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We introduce a theoretical framework which is suitable for the description of all spatial and time-multiplexed
periodic single-photon sources realized or proposed thus far. Our model takes into account all possibly relevant
loss mechanisms. This statistical analysis of the known schemes shows that multiplexing systems can be optimized
in order to produce maximal single-photon probability for various sets of loss parameters by the appropriate
choice of the number of multiplexed units of spatial multiplexers or multiplexed time intervals and the input
mean photon pair number and reveals the physical reasons of the existence of the optimum. We propose a
time-multiplexed scheme to be realized in bulk optics, which, according to the present analysis, would have
promising performance when experimentally realized. It could provide a single-photon probability of 85% with
a choice of experimental parameters which are feasible according to the experiments known from the literature.
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I. INTRODUCTION

As is prevalently known, single-photon sources are of
utmost importance in optical quantum information process-
ing, as well as in quantum optics. While many optical
quantum information-processing schemes—including linear
optical quantum computing [1,2], long-distance quantum
key distribution [3,4] and communication [5,6], quantum
teleportation [7–10], tests of quantum nonlocality [11–15], or
boson sampling processors [16–19]—assume the controlled
availability of single photons, in the latter case it can be
necessary for the creation of certain nonclassical states of
light [20–24]. In the past 15 y extensive experimental efforts
aiming at producing efficient single-photon sources have
been under way. Deterministic sources can be realized using
different kinds of single quantum emitter systems such as
quantum dots [25–27], diamond color centers [28–32], single
atoms [33,34], ions [35], and molecules [36,37], as well
as ensembles of cold atoms [5,38]. Nevertheless, each of
these methods has certain issues to overcome [39], including
collection efficiency and repetition rates or the complexity of
experimental setups. It seems that in most of the known such
systems, the indistinguishability of the produced photons is
not high enough for the majority of the practical applications.

These problems stimulated the construction of heralded
single-photon sources (HSPSs) based on correlated photon
pair generation in nonlinear optical media including sponta-
neous four-wave mixing (SFWM) in optical fibers and sponta-
neous parametric downconversion (SPDC) in bulk crystals and
waveguides. The latter process has been proven to be the most
flexible and widespread resource for experiments in quan-
tum information processing because highly indistinguishable
single photons in an almost ideal single mode with known
polarization can be generated with SPDC systems [40–45].
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Unfortunately, the probabilistic nature of the pair generation
complicates the creation of a deterministic, that is, either an
on-demand or periodic single-photon source based on this
system. Though the timing can be easily ensured by pulsed
pumping, there remains a finite probability of generating either
more than one or no photon pairs during an expected heralding
event.

In the literature there are two suggested ways for over-
coming this problem and enhancing the single-photon prob-
abilities without increasing the output noise: spatial multi-
plexing [46,47] and time multiplexing [48–51]. In an earlier
version of time multiplexing, the application of a fiber-photon
storage loop or a very-high-finesse photon storage cavity has
been proposed for proper timing [48,49]. In Ref. [50] an
actively time-multiplexed scheme with a multistage delay line
was presented that can be realized on a silicon-on-insulator
photonic integrated circuit. A similar scheme was considered
in Ref. [51]. Recently, a combination of spatial and time
multiplexing has also been proposed [52]. Thus far, only
spatial multiplexing has been demonstrated experimentally
[53–55].

In this paper we provide a detailed statistical description
which is applicable to all known kinds of multiplexed sources,
aiming at the maximization of single-photon probabilities
under realistic experimental conditions, taking into account
the possible loss mechanisms. We analyze these multiplexed
systems for various sets of loss parameters. Moreover, we
propose a bulk time-multiplexed scheme whose performance
can be the best considering state-of-the-art experimental
technology compared to the other known schemes, according
to the analysis.

The paper is organized as follows. In Sec. II we re-
view the known multiplexed periodic single-photon sources.
In Sec. III a bulk time-multiplexed scheme is presented.
Section IV introduces the proposed statistical description
which is applicable to all known kinds of multiplexed sources.
In Sec. V we use the proposed scheme to analyze various kinds
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of multiplexing schemes, namely an ideal multiplexing system,
a spatial multiplexer, a storage-cavity-based multiplexer, and
the proposed bulk time multiplexing scheme. Finally, in
Sec. VI we summarize our results.

II. OVERVIEW OF MULTIPLEXED PERIODIC
SINGLE-PHOTON SOURCES

A SPDC process generates photon pairs probabilistically.
A strong continuous or pulsed laser field, the pump, enters a
crystal with second-order optical nonlinearity. The interaction
with the crystal results in the conversion of some of the
pump photons into simultaneously generated photons of lower
frequency. While the frequencies are determined by the energy
conservation, the wave numbers, and thus the propagation
direction of the generated photons, are determined by the
conservation of momentum, termed as a phase-matching
condition in this context. Altogether there are direction pairs
in which there are photons arriving at random instants, but
completely correlated in time: If there is a photon in one of the
directions (called the signal photon), it is sure that there is a
corresponding one propagating to the idler direction (the idler
photon) at the same time [56,57]. Obviously, spectral filtering
has to be applied to select the highly correlated photon pairs
in different SPDC sources.

