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Enhanced optical nonlinearity and fiber-optical frequency comb controlled by a single atom
in a whispering-gallery-mode microtoroid resonator
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Based on a single atom coupled to a fiber-coupled, chip-based microresonator [B. Dayan et al., Science
319, 1062 (2008)], we put forward a scheme to generate optical frequency combs at driving laser powers as
low as a few nanowatts. Using state-of-the-art experimental parameters, we investigate in detail the influences
of different atomic positions and taper-resonator coupling regimes on optical-frequency-comb generation. In
addition to numerical simulations demonstrating this effect, a physical explanation of the underlying mechanism
is presented. We find that the combination of the atom and the resonator can induce a large third-order nonlinearity
which is significantly stronger than Kerr nonlinearity in Kerr frequency combs. Such enhanced nonlinearity can
be used to generate optical frequency combs if driven with two continuous-wave control and probe lasers and
significantly reduce the threshold of nonlinear optical processes. The comb spacing can be well tuned by changing
the frequency beating between the driving control and probe lasers. The proposed method is versatile and can be
adopted to different types of resonators, such as microdisks, microspheres, microtoroids or microrings.
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I. INTRODUCTION

On account of both ultrahigh quality factors and very small
mode volumes [1], optical microresonators enable greatly
enhanced light-matter interactions as well as drastic reductions
of the power necessary to observe strong nonlinear optical
effects. In the past few years, optical microresonators are
increasingly attracting interest in many diverse areas of fun-
damental researches and applications, including biochemical
sensing [2,3], cavity quantum electrodynamics (QED) [4–6],
quantum information processing (QIP) [7], cavity optome-
chanics [8–10], low-threshold microlasers [11–14], optical
filtering [15,16], and enhanced Raman gain [17,18], etc. The
massive on-chip fabrication and excellent scalability also make
them promising for real applications. Optical microresonators
support whispering-gallery modes (WGMs). Unlike the stand-
ing modes in a conventional Fabry-Pérot microcavity, WGMs
are a type of traveling mode. In other words, WGM microres-
onators typically support two counterpropagating modes, i.e.,
clockwise (CW) and counterclockwise (CCW) propagating
modes, with the same polarization and a degenerate frequency.
This degeneracy can be lifted, and it can form a doublet through
backscattering coupling induced by internal defect centers or
surface roughness [19,20]. This phenomenon is known as
modal coupling [21]. Dipole emitters in the vicinity of the
resonator are able to interact with the two WGMs via the
evanescent field. With the help of the taper fiber, the efficiency
for coupling the quantum fields into and out of the microres-
onator can approach 99%–99.9% [5,22]. A distinctive feature
of taper-coupled microresonator is that the coupling strength
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can be continuously adjusted by tuning the taper-resonator gap.
This allows one to access different coupling regimes [23].

Making good use of the above-mentioned coherent interac-
tions between the microresonators and quantum emitters, some
microchip-based schemes about photon turnstiles [24,25],
photon routers [26,27], single-photon transistors [28], optical
switching [29,30], and quantum controlled-phase-flip gates
[31,32] have been put forward theoretically and experimen-
tally. It is worth pointing out that, in the investigation of
Ref. [24], Dayan et al. have addressed that, with quantum
critical coupling of input lights into and out of a microtoroidal
resonator, a single cesium atom near the surface of the res-
onator can dynamically control the cavity output depending on
the photon number at the input. Strong coupling between single
caesium or rubidium atoms and the electromagnetic mode in a
microtoroid has been theoretically investigated and experimen-
tally observed in a few pioneering works [33–35]. In Ref. [33],
it is also demonstrated that the caesium atom can transfer
its excitation to the CW or CCW mode which is intrinsic
in the microtoroidal resonators under a certain condition. In a
word, beyond their importance in strong light-matter coupling,
WGM microresonators are highly versatile photonic devices
that have found applications in a large variety of disciplines.

On the other hand, the introduction of optical frequency
combs has led to qualitatively revolutionize the measurement
of time and frequency, with previously unattainable precision
[36,37]. Optical frequency combs consist of periodic discrete
spectral lines with fixed frequency positions and are generally
characterized by only two degrees of freedom, its mode spac-
ing and the carrier-envelope offset frequency [38]. The Hänsch
group has demonstrated in their early work on femtosecond
mode-locked lasers that the periodic pulse train emitted by
these devices intrinsically constitutes an optical frequency
comb in the spectral domain [39]. During the past few years,
a novel type of on-chip comb generator [40–49] has sparked
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significant scientific interest in new techniques and expanding
applications of optical frequency comb generation. Such new
frequency comb generation principle is based on cascaded
four-wave mixing (FWM) in compact optical microresonators
with Kerr nonlinearity materials and does not utilize con-
ventional stimulated laser emission. However, for achieving
the intensity-dependent refractive index (or the χ (3) Kerr
nonlinearity), optical-frequency-comb generation in each of
these ultra-high-Q microresonators platforms requires tuning
a high-power, single-frequency (monochromatic), continuous-
wave pump laser into a resonance of the monolithic high-Q
microresonator, where a third-order nonlinearity material is
embedded [41].

