. In the CGLE the phase instability appears either as
pure phase turbulence or as a mixture of phase and amplitude
turbulence [27,28]. Although the phase gradients are strongly
fluctuating in both cases, in the former the amplitude is almost
constant, while in the latter its dynamics is also turbulent.
For comparison with the CGLE, even though not entirely
justifiable, we perform the standard adiabatic elimination of
S (setting S � μ̃ − 4σ̃ |F |2 and substituting into the electric
field equation), obtaining

∂T F � c0μ̃F − V ∂ZF − 4σ̃ c0|F |2F + εc1∂ZZF + · · · .

(54)

By analogy, we then expect (i) a pure phase instability regime
for small c0i/c0r and large c1i/c1r , and (ii) an amplitude turbu-
lent regime for large c0i/c0r and small c1i/c1r . In the pure phase
instability regime, where the amplitude dynamics is enslaved
to that of the phase gradients, the adiabatic elimination of
the amplitude leads to the well-known Kuramoto-Sivashinsky
phase equation [47] for which the number of positive Lyapunov
exponents was shown to linearly increase with the system’s
size [33]. Thus, we expect the phase instability to act as a
“noise generator” for the laser’s electric field amplitude.

D. Numerical simulations and comparison with experiments

We have performed numerical simulations of Eqs. (40)
using a standard fourth-order Runge-Kutta algorithm for the
temporal scheme and a sixth-order finite-difference method to
approximate spatial derivatives. We have carefully checked,
by using several values of the space and time increments,
that the numerical noise does not induce visible effects,
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FIG. 3. Log-linear power spectrum of F , from Eqs. (40) at
different times, in the phase-stable regime. Some parameters are
common to all our simulations: μ̃ = 0.1, σ̃ = 2, χr = 3. Specific
to this simulation c0 = 0.012 55 + i0.0025, c1 = 1.1955, c2 = 0.
The time increment is 0.05, the space increment 0.125, and the
discretization is taken on 1024 points. The spectral components are
computed in the time intervals (×104): (a) [1,4], (b) [5,8], (c) [10,13],
and (d) [57,60].

at least from a qualitative point of view. Although the
experimental results we refer to [14–17] are obtained in the
presence of Fabry-Perot-type boundary conditions, here—as
is common in numerical work—we use periodic boundary
conditions.

Given the long relaxation time scales expected from the
phase dynamics, in order to ensure convergence in our
simulations we first explore the phase-stable regime. For the
parameter values of Fig. 3, the slowest phase gradient decay
rate is λφ( 2π

L
) ∼ 3 × 10−6. Thus, we expect, and do observe,

that the initial phase gradients vanish after a characteristic
time τ ∼ 106. On the basis of this result, in the following
figures we only show predictions obtained in the asymptotic
regime. Note that the regular aspect of the power spectrum in
the asymptotic regime [Fig. 3(d)] proves numerical noise to be
negligible.

By analogy with the CGLE, we associate the numerical
observations of Fig. 4 with an amplitude turbulence regime,
where not only the phase gradients but also the amplitude
strongly fluctuate in space and time. The associated power
spectrum is shown in Fig. 5(d). This parameter regime should
correspond to the experimental observations obtained far
from threshold, where no particular modal sequence was
observed and where the total intensity oscillates irregularly
[48].

Figure 6 has been numerically obtained in the pure
phase-unstable regime (small α, large β). The electric
field frequency displays regular variations with asymmet-
ric periodic cycling (the rise time being shorter than the
fall time). Only few modes are involved in the dynamics
[Fig. 5(c)] and the total intensity is nearly constant. These
predictions are in very good qualitative agreement with the
experimental observations of deterministic mode switching
[14,15], with a sole discrepancy in the intensity bandwidth:

Time

+0.20

-0.20

0
205

|F| Re(F)

FIG. 4. Numerical simulation of Eq. (40) in the amplitude-
turbulent regime. The length L of the numerical box is 512, c0 =
0.0050 + i0.0065, c1 = 0.25 − i0.225, and c2 = −i2.5006. The
continuous line stands for the amplitude evolution with time, at a
fixed spatial position, and the dashed one for the real part of F versus
time. The dynamics is clearly turbulent. The power spectrum is shown
in Fig. 5(d).

In the experiment the intermode beatings—if present—could
not be detected, while in our calculations they are truly
absent.

Finally, we have simulated Eqs. (40) in a phase-stable
regime but with the addition of white noise in space and
time uniformly distributed between ±ζ

√
dt where dt is the

time increment and ζ = 4 × 10−3. The aim is to compare the
effect of externally injected noise to the one intrinsic to the
phase instability. Although the latter involves a much narrower
frequency range, they both produce multimode dynamics with
somewhat differing spectral features [Figs. 5(b) and 5(c)].

