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Generation of rotary beams by interaction of moving solitons in nonlocal media
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We report that nonlocal nonlinear media allow a controlled interaction among coherent solitons with a relative
tilt previously imposed, resulting in the generation of rotary self-trapped beams. We demonstrate that two initially
separated fundamental solitons can interact, generating stable rotating dipoles for a continuum interval of relative
tilt values. Surprisingly, we find that for a higher number of initial solitons launched and after some emission of
radiation waves, the initial self-trapped structures can decay into rotating dipole solitons. The normalized orbital
angular momentum of these rotating dipoles can be controlled by adjusting the initial tilt.
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I. INTRODUCTION

A balance between diffraction and nonlinearity allows
the generation of self-trapped beams or optical spatial soli-
tons [1,2]. A fundamental feature of solitons is their particle be-
havior. Interactions among these self-trapped nonlinear beams
can result in the exchange of momentum [1], which produces
propagation dynamics in which it is possible to observe phe-
nomena such as attraction, repulsion, fusion, fission, and even
spiraling interactions [3,4]. In particular, certain self-trapped
structures such as propeller solitons [5], necklace beams [6],
rotating soliton clusters [7], azimuthons [8], ellipticons [9],
and rotating dipoles [10], among others, can experience an
intensity rotation under propagation. These structures carry or-
bital angular momentum, which opens the possibility of using
them in applications such as the rotation of microparticles in
optical trapping [11], dynamic manipulation of Bose-Einstein
condensates [12], and high-bandwidth information encoding
in optical communication systems [13]. In general, a standard
variational method [14] and specialized numerical relaxation
algorithms [15] are common procedures used to theoretically
study these rotary structures. In this paper, we show that it is
also possible to generate stable rotary self-trapped structures
by using only fundamental solitons with an initial relative tilt
imposed and that in several cases a rotating dipole is formed,
even in the case of multiple-soliton interaction.

In local nonlinear media, it is known that two fundamental
solitons experience attraction or repulsion if they are in phase
or out of phase, respectively, although there are more complex
dynamics in any other case of phase difference. Thus, to
generate a rotating structure starting from two far apart and
copropagating solitons, it is necessary that, in principle, both
solitons have the same relative phase, which allows us to cancel
out the natural escaping dynamics. However, a very specific
tilt value is necessary to neutralize either the merging or the
escaping scenario, resulting, in any case, in unstable dynamics,
as shown for the case of spiraling spatial solitons in saturable
media [16]. In order to overcome this issue, Segev’s group
proposed and corroborated the use of incoherent solitons to
generate spiraling in interacting spatial solitons [17]. Here
we report that it is also possible to relax the very critical tilt
condition by using coherent solitons in a nonlocal nonlinear
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medium. It has been demonstrated that nonlocality always
provides an attraction mechanism among solitons in spite of
their relative phase [1,18]. Therefore, we propose the use of
nonlocal media to trap, merge, and stabilize the interaction
among moving solitons. We start by demonstrating that using
only two solitons with opposite phase and a relative initial tilt,
it is possible to produce rotating dipole beams. In this scenario,
as the solitons try to merge as a result of the trapping nonlocal
potential, the phase opposite that of the solitons can prevent
fusion dynamics. In a similar way, as the solitons try to escape,
the nonlocality can keep them together. This scenario results
in the existence of continuum intervals of tilt values where it is
possible to generate rotary beams. Surprisingly, we find that for
the case of multiple-soliton interaction and after some emission
of radiation waves, in several cases a rotating dipole soliton is
generated. The rest of the paper is organized as follows. The
nonlocal model is discussed in Sec. II. The simplest generation
of rotary beams, with only two fundamental solitons, is
reported in Sec. III, while the generation of rotary beams
using multiple fundamental solitons is reported in Sec. IV,
demonstrating the recurrent morphing from initial multiple
fundamental solitons into rotating dipole solitons. In Sec. V,
we compare the generation of rotating dipoles for a Gaussian
nonlocal response with an exponential response to show that
this morphing phenomenon does not happen only for the
Gaussian nonlocal response. Finally, the paper is concluded
in Sec. VI.