After the filtering the probability of generating n signal-
idler pairs within a measurement time interval �t can be
described with thermal statistics. For weaker spectral filtering
the statistics approaches the Poissonian limit. Due to this
nature of the SPDC process there is a finite probability of
obtaining either no photons or multiple photon pairs at a
time. As a consequence, detecting an idler photon with a
standard single-photon detector, which does not distinguish
multiphoton events from single-photon events, heralds the
presence of the signal photon or photons, thus yielding a HSPS
far from ideal.

A way of creating a deterministic periodic single-photon
source from this probabilistic one is the spatial multiplexing
of N single SPDC sources, i.e., multiplexed units, pumped by
a pulsed laser, into a single one. In such systems, the input
pump power I of the whole multiplexed system is chosen high
enough to ensure high probability of obtaining at least one
photon pair, while the pump power I/N of a single SPDC
source is low enough that the probability of generating more
than one pair in a multiplexed unit can be neglected. Obviously,
the period of this multiplexed HSPS is equal to the period of
the pulsed laser.

Time multiplexing is another possible way of addressing
this problem. Time-multiplexing schemes can be divided into
storage-cavity-based and cascade delay-based schemes. The
common feature of these techniques is that in order to achieve
a periodic source of period Tp, we choose an observation time
T < Tp for which we expect the arrival of at least one signal-
idler pair. We divide this observation time to smaller time
windows of length �t . If the system is pumped by a pulsed
laser, �t will be the pumping period, while for continuous
pumping the detector of the idler photons is active for such
periods. If an idler photon is detected at a given time window,
its signal counterpart is delayed to such an extent that finally

it leaves at the end of the time T . Thus, these time windows
are the counterparts of multiplexed units in such schemes.

Let us now consider the operation of spatially multiplexing
schemes in more detail. The key ingredients of the scheme are
the photon routers. These devices are electronically controlled.
They have multiple input ports and a single output. The control
signal determines which single input port is directed to the
output, while the others are closed. Consider now N sources
of photon pairs, preferably pumped by the same strong pulsed
laser. As the probability of the generation of a signal-idler pair
is low, it is likely that only one of the sources will emit a
pair. The detection of the idler can show which of the sources
provided the signal photon. If all the signal modes are fed
into a router, then the router sends the generated photon into
its single output port. Thereby it is certain that we do have
a signal photon, and it will be directed to the output. For the
case when there were multiple signal-idler pairs generated in
the same period, a priority logic should be implemented in
the router control to prefer only one of the signal photons. Of
course, the time required by the operation of the switching
should be compensated with a properly designed delay line in
the signal port. In this way a router can merge multiple SPDC
sources into a single one.

Because we intend to study practical issues of such a scheme
such as loss and efficiency, we have to take into account that the
prevalently available routers have only two input ports. Thus,
a single router is capable of merging two SPDC sources into
a single, more efficient source. This leads us to the cascaded
scheme depicted in Fig. 1, which is implemented in the known
experiments. Here we have pairs of SPDC sources (all pumped
by the same laser) merged at the first level. At the next level the
outputs of the pairs are arranged into pairs, and the detector
signal is also forwarded to control the routers of the next
level. Thus, the pairs of the first level are merged pairwise.
Finally there will be a single output only. Of course, the
already-mentioned priority logics as well as the delays should
be designed appropriately. Using the notation of Fig. 1, such
a system needs N = 2m input photon pairs and, accordingly,
N detectors and N − 1 photon routers. We remark here that
even though these schemes were first demonstrated in bulk
optics, due to the large number of required elements it is likely
that it would be scalable in integrated optical applications
only.

Now let us turn our attention to time-multiplexed schemes.
Figure 2 shows the arrangement for a storage-cavity-based
time-multiplexed scheme. Again, if an idler photon is detected
by the detector D�t , the detector signal triggers a logic which
controls the switches OS1 and OS2 to direct the heralded
photon to a storage cavity. At the end of the observation time
T the logic controls the second switch, OS2, to release the
photon, thereby ensuring the appropriate release time of the
photon. If the photon was detected in the nth time window of
length �t within the period of T = N �t , the storage cavity
introduces a delay of length td = (N − n)�t . Were there more
photons generated during the time T , only the first one is used.
This is the counterpart of the priority logic in this scheme.
In case of continuous pumping the inaccuracy of the time of
the idler detection is �t ; thus, the jitter of this method is also
�t . In case of pulsed pumping the idler detection can be more
accurate.
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FIG. 1. Schematics of a spatially multiplexed periodic single-
photon source. PRj is the j th photon router, the Dj ’s are detectors,
and ij and sj are the idler and signal arms of the j th SPDC source.
Dashed lines represent electronic control lines.

The third method analyzed in this article is the cascade
delay-based time-multiplexing scheme. This was proposed in
the context of integrated optics [50]. In the present paper,
however, we propose a new version of it, so we discuss its
details in the next section.
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FIG. 2. Schematics of a storage-cavity-based periodic photon
source. SPDC is a spontaneous parametric downconversion source
yielding twin photon pairs; OS1 and OS2 are optical switches. td is
the delay introduced by the cavity if the idler photon was detected in
the nth time window of length �t within the period of T = N �t .
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FIG. 3. Periodic photon source. SPDC is a spontaneous para-
metric downconversion source yielding twin photon pairs; D is the
detector unit detecting idler photons and switching OS0; OS0 is an
optical switch with a gate width �t that selects the twin signal photon;
C is the controller unit setting the optical switches OSi (i = 1, . . . ,m)
ensuring proper delay of the twin photon; the delay τ is needed for
the proper operation of the controller C.