Based on these achieved advances, in the present work we
discuss the use of a tapered-fiber-coupled microtoroidal WGM
resonator together with a single cesium atom to generate a
type of optical frequency microcomb with low-power optical
input. The optical modes of the microtoroid resonator are
coherently excited by the external lasers through the tapered
fiber. Beyond the weak-excitation approximation, our results
show that the combination of the atom and the resonator
induces a large nonlinearity which is significantly stronger
than Kerr nonlinearity [41] and significantly reduces the
threshold of nonlinear optical processes. This nonlinearity can
be used to generate optical frequency combs if driven with two
continuous-wave control and probe lasers, where the comb
spacing is given by the frequency beating between the driving
control and probe lasers. The main advantages of applying
our considered atom-resonator-fiber QED scheme over other
approaches are as follows:

(i) The small confinement volume, high photon density,
and long photon storage time in the resonator induce a very
strong atom-field interaction and nonlinearity, which lead to
a significant reduction in the threshold of nonlinear optical
processes. So, an important property of this method for optical-
frequency-comb generation is very low power consumption
(pump power of a few nW), compared with Kerr frequency
comb generation (a few hundred mW) [41].

(ii) The comb spacing can be well tuned by changing
the frequency beating between the driving control and probe
lasers.

(iii) Our generated frequency comb is robust against large
variations of atomic position and coupling regime.

II. MODEL, HAMILTONIAN, AND
HEISENBERG-LANGEVIN EQUATIONS

Figure 1 is a schematic description of the composite system,
which consists of a microtoroidal resonator, a tapered fiber,
and a two-level caesium atom. A microtoroidal resonator has
two internal counterpropagating modes which are described
in terms of the annihilation (creation) operators â (â†) and b̂

(b̂†) with a common frequency ωR in the absence of scattering.
These two modes are coupled to each other in the presence of
scattering off imperfections with a strength that is parametrized
by h. The total decay of the resonator field (the resonator
linewidth) is denoted by a rate κ = κi + κex , where κi is the
resonator intrinsic decay rate, related to the intrinsic quality
factors Qi as κi = ωR/2Qi and κex is the external loss rate
(i.e., fiber taper-resonator coupling), related to the coupling
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FIG. 1. (Color online) Schematics of the system. A two-level
atom (orange sphere) is coupled to a microtoroid resonator (gray
toroid) which is side-coupled to a single-mode tapered fiber (white
taper). The two degenerate whispering-gallery modes are labeled
a (counterclockwise) and b (clockwise), respectively. The coupling
between the atom and each WGM is gtw . Input to and output from
the internal modes of the resonator are provided by a tapered fiber.
The coupling strength of each WGM to the tapered fiber is κex . The
strength of the intermode scattering between two WGM’s is h. The
intrinsic loss of the atom and of each WGM is γ and κi , respectively.
The external input and output fields are described by the symbols
{ain, aout, bin, bout}, respectively.

quality factor Qex as κex = ωR/2Qex . The intraresonator fields
are coupled to a tapered fiber with high efficiency [5,22]. At
the same time, the resonator evanescent fields of modes â

and b̂ have the coherent interactions with a ground state |g〉
and an upper excited state |e〉 (atomic transition frequency
ωA) of a two-level atom near the external surface of the
microtoroidal resonator. The atomic spontaneous emission
decay rate is γ . Using the tapered fiber coupler [22], an
initial two-tone continuous-wave driving field, denoted by
ain(t) = Ece

−iωct + Epe−iωpt with the field strengths (carrier
frequencies) Ec and Ep (ωc and ωp), is guided by the fiber
waveguide to only drive the resonator mode â. The input
field to mode b̂ is taken to be vacuum. Details of the device
design have been previously reported [24,33,50,51]. In a frame
rotating at the control frequency ωc, the Hamiltonian for the
system can be written in the form (setting � = 1) [50,51],

Ĥ = �Aσ̂ee + �R(â†â + b̂†b̂) + h(âb̂† + â†b̂)

+ (gtwâσ̂eg + g∗
twâ†σ̂ge) + (gtwb̂σ̂eg + g∗

twb̂†σ̂ge)

+ i
√

2κex[(Ec + Epe−i�t )â† − (E∗
c + E∗

pei�t )â], (1)

where �A = ωA − ωc, �R = ωR − ωc, and � = ωp − ωc are,
respectively, the detunings of the transition frequency of the
two-level atom ωA, the “bare” resonator mode frequency
ωR , and the probe laser frequency ωp from the control laser
frequency ωc. The coherent interaction of the two-level atom
with the evanescent traveling-wave fields of the intracavity
modes â, b̂ is described by gtw = gtw

0 f (ρ,z)e±ikx , where ρ is
the radial distance of the atom from the surface of the toroid, x
is the atom’s position around the circumference of the toroid,
and z is the vertical coordinate along the symmetry axis. k

is the vacuum wave vector. The ± refers to the clockwise or
counterclockwise propagating mode. σ̂ge (σ̂eg) is the lowering
(raising) operator and σ̂ee is the population operator for the
atom. The field strengths Ec,p are normalized to a photon flux
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at the input of the cavity and directly related to the power
propagating in the tapered fiber by Pc,p = �ωc,pE2

c,p.
The Hamiltonian and Heisenberg-Langevin equations of

motion for the coupled atom-resonator system can also be
usefully expressed in terms of the normal modes of the
microtoroidal resonator. Following the method developed
in Refs. [50,51], transforming traveling to standing modes
Â = (â + b̂)/

√
2 and B̂ = (â − b̂)/

√
2, the Hamiltonian can

be written as

Ĥ = �Aσ̂ee + (�R + h)Â†Â + (�R − h)B̂†B̂

+ gA(Â†σ̂ge + Âσ̂eg) − igB(B̂†σ̂ge − B̂σ̂eg)