IV. CONCLUSION

In conclusion, by computing the normal form description of
a semiconductor laser bifurcation near its threshold, we have
obtained a general model from which we deduce the existence

|F( )|^ |F( )|^

|F( )|^|F( )|^ (d)(c)

(b)(a)
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FIG. 5. Typical power spectra of F in a log-linear scale obtained
from the integration of Eqs. (40). (a) Phase-stable regime with no
added noise corresponding to Fig. 3(d). (b) White noise added on
space and time in the regime shown in (a). (c) and (d) Phase-unstable
regime (no added noise)—(c) corresponds to the pure phase instability
(cf. Fig. 6) and (d) to amplitude turbulence (cf. Fig. 4).
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Time200

0.01

0.05

|F| F  Ft
*

|F|2
Im( (

FIG. 6. (Color online) Numerical simulation of Eq. (40) in the
pure phase-unstable regime, with c0 = 0.0125 + i0.0025, c1 =
1.1955 − i11.9552, and c2 = −i2.5006. The length L of the nu-
merical box is 119.3984. The solid, top line (black) represents the
temporal evolution of the field amplitude, at a fixed spatial position;
the dashed, bottom line (red) shows the time derivative of the phase of
F [i.e., Im( F ∗∂t F

|F |2 )]. As observed experimentally, the total intensity is
constant and the electric field frequency oscillation is not symmetric.
The power spectrum is shown in Fig. 5(c).

of a parameter β, proven, both analytically and numerically,
to play a crucial role—in conjunction with the well-known α

parameter—in the control of the phase instability. Our numer-
ical simulations, predicting (asymmetric) periodic oscillations
in the laser frequency, are in good qualitative agreement
with the experimental observations [14–17]. Even though
material-related noise sources and photon noise sources are
always present, and can even be strong in semiconductor
devices, our results allow one to consider an interpretation
where, in the phase-unstable regime, the external sources of
noise may only be an additional accessory which superposes
some secondary randomness onto a basically regular (pure
phase) or irregular (amplitude turbulence) behavior. Further
work is needed to satisfactorily address all the issues related
to the simultaneous action of determinism and randomness in
these lasers.

APPENDIX A: SERRAT AND MASOLLER’S DESCRIPTION

In [20], the authors derive the following system of equa-
tions:

∂F

∂t
= −∂F

∂z
+ k

[
−iαN + (N − 1)

(
1 + Gd

∂2

∂z2

)
− γint

]
F,

∂B

∂t
= +∂B

∂z
+k

[
− iαN+(N − 1)

(
1 + Gd

∂2

∂z2

)
− γint

]
B,

∂N

∂t
= j − γnN − (N − 1)(|F |2 + |B|2) + d

∂2N

∂z2
, (A1)

which possesses a four-continuous-parameter (φF , φB , θ , and
K) family of solutions

F = R cos(θ )ei(�t−Kz+φF ),

B = R sin(θ )ei(�t+Kz+φB ),

N = N0, (A2)

with

R2 = Gd (γn − j )K2 − γn(γint + 1) + j

γint
,

N0 = GdK
2 − γint − 1

GdK2 − 1
,

� = GdK
3 − GdαkK2 − K + αk(1 + γint)

GdK2 − 1
. (A3)

Let us look at the linear stability of these solutions, where, for
the sake of clarity, we restrict ourselves to the case where 0 =
φF = φB = K (the case where K �= 0 is not fundamentally
different, though).

Among the linear eigenvalues, three are critical. They can
expressed as

λ1 = −iq − r12q
2 + · · · ,

λ2 = +iq − r12q
2 + · · · , (A4)

λ3 = i[1 − 2cos(θ )2]q − r3q
2 + · · · ,

where q is the perturbation wave number and the dots stand
for higher powers of q. r12 and r3 are real numbers defined as

r12 = kγintGd,

r3 = 2(γn−j )[cos(θ )2−cos(θ )4]+Gdγ
3
intk

2(γintγn+γn−j )

γintk(γintγn+γn − j )
.

(A5)

For the parameters used in [20], these coefficients turn out to
be positive, so that the solutions, Eqs. (A3), are phase stable.
In a numerical box of length L, the phase gradients are then
expected to decrease with a characteristic time τ given by

τ = 1

r12
(

2π
L

)2 � 105. (A6)

This long characteristic time can lead to confusing a transient
with an asymptotic state. This is especially true for the con-
ditions of Ref. [20], where the authors used a time increment
�t = 1/300 for which the characteristic time τ is reached after
�107 iterations. Figure 7 displays the long-time evolution
of the power spectrum of F in the parameter regime where
Ref. [20] identified mode switching. Clearly, the multimode
dynamics slowly disappears in favor of a monochromatic one.