III. A NOVEL BULK TIME-MULTIPLEXED SCHEME

Here we introduce our suggested setup for a time-
multiplexed scheme in bulk optics. The scheme is depicted
in Fig. 3. The idler part of the photon pairs emerging from
the continuous or pulsed SPDC source is detected for a time
interval of length T . Let the mean number of photon pairs
arriving in a duration T be λ. Having detected an idler photon
by the detector unit D, its signal pair is directed by the optical
switch OS0 to a delay system which introduces such a delay
as if the signal photon were to arrive at time T . At a time
�t after the detection of the idler photon the system shuts;
that is, only the signal photons generated in this time window
may enter the delay system. We assume that T = N�t , where
N = 2m, m being an integer. This is due to the discrete nature
of the multistep delay system assumed to be realized in the
experiment: There are m switchable delay units (branches)
realizing delays of 1�t,2�t,4�t, . . . ,k�t , where k = N/2.
Hence, if all the m delay units are turned on, the achieved
delay is (N − 1)�t . Were the first photon to arrive in the nth
time window, a delay of (N − n)�t has to be applied. In the
described delay system it means that we should only apply
those delay units that correspond to the digits 1 in the binary
numerical representation of N − n. In the scheme in Fig. 3
this is achieved by the use of the appropriate optical switches
activated by the control unit. Let the delay required by this
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PBS

PC

FIG. 4. Schematic figure of a single delay unit. PC, Pockels cell;
PBS, polarizing beam splitter. An initially vertically polarized photon
arrives at the PC. By changing its polarization, the photon can be
forced to use the delay line.

unit to ensure the appropriate delay configuration be denoted
by τ . We remark that in the case of pulsed pumping source
the pumping period has to be chosen to be equal to �t . After
the time the signal photon leaves the delay system, the whole
procedure of the detection of time length T is restarted. The
described process results in a photon source of period Tp.
The minimum practically achievable period of such a photon
source is

Tp,min = max(T + τ + τd,T + τ0), (1)

where τd is the minimal time for the signal photon to pass the
delay system without any activated delay unit, whereas τ0 is
the dead time of the detector, the time required by the detector
to register the next detection event. We note that in case of
continuous pumping the resulting jitter of this scheme is also
�t .

The switchable delay units may be realized in various
ways. In Fig. 4 we suggest a possible realization of such
a unit using a Pockels cell (PC), a polarizing beam splitter
(PBS), and two prisms, arranged as “periscopes.” Assume the
polarization of the incoming photon to be linear (horizontal or
vertical) and to be known in advance. Depending on whether
the delay unit should be used or not, the PC changes or keeps
the polarization of the photon. The next optical element, the
PBS, causes a S-polarized photon to be reflected at a right
angle, but a P -polarized photon to be transmitted. The delay
is implemented when the photon was S polarized and thus
reflected. In this case it enters the double-periscope system.
The first periscope elevates the reflected photon into a plane
perpendicular to the original propagation direction and makes
it propagate backwards along a direction parallel to the one
incident to the periscope. The second periscope lowers the
photon to the original plane and directs it to the other side of
the PBS. Finally, the PBS makes the photon to return to the
original propagation direction.

As an estimate for the particular parameters of the scheme,
the minimal feasible time window can be considered to be
�tmin = 100 ps. This value is determined by the spatial extent
of the delay unit corresponding to a delay of �t and the gate
width of the optical switch OS0. The minimal control time
of the presented multiplexer is around τmin = 30 ns. Hence,
the currently achievable minimal period of such a source,
assuming, e.g., m = 9 delay units, according to Eq. (1), should
be around Tp,min ≈ 80 ns. We note that for such a period the

above-mentioned �tmin can be an acceptable jitter when one
uses continuous pumping.

As the construction of a HSPS which only emits into a single
spectral mode is not trivial [58,59], using continuous pumping
can be advantageous for getting rid of spatial multimode
effects [60]. As a consequence, the bulk time-multiplexed
scheme presented in this section with a continuously pumped
SPDC unit is a promising candidate for constructing a truly
single-mode periodic single-photon source.

IV. A FRAMEWORK FOR THE STATISTICAL
DESCRIPTION

In this section we present a common theoretical framework
describing all the multiplexed periodic single-photon sources
presented in the previous two sections. The framework is
capable of describing HSPS systems pumped by either pulsed
or continuous sources.

Assume that the nth time window or multiplexed unit (either
of these will be termed as “unit” throughout this section) adds
j signal photons to the multiplexing system with probability
P

(j )
n independently of n. (For j = 0 it is the probability of

not a single arriving photon.) The probability of obtaining i

photons altogether in a period of the output signal of any of
the studied multiplexing systems in general reads

P0 = (
P (0)

n

)N +
N∑

n=1

(
P (0)

n

)n−1
∞∑

j=1

[(
j

0

)
P (j )

n V 0
n (1 − Vn)j

]
,

Pi =
∞∑
j=i

N∑
n=1

(
j

i

)(
P (0)

n

)n−1
P (j )

n V i
n (1 − Vn)j−i , i � 1. (2)

In these expressions, Vn is the probability that a signal photon
generated in the nth unit reaches the output; that is, it was not
lost in the multiplexing system. The term (P (0)

n )N describes
the case when there are not any photons detected in either of
the N units. The second term in the formula of P0 is the joint
probability of detecting an idler photon in the nth unit and all
the j signal photons coming from this unit are lost meanwhile.
Correspondingly, Pi is the joint probability of detecting an idler
photon in the nth unit, while there are j signal photons arriving
from this unit into the system, i of them are transmitted, and
j − i are lost.