+ i
√

κex[(Ec + Epe−i�t )Â† − (E∗
c + E∗

pei�t )Â]

+ i
√

κex[(Ec + Epe−i�t )B̂† − (E∗
c + E∗

pei�t )B̂], (2)

where gA = √
2Re(gtw) = g0f (ρ,z) cos(kx), gB = √

2Im
(gtw) = g0f (ρ,z) sin(kx), and g0 = √

2gtw
0 . One can find that,

depending on the position of the atom, the coherent coupling
can occur predominantly (or even exclusively) to only one of
the two normal modes. For kx = nπ (n is an integer), the atom
couples only to mode Â of frequency ωR + h with strength g0,
while for kx = nπ + π/2, the atom couples only to mode
B̂ of frequency ωR − h with strength g0. For kx = nπ +
π/4, the atom couples simultaneously to two normal modes
Â and B̂.

According to the above Hamiltonian (2), the quantum
Heisenberg-Langevin equations of motion for the coupled
system are given by

dÂ

dt
= −[i(�R + h) + κi/2 + κex/2]Â − igAσ̂ge

+√
κex(Ec + Epe−i�t ) + f̂A, (3)

dB̂

dt
= −[i(�R − h) + κi/2 + κex/2]B̂ − gBσ̂ge

+√
κex(Ec + Epe−i�t ) + f̂B, (4)

dσ̂gg

dt
= γ σ̂ee − igAÂ†σ̂ge + igAÂσ̂eg

− gBB̂†σ̂ge − gBB̂σ̂eg + f̂gg, (5)

dσ̂ee

dt
= −γ σ̂ee + igAÂ†σ̂ge − igAÂσ̂eg

+gBB̂†σ̂ge + gBB̂σ̂eg + f̂ee, (6)

dσ̂ge

dt
= −(i�A + γ /2)σ̂ge − igAÂ(σ̂gg − σ̂ee)

+ gBB̂(σ̂gg − σ̂ee) + f̂ge, (7)

where Eqs. (3) and (4) describe the dynamics of the resonator
modes. Equations (5)–(7) describe the dynamics of the two-
level atom. The operators f̂A, f̂B , f̂gg , f̂ee, and f̂ge are the noise
operators that conserve the commutation relations at all times.

The interactions between a high-Q microresonator and a
single atom (or a solid-state quantum emitter) have been
intensively studied previously with the weak-excitation regime
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FIG. 2. (Color online) Evolution of atomic population σz(t) as a
function of time t for three different resonator coupling regimes,
namely, (a) undercoupling {κex , κi , h}/2π = {5, 75, 50} MHz,
(b) critical coupling {κex , κi , h}/2π = {90, 75, 50} MHz, and (c)
overcoupling {κex , κi , h}/2π = {300, 75, 50} MHz. The other system
parameters used for the simulations are as follows: atom-resonator
interaction strength g0/2π = 70 MHz, driving laser strengths Ec =
Ep = 100 MHz1/2 (Pc = Pp = 84 nW), relative detunings �A/2π =
�R/2π = 0, �/2π = 50 MHz, atomic spontaneous emission rate
γ /2π = 5.2 MHz, and azimuthal position of the atom kx = 0,
respectively. The above given system parameters for the microtoroidal
resonator, fiber taper, and cesium atom are based on Refs. [24,26,33].

[24–33,52–56]. In the general case, the above Heisenberg-
Langevin equations are difficult to analytically solve as they
are not in a closed form and thus form an infinite hierarchy
of equations. For many problems, the weak-excitation ap-
proximation was adopted to simplify these equations [50,51],
where all the electrons are predominantly in the ground state of
the two-level atom, i.e., σ̂gg(t) = 1 and σ̂ee(t) = 0, or σ̂z(t) =
(σ̂ee(t) − σ̂gg(t))/2 = −1/2. By assuming this so-called weak-
excitation approximation, one can substitute σ̂gg(t), σ̂ee(t), or
σ̂z(t) with its average value of 1, 0, or −1/2 for all time, and
thus linearize the Heisenberg-Langevin equations. It should be
pointed out that, beyond the weak-excitation approximation,
some obvious nonlinear effects may occur. Figures 2 and 3,
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FIG. 3. (Color online) A magnified view of Fig. 2 in a short time.
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on one hand, show that the weak-excitation approximation is
invalid for the system parameters considered here because of
σz(t) �= −1/2 for all time. On the other hand, it can be seen
from Figs. 2 and 3 that the atom saturation [i.e., σz(t) = 0 for
all time] is absent for the chosen power of the driving laser. The
atom saturates with increasing power of the driving laser. To
this end, we need to take into account the nonlinear nature of
the atom-resonator coupling, i.e., all the higher-order moments
igAÂσ̂eg , −gBB̂σ̂eg , −igAÂ(σ̂gg − σ̂ee), and gBB̂(σ̂gg − σ̂ee)
in Eqs. (5)–(7). Recently, it has been demonstrated that these
nonlinear terms can give rise to some interesting phenomena
of the coupled emitter-cavity system, such as nonlinear optical
spectroscopy [57,58], nanophotonic comb creation [59], all-
optical latching and modulation [60], optical chaos [61],
ultralow power and high-speed all-optical switching [62], and
so on.