APPENDIX B: d N
N pc

= ( γ

ωc
)3/2

As discussed in Sec. II C, the scaling choice is not unique.
Here we investigate a scaling different from the one discussed
previously. Instead of dN

Npc
∝ ( γ

ωc
)1/2 we now assume dN

Npc
∝

( γ

ωc
)3/2. We therefore introduce the following scalings:

γ = ωcε
2,

Np = Npc(1 + μ̃ε3),

σ = ωcεσ̃ , (B1)


 = ωcε
̃,

D = ωc

k2
c

εD̃,
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FIG. 7. Numerical simulation of Eq. (A1) with exactly the same
parameter values used in [20] for Fig 4(c). The plots show the power
spectra of F at different times: 2 × 104, 105, 3 × 105, and 8 × 105.
The power spectra are computed by integration over a 103 time
interval in rescaled units. For the first plots, the spectrum is still
slowly evolving with time, but it becomes rigorously stationary for
the last ones.

with

N = Npc(1 + ε3S + ε4N4 + · · · ),

E =
√

ωcNpc�

ε0
(ε2E2 + ε3E3 + · · · ),

P

ε0
=

√
ωcNpc�

ε0
(ε2P2 + ε3P3 + · · · ), (B2)

and

∂t = ωc

(
∂t0 + ε4∂t4 + ε5∂t5 + · · · ),

∂z = kc

(
∂z0 + ε3∂z3 + · · · ). (B3)

At order ε2 solvability requires

∂t0t0 (E2 + P2) = c2k2
c

ω2
c

∂z0z0E2 (B4)

and a possible solution is

E2 = Fei(t0−z0) + c.c.,

P2 = χrFei(t0−z0) + c.c. (B5)

At order ε3,

∂t0t0 (E3 + P3) = −σ̃ ∂t0E2 + c2k2
c

ω2
c

∂z0z0E3,

∂t0S = 0. (B6)

A possible solution is then

E3 = 0,

P3 = iσ̃F ei(t0−z0) + c.c.,

∂t0S = 0. (B7)

At order ε4,

∂t0t0 (E4 + P4) = c2k2
c

ω2
c

∂z0z0E4,

∂t0N4 = D̃∂z0z0S + 2E2∂t0P2. (B8)

A possible solution is

E4 = 0,

P4 = 0,

N4 = χrF
2e2i(t0−z0) + c.c.,

∂z0S = 0. (B9)

At order ε5,

∂t0t0 (E5 + P5) = c2k2
c

ω2
c

(
∂z0z0E5 + 2∂z0z3E2

)
,

∂t0N5 = μ̃ − S + D̃∂z0z0N4 + 2E2∂t0P3. (B10)

Looking for a solution of the form

E5 = F5e
i(t0−z0) + c.c. (B11)

leads to

P5 = ei(t0−z0)

[
χrF5 + Npc

∂χ

∂N
SF2 − iχω∂t4F2

]
+ c.c. (B12)

Collecting terms, the solvability conditions are expressed as

∂t4F = −V ∂z3F + c0SF,

0 = μ̃ − S − 4σ̃ |F |2, (B13)

which shows that there is no dynamics associated with S.
We can interpret this result in the following way: With this
particular scaling choice, the dynamics of the electric field
amplitude is so slow, compared to γ

ωc
, that the carrier density

plays the role of a fast variable; thus it can be adiabatically
eliminated.

APPENDIX C: d N
N pc

= ( γ

ωc
)1/3

The last scaling choice announced in Sec. II C requires the
following scalings:

γ = ωcε
6,

Np = Npc(1 + μ̃ε2),

σ = ωcε
3σ̃ ,


 = ωcε
3
̃,

D = ωc

k2
c

ε3D̃, (C1)

with

N = Npc(1 + ε2S + ε3N3 + ε4N4 + · · · ),

E =
√

ωcNpc�

ε0
(ε5/2E5/2 + ε7/2E7/2 + · · · ),

P

ε0
=

√
ωcNpc�

ε0
(ε5/2P5/2 + ε7/2P7/2 + · · · ), (C2)
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and

∂t = ωc(∂t0 + ε5∂t5 + ε6∂t6 + · · · ),

∂z = kc(∂z0 + ε2∂z2 + ε3∂z3 + · · · ). (C3)

Note that, although we used the same ε for the previous
two choices of exponents (r = 3

2 and r = 1
2 ), here we have

redefined it, Eq. (C1), in order to minimize the manipulation
of fractional exponents.