Assuming standard non-photon-number-resolving detec-
tors of efficiency VD , the probabilities P (0)

n and P
(j )
n in (2)

can be obtained as

P (0)
n =

∞∑
k=0

(
k

0

)
P (k)

n

′
V 0

D(1 − VD)k,

P (j )
n = P (j )

n

′
j−1∑
k=0

(
j

j − k

)
VD

j−k (1 − VD)k , (3)

where P (k)
n

′
is the probability of arriving k photon pairs at

the multiplexing system in a multiplexed unit. In the case of
an SPDC photon source the probabilities P (k)

n

′
in the above
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expressions can be described by a Poissonian distribution,

P (k)
n

′ = (λ/N )k

k!
exp

(
− λ

N

)
, (4)

where λ is the mean number of photon pairs arriving in a
duration T for a time multiplexing system, while in the case of
spatial multiplexing it is the mean total number of photon pairs
arriving at the input ports of the whole multiplexing system.
The expression of P (0)

n in Eq. (3) describes the joint probability
of any number k of idler photons arriving at the detector and
none of them being detected. The expression of P

(j )
n describes

the case when j idler photons arrive at the detector and the
detector clicks (caused by any number of them). The detection
results in adding j photons to the multiplexing system. We
note that Eqs. (2) and (3) are valid for thermal distribution,
too. It is easy to verify that the probabilities in Eq. (3), as well
as the probabilities Pi in Eq. (2), sum up to 1, as appropriate.

For a detailed analysis of the described systems and the
calculation of their properties it is necessary to take losses into
account. This we describe by a transmission coefficient in the
theoretical framework applicable for all the studied systems,
albeit its actual form will depend on the particular scheme.

In our proposed time-multiplexed system there are four
kinds of losses which may arise. The signal photon may be
absorbed or scattered on its way through the medium of the
delay system. This we describe by the transmission probability
Vt relating to the propagation through the whole medium, that
is, the medium of the longest delay. An additional loss due to
the specific elements of delay units can arise if a delay unit
or branch is either used or not. Let the respective transmission
probabilities be denoted by Vr and Vr,0. These losses originate
mainly from the reflection and transmission efficiencies of
the PBS of a single delay unit in Fig. 4. Assume that the
first idler photon is detected in the nth time window and the
corresponding signal photon has to be delayed for (N − n)�t

and the number of delay branches is m. In this case the total
probability of transmission will read

Vn = V s
r V m−s

r,0 V
(N−n)/N
t Vb, (5)

where s is the Hamming weight of N − n (the number of ones
in its binary representation). The coefficient Vb is the generic
transmission coefficient independent of the nth time window,
which may be due to, e.g., the loss of the optical switch OS0

controlling the path of the signal photon, etc.
In spatial multiplexing systems optical routers are applied.

In the cascaded system with N = 2m spatial sources, a photon
originating from any of the units passes m routers. Hence, the
transmission coefficient reads

Vn = V
log2 N

R Vb, (6)

where VR stands for the transmission coefficient of a single
router. In case of cavity-based multiplexing the transmission
coefficient reads

Vn = V N−n
c Vb, (7)

where Vc is the transmission coefficient of the storage cavity
in case of a single round trip.

FIG. 5. The single-photon probability P1 plotted against the mean
photon pair number per multiplexed unit λ/N for various generic
transmission coefficients Vb, considering N = 256 multiplexed units
for an ideal multiplexer and assuming ideal detectors (VD = 1).

V. OPTIMAL SINGLE-PHOTON SOURCES

In this section we present our results regarding the opti-
mization of single-photon probability in various experimental
settings obtained by using the statistical model of Sec. IV. First
we study an ideal multiplexer in general. Then we take into
account the specialties of each discussed scheme.

A. Ideal multiplexers

Let us first investigate an idealized case when the loss
in the multiplexing system is independent of the number
of multiplexed units, so it is a constant. In the case of the
arrangements discussed in the previous section it means that
each transmission coefficient is equal to 1, except for the
Vb generic transmission coefficient in Eqs. (5), (6), and (7).
In Fig. 5 the single-photon probability P1 is plotted against
λ/N , the mean photon pair number per multiplexed unit,
for N = 256 units and various values of Vb as a parameter.
Let us note that the figure would be alike for an arbitrary N

number of units. It appears that for given values of N and Vb

the probability P1(λ) has a maximum; thus, there exists an
optimal choice λ

(N)
opt of the mean photon pair number for which

the maximal probability of single photons is obtained. The
physical reason is clear: For low mean photon pair numbers
(λ → 0) the probability of obtaining no photons will increase,
while a higher mean photon pair number makes the appearance
of multiple photons in a single time window more likely.