Experimentally, the parameter κex can be continuously
adjusted by setting the resonator-fiber distances using a
piezo positioning system. The relative values of κex , κi ,
and h determine the resonator coupling regime [24,30]: (i)
κex < κi and h, the losses predominate and the resonator is

under-coupled. (ii) κex =
√

κ2
i + h2; the resonator is critically

coupled. (iii) κex > κi and h; the resonator is overcoupled. The
output field can be obtained by aout = −ain + √

κex(Â + B̂)
and bout = −bin + √

κex(Â − B̂) [30,50,51]. In what follows,
we calculate the output power spectra Sa(ω) and Sb(ω) of
the system given by Sa(ω) = ∫ ∞

−∞ κex〈â†
out(t)âout(t)〉e−iωtdt

and Sb(ω) = ∫ ∞
−∞ κex〈b̂†out(t)b̂out(t)〉e−iωtdt , where ω is the

spectrometer frequency. Before passing to the results of the
numerical calculation, it should be noted that the spectra ob-
tained shift a frequency ωc, because the Heisenberg-Langevin
equations describe the evolution of the optical field in a frame
rotating at the control frequency ωc. In this paper, we are
interested in the mean response of the system, so we consider
their expectation values of both sides of Eqs. (3)–(7). We
take the cold reservoir limit where the reservoir modes are
all initially in the vacuum states. In this limit, the reservoirs
act only to draw away energy and do not excite the system
by means of thermal excitations. For optical frequencies and
temperatures at or below room temperature, this assumption
holds very well [25,63]. When acting on the initial vacuum
state, in the cold reservoir limit the expectation values of all
noise operators can be neglected because they are annihilated.
In this scenario, we reduce the operator equations to the
mean value equations and drop the above quantum noise
terms because of 〈f̂A〉 = 0, 〈f̂B〉 = 0, 〈f̂gg〉 = 0, 〈f̂ee〉 = 0,
and 〈f̂ge〉 = 0.

III. ATOM-RESONATOR-INDUCED STRONG
NONLINEARITY AND EFFICIENT

OPTICAL-FREQUENCY-COMB GENERATION

A. Atom-resonator-induced nonlinearity

In order to explicitly get insight into the atom-resonator-
induced nonlinearity under the steady-state solution, here we
consider the case that the driving laser field is monochro-
matic by setting Ep = 0, i.e., the probe driving field
is switched off. The Heisenberg-Langevin equations then

become

dA

dt
= −[i(�R + h) + κi/2 + κex/2]A − igAσge

+√
κexEc, (8)

dB

dt
= −[i(�R − h) + κi/2 + κex/2]B − gBσge

+√
κexEc, (9)

dσz

dt
= −γ (σz + 1/2) + igAA∗σge − igAAσ ∗

ge

+ gBB∗σge + gBBσ ∗
ge, (10)

dσge

dt
= −(i�A + γ /2)σge + 2igAAσz − 2gBBσz, (11)

where σz = (σee − σgg)/2 is the population difference between
the atomic excited and ground states. The derivation of
Eqs. (8)–(11) uses the mean-field (factorization) assumption
〈ÂB̂〉 = 〈Â〉〈B̂〉. In semiclassical formalism the field is a
well-defined (i.e., noise free) classical amplitude, thus the
expectations of products of a field operator and dipole operator
are separable [25,63].

Following standard methods from quantum optics, we will
apply a nonlinear perturbation theory to the coupled atom-
resonator-fiber system and search for the formation of optical
nonlinearity for the propagating field in a tapered fiber. To
make the nonlinear effect of the system significant, the power
(or intensity) of the driving control laser should be chosen
properly to deplete the population σgg of the ground state |g〉.
We go beyond the linear theory by systematically including
the depletion of the ground-state population. We assume that
the dispersion and nonlinearity of the system are not strong
so that a standard method of multiple scales [64] can be used
to derive the nonlinearly coupled transmission coefficients for
both resonator modes. For this purpose, we make the following
asymptotic expansion:

A = εA(1) + ε2A(2) + ε3A(3) + · · · + εjA(j ) + · · · , (12)

B = εB(1) + ε2B(2) + ε3B(3) + · · · + εjB(j ) + · · · , (13)

σz = σ (0)
z + εσ (1)

z + ε2σ (2)
z + ε3σ (3)

z + · · · , (14)

σge = σ (0)
ge + εσ (1)

ge + ε2σ (2)
ge + ε3σ (3)

ge + · · · , (15)

where ε is a small parameter characterizing the small pop-
ulation depletion in the ground state |g〉 and ranging from
zero to unity. Equations (8)–(11) can be solved order by
order by means of the above asymptotic expansion (12)–(15).
The case for j = 1 is just the linear problem. Initially, the
electron in the atom is populated in the ground state |g〉.
In this situation, we have σ (0)

z = −1/2 and σ (0)
ge = 0 for the

zeroth-order electronic operators [65–67]. We substitute the
above asymptotic expansion (12)–(15) into Eqs. (8)–(11) and
keep the terms up to the third order in the amplitude of the
resonator fields. Specifically, we display the three different
cases as listed below.
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Case (i) kx = nπ (n is an integer). The atom couples only
to mode A. After performing some algebraic calculations, the
amplitude of the resonator field A under the steady-state case
reads

A(1) =
√

κexd1

g2
A + d1d2

Ec, A(2) = 0, (16)