At order ε2 solvability requires

∂t0S = 0. (C4)

At order ε5/2,

∂t0t0 (E5/2 + P5/2) = c2k2
c

ω2
c

∂z0z0E5/2. (C5)

A solution is now

E5/2 = Fei(t0−z0) + c.c., P5/2 = χrE5/2. (C6)

At order ε3,

∂t0N3 = D̃∂z0z0S, (C7)

with solution

N3 = 0, ∂z0S = 0. (C8)

At order ε7/2,

∂t0t0 (E7/2 + P7/2) = c2k2
c

ω2
c

∂z0z0E7/2, (C9)

whose solution is

E 7
2

= 0 = P7/2. (C10)

At order ε4,

∂t0N4 = 0, (C11)

whose trivial solution is

N4 = 0. (C12)

At order ε9/2,

∂t0t0 (E9/2 + P9/2) = c2k2
c

ω2
c

(
∂z0z0E9/2 + 2∂z0z2E5/2

)
. (C13)

Looking for a solution for E9/2 of the form (F9/2e
i(t0−z0) + c.c.)

leads to

P9/2 = ei(t0−z0)

[
χrF9/2 + Npc

∂χ

∂N
SF5/2 − iχω∂t5F5/2

]
+ c.c.

(C14)

The solvability condition is expressed as

∂t5F5/2 = −V ∂z2F5/2 + c0SF5/2, (C15)

where c0 and V are the same as those previously defined in the
main text, Eq. (32). Then a possible solution is

E9/2 = 0, P9/2 = 2ic2k2
c

ω2
c

∂z2F5/2e
i(t0−z0) + c.c. (C16)

At order ε5,

∂t0N5 = 2E5/2∂t0P5/2, (C17)

whose solution is

N5 = χrF
2
5/2e

2i(t0−z0) + c.c. (C18)

At order ε11/2,

∂t0t0 (E11/2 + P11/2)

= −σ̃ ∂t0F5/2 + c2k2
c

ω2
c

(
∂z0z0E11/2 + 2∂z0z3E5/2

)
. (C19)

Looking for a solution for E11/2 of the form (F11/2e
i(t0−z0) +

c.c.) we obtain

P11/2 = [
χrF11/2+iσ̃F5/2 − iχω∂t6F5/2

]
ei(t0−z0)+c.c. (C20)

The solvability condition is

∂t6F5/2 = −V ∂z3F5/2, (C21)

which just corresponds to a renormalization of Eq. (C15).
When this condition is satisfied, a possible solution is

E11/2 = 0,

P11/2 =
[
iσ̃F5/2 + 2ic2k2

c

ω2
c

∂z3F5/2

]
ei(t0−z0). (C22)

At order ε6,

∂t0N6 = D̃∂z0z0N5, (C23)

which leads to

N6 = 2iχrD̃F 2
5/2e

2i(t0−z0) + c.c. (C24)

At order ε13/2,

∂t0t0 (E13/2 + P13/2)

= c2k2
c

ω2
c

[
∂z0z0E13/2 + (

2∂z0z4 + ∂z2z2

)
E5/2

]
. (C25)

Looking for a solution of the form

E13/2 = F13/2e
i(t0−z0) + G13/2e

3i(t0−z0) + c.c., (C26)

we find

P13/2 = ei(t0−z0)

⎡⎢⎣χrF13/2

+ 1
2

∂2χ

∂N2 N
2
pcS

2F5/2 − iχω∂t7F5/2

− iχωNpcS∂t5F5/2 − χωω

2 ∂t5t5F5/2

⎤⎥⎦
+ e3i(t0−z0)[· · · ] + c.c. (C27)

The solvability condition now takes the form

iχω∂t7F5/2 = −1

2

∂2χ

∂N2
N2

pcS
2F5/2 + iχωNpcS∂t5F5/2

+ χωω

2
∂t5t5F5/2 + c2k2

c

ω2
c

(−2i∂z4 + ∂z2z2

)
F5/2.

(C28)

Comparing the previous equation with Eq. (39), we find that
they are nearly identical, save for the term ∂χ

∂N
Npc[N2E1]1

which is present in Eq. (39) but not here. An equivalent to this
term will appear at order ε15/2 as [N5E5/2]1.

At order ε7,

∂t0N7 + ∂t5S = D̃
(
∂z0z0N6 + ∂z2z2S

) + 2E 5
2
∂t0P9/2, (C29)
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and the solvability condition is expressed as

∂t5S = D̃∂z2z2S − 4c2k2
c

ω2
c

∂z2 |F5/2|2. (C30)

Comparing with Eq. (32), we find that some terms are missing
(e.g., (μ̃ − S), which will appear at order ε8], while new ones
are emerging (e.g., ∂z2z2S).

In conclusion, whatever the initial scaling choice [ dN
Npc

∝
( γ

ωc
)1/2 or ∝ ( γ

ωc
)1/3], and for an infinite expansion order, the

two final normal form descriptions are identical. However,
for a finite expansion order, the two approaches may differ
and the choice of the remaining terms is then based on
their physical relevance and the physical phenomena to be
modeled.
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