In Fig. 6 we can see the dependence of the optimal choice
λ

(N)
opt /N as a function of the number of multiplexed units

N for various Vb generic losses and still for ideal detectors
(VD = 1), while Fig. 7 shows the dependence of λ

(N)
opt (not

divided by N ) in the same way. We note that logarithmic scale
for N is used for ensuring comparability with the same plots
of other multiplexing schemes discussed afterwards. The two
figures illustrate the essence of the necessary considerations
for multiplexing: λ

(N)
opt increases with the number of units, as in
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FIG. 6. The optimal choice λ
(N)
opt /N of the mean photon pair

number per multiplexed unit as a function of the number of
multiplexed units N on semilogarithmic scale for different generic
transmission coefficients Vb for an ideal multiplexer and assuming
ideal detectors (VD = 1).

this case the probability of obtaining no photon pairs decreases.
Meanwhile, λ

(N)
opt /N decreases; hence, there is less chance for

multiple photons at the output.
In Fig. 8 one can see the achievable maximal single-photon

probability P1 at the optimal choice λ
(N)
opt of the mean photon

pair number as a function of the number N of multiplexed
units. The highest P1 is achievable with N → ∞. For a given
transmission coefficient Vb, the maximal probability P1,max is
just equal to Vb. Let us note that P1 gets close to its maximum
already for a relatively small number of units. For Vb = 0.9 and
N = 256, for instance, the maximal probability is P1 = 0.8895

FIG. 7. The optimal choice λ
(N)
opt of the mean photon pair number

as a function of the number of multiplexed units N on semilogarithmic
scale for different generic transmission coefficients Vb for an ideal
multiplexer and assuming ideal detectors (VD = 1).

FIG. 8. The achievable maximal single-photon probability P1 at
the optimal choice λ

(N)
opt of the mean photon pair number as a function

of the number N of multiplexed units on semilogarithmic scale for
different generic transmission coefficients Vb for an ideal multiplexer
and assuming ideal detectors (VD = 1).

at the mean photon pair number λ
(N)
opt = 6.46, or with respect

to a single unit, λ
(N)
opt /N = 0.025.

After discussing the idealized case in general, now let us
discuss the described schemes in the presence of loss, which
makes the behavior dependent on the particular arrangement.

B. Spatial multiplexers

Now we analyze spatial multiplexing, losses in the case of
which are described by Eq. (6). In Fig. 9 the single-photon
probability P1 is plotted against λ/N for N = 8 units and
different values VR of the transmission coefficient of the

FIG. 9. The single-photon probability P1 plotted against the mean
photon pair number per multiplexed unit λ/N , for various router
transmission coefficients VR , considering N = 8 multiplexed units
for a spatial multiplexer and assuming ideal detectors and no generic
losses (VD = Vb = 1).

053834-6



OPTIMIZATION OF PERIODIC SINGLE-PHOTON SOURCES PHYSICAL REVIEW A 90, 053834 (2014)

FIG. 10. The optimal choice λ
(N)
opt /N of the mean photon pair

number per multiplexed unit as a function of the number of
multiplexed units N on semilogarithmic scale for different router
transmission coefficients VR for a spatial multiplexer, assuming ideal
detectors and no generic losses (VD = Vb = 1).

multiplexing router. Here we assume that there are neither
generic nor detector losses in the system; that is, VD = Vb = 1.
In fact, a value of VR = 0.3 is the best feasible value in current
integrated optics, and the theoretical upper bound [53,61]
which may be feasible in any kind of such a system is
VR = 0.95. Figure 9 shows that the single-photon probability
P1 is much more sensitive to the change of the mean photon
pair number than the ideal arrangement discussed in the
previous section. The value λ

(N)
opt /N at which the maximum

of P1 is reached grows with the growth of the losses, for
values below 0.6 of the coefficient VR to a higher and higher
extent. The reason is that the mean photon pair number growth
compensates for the higher losses.

Figure 10 shows the values of λ
(N)
opt /N corresponding to

the maximal values of P1 as a function of the number N of
multiplexed units on a semilogarithmic scale. Note that the
behavior of these functions differs from the ones presented for
an ideal multiplexer in Fig. 6, which is the counterpart of this
figure. With the growth of the number of multiplexed units (or,
otherwise speaking, the growth of the number m = log2 N of
cascading router levels), the required optimal mean photon pair
number for a single unit decreases initially, but after a given
number of routers it starts to grow; hence, it has a minimum.
For VR = 0.95, this minimum is at Nmin = 8192, for VR = 0.9
it is at Nmin = 64, for VR = 0.85, Nmin = 16, and for VR = 0.8
it is at Nmin = 8. For a value of VR = 0.6 there is no such
extremum; the required λ

(N)
opt /N simply grows with N (or m).