A(3) = 2g4
A

√
κexd1

γ
(
g2

A + d1d2
)2

(
1

d1
+ 1

d∗
1

) ∣∣∣∣
√

κexd1

g2
A + d1d2

|2Ec|Ec|2,

(17)

with d1 = i�A + γ /2 and d2 = i(�R + h) + κi/2 + κex/2.
As a result, the transmission field aout and bout can be obtained
by using the input-output relation as follows:

aout = −Ec + √
κexA

(1) + √
κexA

(3)

= χ (1)
a Ec + χ (3)|Ec|2Ec, (18)

bout = √
κexA

(1) + √
κexA

(3)

= χ
(1)
b Ec + χ (3)|Ec|2Ec, (19)

with χ (1)
a = −1 + κexd1

g2
A+d1d2

, χ
(1)
b = κexd1

g2
A+d1d2

, and χ (3) =
2g4

Aκ2
exd1

γ (g2
A+d1d2)2 ( 1

d1
+ 1

d∗
1
)| d1

g2
A+d1d2

|2.
From the above expressions (18) and (19), it is easy to

see that aout and bout are proportional to Ec and |Ec|2Ec,
respectively. Therefore, such an expression can be corre-
spondingly made an analogy to the linear and third-order
nonlinear polarization [68,69]. The term aout (or bout) exhibits
the linear response and the Kerr nonlinear response of the
coupled atom-resonator-fiber system to the input signal field.
Specifically, |χ (1)|2 stands for the normalized linear transmis-
sion of the atom-resonator-fiber system, while the real part
Re[χ (3)] corresponds to Kerr nonlinearity and the imaginary
part Im[χ (3)] corresponds to nonlinear absorption. It is easy
to find from Eqs. (18) and (19) that the third-order nonlinear
optical effects exist due to the atom-resonator coupling. When
gA = 0, we have the result χ (3) = 0.

Case (ii) kx = nπ + π/2. The atom couples only to mode
B. Similarly, we have the results,

B(1) =
√

κexd1

g2
B + d1d3

Ec, B(2) = 0, (20)

B(3) = 2g4
B

√
κexd1

γ
(
g2

B + d1d3
)2

(
1

d1
+ 1

d∗
1

) ∣∣∣∣
√

κexd1

g2
B + d1d3

∣∣∣∣
2

Ec |Ec|2 ,

(21)

where d3 = i(�R − h) + κi/2 + κex/2. Correspondingly, the
transmission field aout and bout can be explicitly expressed in
the following form:

aout = −Ec + √
κexB

(1) + √
κexB

(3)

= χ (1)
a Ec + χ (3)|Ec|2Ec, (22)

bout = −√
κexB

(1) − √
κexB

(3)

= −χ
(1)
b Ec − χ (3)|Ec|2Ec, (23)

where χ (1)
a = −1 + κexd1

g2
B+d1d3

, χ
(1)
b = κexd1

g2
B+d1d3

, and χ (3) =
2g4

Bκ2
exd1

γ (g2
B+d1d3)2 ( 1

d1
+ 1

d∗
1
)| d1

g2
B+d1d3

|2, respectively.
Case (iii) kx = nπ + π/4. The atom couples simultane-

ously to two normal modes A and B. In this case, self-
phase modulation (SPM) and cross-phase modulation (CPM)
occur in the transmission fields aout and bout. Owing to the
complicated function expression of optical nonlinearity with
the high-order variable, we will adopt numerical simulations
to demonstrate this effect in the following.

Before proceeding further, it is instructive to briefly analyze
optical nonlinearities in our studied system, which is induced
by the combination of the atom and the resonator with low-
power optical input (a few nW). The power level of the driving
laser is equal to several nW such that the third-order optical
nonlinear effect of the dielectric high-Q resonator [such as the
Kerr four-wave mixing (FWM) effect and stimulated Raman
scattering [41]] and the saturation of the atom are absent in the
proposed scheme. This atom-resonator-induced nonlinearity
can be used to generate a type of optical frequency combs
if driven with the bichromatic continuous-wave laser field in
the following discussion. For the sake of convenience, here
we assume the atom and resonator frequencies to be resonant,
i.e., ωA = ωR [24], so that the detuning �A = �R = �. And
we consider a monochromatic continuous-wave driving field,
so the probe driving field is switched off (Ep = 0). In all

cases, the resonator is critically coupled (κex =
√

κ2
i + h2).

Via numerical simulations, we display in Fig. 4 the magnitude
of optical nonlinearities as a function of � for different x

coordinates around the circumference of the toroid. From
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FIG. 4. (Color online) The Kerr nonlinearity χ (3) (in units of
m2/V2) as a function of relative detunings �A = �R = � (we
consider the atom and cavity frequencies to be resonant) for different
x coordinates around the circumference of the toroid, namely,
(a) kx = 0, (b) kx = π/4, and (c) kx = π/2. In all cases, the
resonator is critically coupled (κex =

√
κ2

i + h2) and the probe
driving field is switched off (Ep = 0). The system parameters for the
simulation are chosen as atom-resonator interaction strength g0/2π =
70 MHz, field decay rates for resonator modes κi/2π = 75 MHz,
κex/2π = 90 MHz, scattering strength h/2π = 50 MHz, and atomic
spontaneous emission rate γ /2π = 5.2 MHz, respectively.
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FIG. 5. (Color online) The Kerr nonlinearity χ (3) (in units of
m2/V2) as a function of relative detunings �A = �R = � for three
different taper-resonator coupling regimes, namely, (a) undercoupling
{κex , κi , h}/2π = {5, 75, 50} MHz, (b) critical coupling {κex , κi ,
h}/2π = {90, 75, 50} MHz, and (c) overcoupling {κex , κi , h}/2π =
{300, 75, 50} MHz. In all cases, the probe driving field is switched off
(Ep = 0). The other system parameters are the same as Fig. 4 except
for the azimuthal position of the atom kx = 0.