This compensates for the growth of loss as described by Eq. (6).
Figure 11 shows the maximal values of P1 as a function

of N . It can be seen that in contrast to the case of the ideal
multiplexer (cf. Fig. 8), this has a maximum at a given number
of multiplexed units. This is the absolute maximum of the
single-photon probability P1,max which can be achieved by
spatial multiplexing with the optimal choice of the mean
photon pair number and the number of multiplexed units (or

FIG. 11. The achievable maximal single-photon probability P1 at
the mean photon pair number λ

(N)
opt as a function of the number N

of multiplexed units on a semilogarithmic scale for different router
transmission coefficients VR for a spatial multiplexer and assuming
ideal detectors and no generic losses (VD = Vb = 1).

router levels) subject to the given losses. The existence of
this maximum is due the fact that the growth of the cascaded
levels significantly increases losses, which deteriorates the
benefit of multiplexing. It appears that if N → ∞ (m → ∞),
for any value of VR < 1, the single-photon probability P1

tends to exp(−1), which is just the achievable maximum
without multiplexing. For the mean photon pair number per
multiplexed units corresponding to this limit, λ(N)

opt /N → V −m
R

holds. All these can be easily derived from Eqs. (2) and (6).
In Table I we have listed maximal single-photon probabil-

ities P1,max and the required number of router levels mopt =
log2 Nopt and λopt, calculated for different VR multiplexing
router transmissions and three different values of the detector
loss VD . The corresponding zero-photon probabilities P0,max

are also given. From the table it can be seen that for values
of VR = 0.3 currently achievable in integrated optics the
best choice is to have two multiplexed units, which, on
the other hand, does not lead to a significant improvement
compared to the value of P1 = exp(−1) ≈ 0.368 achievable
with a single unit. The best performance achievable with
any spatial multiplexer and ideal detectors is P1,max = 0.737,
in which case the theoretical maximum of VR = 0.95 is
assumed, and we need Nopt = 16 multiplexed systems, thus
mopt = log2 Nopt = 4 cascaded levels. The data clearly show
that the negative effect of real detectors can be compensated by
a higher λopt even for a detector efficiency as low as VD = 0.2,
but the achievable single-photon probability is, of course,
lower.

C. Storage-cavity-based multiplexers

Before turning our attention to the bulk time multiplexing
arrangement proposed in the present paper, let us analyze the
storage-cavity-based multiplexing system first. Throughout
this section we assume ideal detectors (VD = 1) and no
generic losses (Vb = 1). In Fig. 12 the dependency of the
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TABLE I. Maximal single-photon probabilities P1,max and the required number of router levels mopt = log2 Nopt and λopt at which they can
be achieved, calculated for different VR multiplexing router transmissions and three different values of the detector loss VD . The corresponding
zero-photon probabilities P0,max are also given.

VD = 1.0 VD = 0.9 VD = 0.2

No. VR mopt λopt P1,max P0,max mopt λopt P1,max P0,max mopt λopt P1,max P0,max

1 0.3 1 5.60 0.385 0.397 1 5.63 0.385 0.392 2 43.00 0.369 0.369
2 0.5 1 2.90 0.434 0.364 1 3.03 0.423 0.356 3 59.38 0.371 0.372
3 0.6 1 2.41 0.456 0.331 1 2.52 0.439 0.330 3 30.18 0.379 0.375
4 0.8 2 3.03 0.535 0.312 2 3.19 0.521 0.308 4 20.50 0.422 0.378
5 0.85 2 2.73 0.569 0.264 3 4.20 0.556 0.336 5 25.25 0.449 0.409
6 0.9 3 3.44 0.635 0.255 3 3.63 0.621 0.254 5 16.93 0.515 0.332
7 0.95 4 3.89 0.737 0.185 5 5.04 0.729 0.220 7 21.27 0.648 0.282

single-photon probability P1 on λ/N is to be seen for various
storage-cavity transmission coefficients Vc and N = 8 time
windows, the latter being the counterpart of the multiplexed
units in the present case. Compared to Fig. 9 displaying
the similar relations in the case of spatial multiplexing, the
similarity of this dependency is apparent. There is, however,
an interesting difference: As the losses increase (Vc � 0.8), a
local maximum of P1 appears for small λ/N . An additional
difference is that for smaller losses (Vc � 0.9) the optimal
mean photon pair number per time window corresponding
to the maximal single-photon probability decreases instead
of increasing with increasing loss. This tendency continues
at the mentioned local maxima for bigger losses (that is, for
Vc < 0.9). One can understand this behavior by realizing that
in such systems the decrease of the mean photon pair number
may also yield improvement in the single-photon probability,
as it makes more likely that the photon arrives later, closer to
the end of the observation time T , and thus it spends less time
in the storage cavity, where it is subjected to loss. This effect
competes with the increase of single-photon probability due to
higher mean photon pair number per time window, resulting
in a local maximum beside the global one for bigger losses.

FIG. 12. The single-photon probability P1 plotted against the
mean photon pair number per time windows λ/N for various storage-
cavity transmission coefficients Vc, considering N = 8 time windows
and assuming ideal detectors and no generic losses (VD = Vb = 1).

Figure 13 shows the dependence of optimal λ
(N)
opt /N

(corresponding to the maximal values of P1), while Fig. 14
shows that of λ

(N)
opt on the number of time windows. In this

case N can be any integer (in contrast to the restriction to
powers of two in case of spatial multiplexing); hence, we use
a linear scale instead of a semilogarithmic one, which we use
for all the other studied systems in the respective figures. For
periodically pumped SPDC sources, λ

(N)
opt corresponds to the

mean joint photon pair number of N multiplexed pulses. It
appears that in this system, λ

(N)
opt first increases, then starts

to decrease with increasing N . The decrease of the cavity
transmission results in a decrease of the values of N for which
λ

(N)
opt grows, while the decrease after the maximum becomes

faster. Hence, the curves for different Vc intersect. The reason
is that due to the losses it is beneficial if the photon gets into
the storage cavity as late as possible to spend less time in that
lossy environment. In Fig. 13 we can observe that, similarly to
what we found in the case of the ideal multiplexing system, the
value of λ