our calculation data of Fig. 4 at low values of control laser
power, we infer χ (3)(� = 0) ≈ 2.3 × 10−10 m2/V2 at atomic
localization with the well-defined azimuthal phase kx = 0,
π/2 and χ (3)(� = 0) ≈ 0.8 × 10−10 m2/V2 at kx = π/4.
These values are many orders of magnitude larger than the
third-order optical nonlinear effect of the dielectric high-Q
resonator with very high pump power [40,41].

In Fig. 5, we calculate the magnitude of optical nonlineari-
ties as a function of � for different resonator coupling regimes.
It is found from Fig. 5 that χ (3)(� = 0) ≈ 7.9 × 10−13 m2/V2

for undercoupling, 2.3 × 10−10 m2/V2 for critical coupling,
and 2.1 × 10−10 m2/V2 for overcoupling. Note that when the
interaction of the atom with the evanescent traveling-wave
fields of the â, b̂ modes is zero (gtw = 0), we have the result
χ (3) = 0. In the basis of the discussion above, we can reach
the conclusion that the coherent coupling of the atom and the
resonator induces a strong nonlinearity which is significantly
stronger than Kerr nonlinearity in a microresonator made from
a third-order nonlinearity material with high-power optical
input (a few hundred mW). When two continuous-wave lasers
in the tapered fiber are applied to drive the resonator mode
and the power builds up in the resonator, this atom-resonator-
induced nonlinearity gives rise to degenerate FWM via the
interaction of the probe field Ep with the control field Ec

[69,70]. The process of parametric FWM can yield a high
conversion efficiency compared to Kerr FWM [40,41].

B. Optical-frequency-comb generation

Now we turn to discuss the frequency comb spectra of
this coupled atom-resonator-fiber system when a bichromatic
continuous-wave laser field [71] is guided by the fiber
waveguide to only drive the resonator mode â. The numerically
simulated frequency comb spectra from the output of the driven
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FIG. 6. (Color online) Generated frequency comb spectra from
the resonator mode â for three different x coordinates around the
circumference of the toroid, namely, (a) kx = 0, (b) kx = π/4,
and (c) kx = π/2. In all cases, the resonator is critically coupled
(κex =

√
κ2

i + h2). Initially we assume that the atom is in its ground
state |g〉. The other system parameters used for the simulations follow:
atom-resonator interaction strength g0/2π = 70 MHz, field decay
rates for resonator modes κi/2π = 75 MHz, κex/2π = 90 MHz,
scattering strength h/2π = 50 MHz, driving laser strengths Ec =
Ep = 100 MHz1/2 (Pc = Pp = 84 nW), relative detunings �A/2π =
�R/2π = 0, �/2π = 50 MHz, and atomic spontaneous emission
rate γ /2π = 5.2 MHz, respectively.

resonator mode â as a function of ω/� are shown in Fig. 6 for
three different x coordinates around the circumference of the
toroid. For the case of atomic interaction with a single normal
mode Â, such as azimuthal position kx = 0 in Fig. 6(a), a broad
comb plateau is formed in the transmitted frequency spectra
(pump line + generated sidebands), where all the comb lines
have almost the same strength. Immediately after the plateau,
the strengths of the high-order comb lines decrease rapidly.
Whereas when kx = π/4 corresponding to atomic interaction
with two normal modes Â and B̂ in Fig. 6(b), the number
of the high-order comb lines is less than those in Fig. 6(a).
This is because the parametric FWM process is weakened,
resulting in inefficient sideband generation due to the weak
nonlinearities χ (3) for kx = π/4 as can be clearly seen from
Fig. 4. For the case of atomic interaction with a single normal
mode B̂, such as kx = π/2 in Fig. 6(c), the strengths of
the first few order comb lines in the transmitted frequency
spectra decrease rapidly, followed by a broad plateau where
all the sidebands have almost the same strength, and end up
with a sharp cutoff. Such a typical “plateau-cutoff” spectral
structure in Fig. 6 indicates that a new effect appears, which
is reminiscent of high-order harmonic generation in intense
laser-driven atoms system [72]. For this reason, we refer to
this effect as an optical frequency microcomb generation in
a whispering-gallery-mode microtoroid resonator. Figure 7
shows frequency comb spectra from the output of the resonator
mode b̂ as a function of ω/� for three different x coordinates
around the circumference of the toroid. The properties of the
simulated optical frequency comb spectra are similar to those
in Fig. 6. This is because the Hamiltonian of the system (1) is
of the form of the linear exchange type coupling between the
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FIG. 7. (Color online) Generated frequency comb spectra from
the resonator mode b̂ for three different x coordinates around the
circumference of the toroid, namely, (a) kx = 0, (b) kx = π/4, and
(c) kx = π/2. In all cases, the resonator is critically coupled (κex =√

κ2
i + h2). The other system parameters are the same as Fig. 6.

cavity modes â and b̂, i.e., the term h(âb̂† + â†b̂). Therefore,
an excitation present in the cavity mode â can be coherently
transferred through this exchange type coupling to the cavity
mode b̂. The transferred amount of energy is determined by
the value of h.