(N)
opt /N corresponding to the optimum decreases with

the increase of the number of time windows N . The curves

FIG. 13. The optimal choice λ
(N)
opt /N of the mean photon pair

number per time window as a function of the number of time windows
N for various storage-cavity transmission coefficients Vc, considering
N = 8 time windows and assuming ideal detectors and no generic
losses (VD = Vb = 1).
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FIG. 14. The optimal choice λ
(N)
opt of the mean photon pair number

plotted against the number of time windows N for various storage-
cavity transmission coefficients Vc, assuming ideal detectors and no
generic losses (VD = Vb = 1).

corresponding to different losses intersect again, as for small
N ’s the optimal mean photon pair number of a single time
window compensates for the losses, while for a larger number
of time windows, λ

(N)
opt /N is lower to decrease the time the

photon spends in the storage cavity.
In Fig. 15 we have plotted the maximal single-photon

probabilities P1 as a function of the number of time windows
for different losses. As it can be seen, this function has a
maximum at a given Nopt. As losses increase, this optimal
choice of the number of time windows decreases as for a higher
loss it is more likely that the photon is lost in the storage cavity
if it spends more time there, which deteriorates the benefits of
multiplexing. We remark here that the value of Vc = 0.97

FIG. 15. The achievable maximal single-photon probability P1 at
mean photon pair number λ

(N)
opt as a function of the number of time

windows N for various storage-cavity transmission coefficients Vc,
assuming ideal detectors and no generic losses (VD = Vb = 1).

is the realistic value corresponding to an implementation
of the control of the photons with PBSs. In this case the
maximal single-photon probability is P1, max = 0.706 achieved
at λopt = 3.014 with Nopt = 9 time windows.

D. Bulk time multiplexer

In what follows we analyze the bulk time multiplexer
depicted in Fig. 3, proposed by us. We assume the generic
transmission coefficient Vb = 1, and we consider all other
kinds of losses discussed in Sec. IV. In Table II we list all the
particular combinations of transmittivity parameters Vr , Vr,0,
and Vt we have analyzed, including the best triple available in
state-of-art experiments in line 4.

In Fig. 16 we have plotted the single-photon probability P1

as a function of λ/N for a system of N = 256 time windows,
that is, of m = 8 delay units. For a given N , and given values
of the transmission coefficients, the function has a maximum;
thus, there exists a value λ

(N)
opt for which the single-photon

probability is maximal. This appears to be the case for any
N . The physics behind it is the same as discussed at the
ideal multiplexers. Note that when we decrease any of the
three parameters Vr , Vr,0, and Vt , the achievable single-photon
probability will decrease. We remark that for bigger losses (not
shown) the behavior of the function P1(λ/N ) will be similar
to what we have seen in Fig. 12 for storage-cavity-based
schemes, but the local maxima will appear only for certain
combinations of the transmission coefficients. In fact, the
decrease of the mean photon pair number per time window
can only compensate for Vt .

In Fig. 17 we present the optimal choice λ
(N)
opt of the

mean photon pair number as a function of the number
of time windows N on semilogarithmic scale for various
loss coefficients presented in Table II. From the curves
corresponding to the parameter sets numbers 1 and 2 and
3, 4, and 5 in Table II, one can conclude that increasing
the losses proportional to the length of the delay branches
(V ′

t < Vt ) while keeping the coefficients Vr and Vr,0 (arising
from the use or the omission of a delay unit, respectively)
constant causes the optimal mean photon pair number λ

(N)
opt

required for the maximal single-photon probability to decrease
with the number of time windows. The explanation is similar
to the reasoning given in the previous section for the other
time-multiplexing scheme: The decreased mean photon pair
number leads to photons generated closer to the end of the
observation time T , thereby decreasing the necessary delay
time and the probability of losing the photon in the medium
of the delay system. From curves 4, 6, 7, and 8, we can
learn that if Vt and Vr,0 are fixed (in particular, Vt = 0.95,
Vr,0 = 0.97), then for Vr > Vr,0 (that is, if the loss arising
from the use of a delay branch is higher than that of its
avoiding) the optimal mean photon pair number required for
the maximal single-photon probability decreases, while for
Vr < Vr,0 it increases with the number of time windows. This
can be expected as the number of activated branches increases
with the increase of λ, resulting in smaller losses for Vr > Vr,0.
On the other hand, in the case of Vr < Vr,0 the decrease of the
mean photon pair number decreases the number of activated
branches, leading to smaller losses.
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TABLE II. Maximal single-photon probabilities P1, max and the mopt = log2 Nopt number of delay branches and the λopt at which they can
be achieved in the bulk time-multiplexed scheme for various loss parameter combinations. We also list the respective zero-photon probabilities
P0, max. The third column serves as the legend for the figures of this section.