An important aspect of the present atom-resonator-fiber
QED system, associated with the input-output coupling effi-
ciency of photons, is the ability to adjust the external coupling
rate κex of the resonator modes to the tapered fiber by tuning
the distance between the WGM microtoroid resonator and the
tapered fiber. Depending on the value of κex relative to other
coupling parameters, the microtoroid resonator QED system
can exhibit quite distinct regimes of operation with regards
to effect on a light field propagating along an evanescently
coupled optical fiber. In order to further demonstrate the influ-
ence of the resonator coupling regimes, i.e., (i) undercoupling,
(ii) critical coupling, and (iii) overcoupling, on the generated
optical frequency-comb intensity, Figures 8 and 9 display the
features of frequency comb spectra from the two resonator
modes â and b̂, respectively. For the case of undercoupling
{κex , κi , h}/2π = {5, 75, 50} MHz in Figs. 8(a) and 9(a),
a few comb lines can be generated, however, their strengths
are weak in the transmission spectra. The initial sidebands
remain evident as strong peaks. Few four spectral lines with
almost the same strength can be obtained as shown in Fig. 8(a).
For the case of critical coupling {κex , κi , h}/2π = {90, 75,
50} MHz in Figs. 8(b) and 9(b), the comb shape is very
different with respect to Figs. 8(a) and 9(a). Subsequent comb
lines fill up the spectrum. A wide comb with a plateau can be
achieved. The comb lines grow considerably and their peaks
become more pronounced. For the case of overcoupling {κex ,
κi , h}/2π = {300, 75, 50} MHz in Figs. 8(c) and 9(c), the
comb behavior is similar to those in Figs. 8(b) and 9(b) because
their strong nonlinearities χ (3) are close. Specifically, a comb
plateau is formed, where all the sidebands have nearly the same
strength, and then the comb spectra end up with a sharp cutoff.
Physically, the shape of the comb can be explained by optical
nonlinearity mentioned above. The atom-resonator-induced
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FIG. 8. (Color online) Generated frequency comb spectra from
the resonator mode â for three different resonator coupling regimes,
namely, (a) undercoupling {κex , κi , h}/2π = {5, 75, 50} MHz,
(b) critical coupling {κex , κi , h}/2π = {90, 75, 50} MHz, and
(c) overcoupling {κex , κi , h}/2π = {300, 75, 50} MHz. The other
system parameters are the same as Fig. 6 except for azimuthal position
of the atom kx = 0.

nonlinearity is sufficiently large in Fig. 5 to cause efficient
sideband generation through the parametric FWM process
which results in the growth of the number of comb lines and
the large spectral broadening of the combs.

Figure 10 shows the output comb spectra of the resonator
mode â for three different values of the relative detuning �

between the control and probe laser frequencies. For the case
that �/2π = 50 MHz in Fig. 10(a), the comb consists of 95
lines with 2π × 50 MHz line spacing whose intensity beat can
be directly measured using a fast photodiode. Whereas when
�/2π = 100 MHz in Fig. 10(b), the comb consists of 47 lines
with a spacing of 2π × 100 MHz. With the further increase of
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FIG. 9. (Color online) Generated frequency comb spectra from
the resonator mode b̂ for three different resonator coupling regimes,
namely, (a) undercoupling {κex , κi , h}/2π = {5, 75, 50} MHz,
(b) critical coupling {κex , κi , h}/2π = {90, 75, 50} MHz, and
(c) overcoupling {κex , κi , h}/2π = {300, 75, 50} MHz. The other
system parameters are the same as Fig. 6 except for the azimuthal
position of the atom kx = 0.
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FIG. 10. (Color online) Generated frequency comb spectra from
the resonator mode â for three different values of the relative detuning
� between the control and probe laser frequencies, namely, (a)
�/2π = 50 MHz, (b) �/2π = 100 MHz, and (c) �/2π = 150 MHz.
In all cases, the resonator is critically coupled (κex =

√
κ2

i + h2).
The other system parameters are the same as Fig. 6 except for the
azimuthal position of the atom kx = 0.

� to a higher value such that �/2π = 150 MHz as shown in
Fig. 10(c), the frequency comb consists of 31 lines with 2π ×
150 MHz line spacing. To sum up the above discussion, it is
noticed that by simply varying the relative detuning � between
the control and probe laser frequencies (the frequency beating
� = ωc − ωp), the frequency comb with different frequency
spacings can be obtained in our device.

In what follows, we provide further the explicit explanations
of the mode spacing of the optical frequency comb and the
width of the comb line in Fig. 10. To this end, we will
turn our attention to make the ansatz [68,73] for the above
Heisenberg-Langevin equations to better understand the
comb-generation behavior. Equations (3)–(7) in Sec. II
are a set of nonlinear coupled equations and the optical
response in the frequency domain is composed of many
frequency components. In what follows we assume that the
operators have been reduced to their expectation values.
Since A, B, σeg , σgg , and σee are periodic in frequency
beating �, they can be expressed in the Fourier series as
A = ∑

n e−in�tAn, B = ∑
n e−in�tBn, σeg = ∑

n e−in�tσeg,n,
σgg = ∑

n e−in�tσgg,n, and σee = ∑
n e−in�tσee,n,

respectively. In the notation
∑

n = ∑n=+∞
n=−∞ the sum runs from

negative infinity to positive infinity. After substituting the
above Fourier series into Eqs. (3)–(7), we can obtain a series
of coupled equations about An, Bn, σeg,n, σgg,n, and σee,n