VD = 1.0 VD = 0.2

No. Sign in Figs. Vr Vr,0 Vt mopt λopt P1, max P0, max mopt λopt P1, max P0, max

1 � 1 1 1 15 11.09 0.999 1.5 × 10−5 15 44.45 0.999 1.4 × 10−4

2 • 1 1 0.95 15 6.85 0.956 0.0439 15 33.62 0.955 0.0439
3 +× 0.996 0.97 0.99 7 7.00 0.887 0.0903 10 35.24 0.843 0.1341
4 � 0.996 0.97 0.95 7 6.60 0.858 0.1222 10 33.27 0.815 0.1646
5 ◦ 0.996 0.97 0.9 6 5.21 0.822 0.1484 9 26.26 0.781 0.1890
6 � 0.98 0.97 0.95 6 5.19 0.806 0.1662 9 26.50 0.749 0.2240
7 × 0.97 0.97 0.95 5 4.41 0.779 0.1748 8 22.75 0.715 0.2410
8 + 0.96 0.97 0.95 5 4.37 0.755 0.2021 8 22.71 0.684 0.2767

In Fig. 18 we have plotted the maximal single-photon
probability P1 as a function of the number of time windows,
for various loss coefficients. It appears that if there are only
propagation losses (Vr = Vr,0 = 1) in the system (curves 1 and
2), the function shows an increasing behavior asymptotically,
while if there are delay unit losses (Vr,Vr,0 < 1), these curves
also have a maximum. Of course, if Vr = Vr,0 = 1, there is
no disadvantage whatsoever in increasing the number of delay
units and at the same time the number of time windows, while
accompanying the decrease of the size of the time windows
the multiphoton probability decreases, which is an advantage.
Upon the presence of delay unit losses (Vr,Vr,0 < 1), however,
the increase of the number of branches shall increase the
zero-photon probability at the output, which is the competing
disadvantage.

In Table II we have listed the achievable maximal single-
photon probabilities P1,max along with the required number
of mopt delay branches, determined from the maxima of the

FIG. 16. The single-photon probability P1 as a function of λ/N

for different combinations of loss parameters, considering a system of
N = 256 time windows, that is, of m = 8 delay units for the proposed
bulk time multiplexer, assuming ideal detectors and no generic losses
(VD = Vb = 1). From top to bottom the curves presented in the figure
correspond to the transmission values indicated in Table II from 1
to 8.

curves of Fig. 18. The corresponding values of λopt are also
listed. We have also calculated how these parameters are
modified if we have real photodetectors, e.g., photomultipliers
in the arrangements with a quantum efficiency of η = 0.2,
corresponding to VD = 0.2. It appears that the achievable
maximal single-photon probabilities P1,max do not decrease
significantly; only the required mean photon pair number and
the number of branches changes in this case. We note that for
the parameter sets Nos. 1 and 2, which, in fact, correspond
to ideal multiplexers considered in Sec. V A, the value of the
number of delay branches mopt is the maximal one considered
in our calculations. Remember that for such systems the
absolute maximum of the single-photon probability P1 is, in
principle, in the infinite limit of the number of time windows N .
Finally, we calculated P1,max for the best parameters available
in the state-of-art experiment (No. 4 in Table II) and for
an effective detector such as an avalanche diode (VD = 0.9)
and obtained 85.4% at λopt = 6.92 and mopt = 7. This single-
photon probability is the best that seems to be experimentally

FIG. 17. The optimal choice λ
(N)
opt of the mean photon pair

number as a function of the number of time windows N on
semilogarithmic scale for various loss coefficients for the proposed
bulk time multiplexer, assuming ideal detectors and no generic losses
(VD = Vb = 1). The legend of the symbols is in Table II.
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FIG. 18. The achievable maximal single-photon probability P1

at the optimal choice λ
(N)
opt of the mean photon pair number as a

function of the number of time windows N on semilogarithmic scale
for various loss coefficients for the proposed bulk time multiplexer,
assuming ideal detectors and no generic losses (VD = Vb = 1). The
legend of the symbols is in Table II.

realizable nowadays in the analyzed multiplexed periodic
single-photon sources.

VI. CONCLUSIONS

We gave an overview of the multiplexed periodic single-
photon sources studied in the literature. We have suggested
a time-multiplexed scheme in bulk optics. Thus far, only
spatial multiplexing has been demonstrated experimentally;
however, as these schemes require a relatively large number

of components, their scalable realization is more feasible in
integrated optics. If done so, a variety of problems arise, those
related to coupling the input and output fields to the systems,
for instance, which are not present in the case of bulk optics.
All the elements of our proposal for time multiplexing in bulk
optics are available in current experiments.

We have introduced a theoretical framework for the statisti-
cal description of all the studied schemes, including the spatial
and time-multiplexing ones. We have taken into account all the
losses which may arise in the schemes. The application of this
analysis shows that multiplexing systems can be optimized
in order to produce maximal single-photon probability for
various sets of loss parameters by the appropriate choice of
the number of multiplexed units of spatial multiplexers or
multiplexed time intervals and the input mean photon pair
number and reveals the physical reasons of the existence of the
optimum. We have performed this optimization for the studied
schemes. This may be of use for the optimal design of a spatial
or time multiplexer of this kind. The analysis shows that a
promising single-photon probability of 85% is feasible with
the time-multiplexed scheme in bulk optics we have proposed.

The presented study can serve as a good basis for a design
and realization of an SPDC-based periodic single-photon
source, which would be a necessary device for performing
many optical quantum information-processing tasks as well as
fundamental quantum optical experiments.

Note added in proof. Recently, we became aware of a related
e-print [62]. In this work the effect of loss is analyzed for
three specific spatial multiplexing schemes using a slightly
simplified mathematical framework.
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