(n = 0, ±1, ±2, ...) by resorting the prefactors in terms of
the exponentials e±in�t . It is difficult to achieve the analytical
solutions of these coupled equations and hence one has to
resort to numerical solutions of them when all the higher-order
moments (nonlinear terms) mentioned above are included. To
obtain this task, the output fields from both resonator modes
can be formally expressed in the time domain by Sout,a(t) =√

κexα0e
−iωct + √

κexα+1e
−i(ωc+�)t + √

κexα−1e
−i(ωc−�)t +√

κexα+2e
−i(ωc+2�)t + √

κexα−2e
−i(ωc−2�)t + √

κaα+3

e−i(ωc+3�)t + √
κexα−3e

−i(ωc−3�)t + · · · and Sout,b(t) =√
κexβ0e

−iωct + √
κexβ+1e

−i(ωc+�)t + √
κexβ−1e

−i(ωc−�)t +

√
κexβ+2e

−i(ωc+2�)t + √
κexβ−2e

−i(ωc−2�)t + √
κbβ+3

e−i(ωc+3�)t + √
κexβ−3e

−i(ωc−3�)t + · · · , where α0, α+1, α−1,
· · · (β0, β+1, β−1, · · · ) are the corresponding transmission
coefficients of the comb lines from the output fields of
resonator mode â (b̂). It is easy to see from these expressions
that the output fields contain two input components (the control
field ωc and the probe field ωp) and a series of new components
through the nonlinear optical process of parametric frequency
conversion at frequencies ωc − � (≡ 2ωc − ωp, the Stokes
process), ωc + 2� (≡ 2ωp − ωc, the second-order upper
sideband process), ωc − 2� (≡ 3ωc − 2ωp, the second-order
lower sideband process), etc. As a consequence, when the
atom-resonator system is driven by the bichromatic laser,
i.e., the control field with frequency ωc and the probe field
with frequency ωp, the parametric frequency conversion
through nonlinear FWM appears [69], resulting in efficient
sideband generation with frequencies ωn = ωc + n · �,
where n is the number of the comb mode. That is to say,
when the power builds up in the resonator, new frequency
components are generated and interact by nonlinear FWM
caused by the atom-resonator-induced strong nonlinearity.
Obviously, the frequency spacing of the comb line is the
difference � in the frequencies of the control and probe fields
as can be verified in Fig. 10.

In addition, it is worth emphasizing that the generated
frequency comb shown in Fig. 10 clearly exhibits a series
of sharp lines even if zooming up the frequency axis, which
can be well explained by the uncertainty relations of time and
frequency. According to the uncertainty relations of time and
frequency, it is straightforward to calculate the uncertainty
of the frequency as �ω ∼ 2π/�t . Here, the applied driving
laser is two continuous-wave lasers and it lasts about infinity,
hence �t → +∞. Immediately, we can arrive at the width of
the observed comb lines �ω → 0 in the frequency domain as
shown in Fig. 10. As a result, the comb lines are relatively
narrow sharp lines. Finally, we would like to point out that
the transmission spectral width of the frequency combs in
Figs. 6–9 depends on the numbers of the generated higher-
order comb lines in the resonator output, which is determined
by the atom-resonator-induced nonlinearity χ (3). The optical
nonlinearity χ (3) is sufficiently large to cause efficient sideband
generation through the parametric FWM process which results
in the growth of the number of the comb lines and further the
large spectral broadening of the frequency combs.

Before ending this section, we give a brief comment
on more technical aspects regarding this model. First, a
typical frequency separation between two adjacent modes of
a microtoroidal resonator, i.e., the free spectral range (FSR)
of the resonator, is larger than ∼ 10 GHz [74], which is
sufficiently larger than the resonator-enhanced decay rate of
the atom considered here, i.e., � = 4g2

0/κ = 2π × 119 MHz.
As a result, the coupling to other resonator modes is negligible.
Second, the spectral width of the generated optical frequency
combs is larger than ∼14 GHz in our study, which is compa-
rable to the FSR of the resonator. When the comb becomes
broad, it is possible that the comb sidebands start to interact
with other WGMs supported by the resonator. However, this
coupling is very weak because it is the higher-order effect
compared with the nonlinear effect of the system considered
here. Therefore, the influence from the interaction of the comb
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sidebands with other WGMs can be neglected. Finally, we
have neglected the losses in the tapered fiber, assuming typical
experimental setups.

IV. CONCLUSIONS

In summary, we have demonstrated a method to achieve
fiber-optical frequency comb using a single atom coupled
to a WGM microtoroidal resonator in low-power optical
input. We systematically discuss and analyze the influences
of different atomic azimuthal positions and taper-resonator
coupling regimes on optical-frequency-comb generation. The
results clearly show that the combination of the atom and the
resonator can induce a large third-order nonlinearity which
leads to a significant reduction in the threshold of nonlinear
optical processes. This nonlinearity is significantly stronger
than Kerr nonlinearity in previous implementations of Kerr
frequency combs [41,43,44], which can be used to efficiently
generate a frequency comb if driven coherently with two

continuous-wave lasers. The comb spacing is given by the
frequency beating between the driving control and probe
lasers. The atom-resonator-fiber QED scheme proposed here
may find applications in a wide range of topics that include
precision spectroscopy, atomic clocks, ultracold gases, and
molecular fingerprinting.
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