II. DEFINITION OF THE NONLOCAL NONLINEAR
MODEL

The propagation of paraxial optical beams in a nonlocal
nonlinear medium can be described by a nonlinear Schrödinger
equation in dimensionless units [1],

i
∂�

∂z
+ ∇2

⊥� +
∫

N (|r − ρ|)|�(ρ)|2dρ� = 0, (1)

where � stands for the scalar field envelope, z and r = (x,y)
are the propagation and transverse coordinates, respectively,
and ∇2

⊥ stands for the transverse Laplacian. The response
function N , which satisfies the normalization condition∫
N (r)dr = 1, is defined by the physical process that gen-

erates the medium nonlinearity, and it can usually be modeled
by a diffusion equation, which is the case for nematic
liquid crystals [19,20]. Here we consider a nonlocal response
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function of the form

N (r) = (1/πσ 2) exp(−r2/σ 2), (2)

where σ is the degree of nonlocality of the medium. When
σ → 0, we recover the pure local Kerr medium, whereas
when σ → ∞, we have the highly nonlocal nonlinear limit
proposed by Snyder and Mitchell [21], a scenario in which it
is possible to find exact analytical solutions to Eq. (1), such as
the Hermite-Bessel solitons [22] or the ellipticons [9], to name
just a few examples.

Although there is not a real physical system truly as-
sociated with this Gaussian response, Eq. (2) has been
broadly used as a theoretical model to investigate nonlocal
nonlinearities [10,23,24]. It has been demonstrated that if the
response function is real, positive definite, symmetric, and
monotonically decaying, then the physical properties do not
depend strongly on its shape [23]. In fact, some phenomena
were predicted using a Gaussian response [10] and then were
corroborated in experimental works, which is the case for
self-induced mode transformations [25].

Next, we introduce the scaled variables � = � ′/σ , r =
r ′σ , and z = z′σ 2 and omit primes in order to demonstrate
that the physically important beam power is independent of σ .
Using this scaling, we can quantify the degree of nonlocality
by using the soliton power, where a higher power beam means
a higher degree of nonlocality.

III. GENERATING ROTARY BEAMS WITH TWO
FUNDAMENTAL SOLITONS

We look for N identical fundamental soliton solutions of
Eq. (1) in the form �(rn,z) = ∑N

n=1Un(rn) exp(iλz), where
Un(rn) is a purely real function obtained using a standard
Petviashvili relaxation method [26] starting from an initial
Gaussian ansatz centered at rn = (xn,yn) and λ is the soliton
propagation constant. In particular, when N = 2, we use as a
field condition at z = 0

�(x,y) = �1(xo,yo) exp(−iαx) + exp(iχ )�2(−xo,−yo)

× exp(iβx), (3)

where xo and yo must be chosen to be large enough to
neglect an initial field interaction of the theoretical infinite
tails of the solitons, and thus, the total initial power is P =∫ |∑N

n=1�n(r,0)|2dr � N
∫ |�n(r,0)|2dr. Here we report the

most basic scenario that occurs when we set the symmetric
condition α = β = μ. In this case the relative phase needed
to achieve rotary structures is simply χ = π . To study the
corresponding dynamics of the beam given by Eq. (3), we
use Eq. (3) as an initial condition in Eq. (1), and then we
solve numerically using a split-step Fourier method. In Fig. 1,
we show the propagation for different λ values. We find that
rotating dipoles are generated when μ ∈ [μmin,μmax], where
μmin is the minimum tilt necessary to overcome the “local”
repulsion effect produced by the phase χ and μmax is the
maximum tilt that can be trapped by the nonlocal potential.

For a low degree of nonlocality, the two solitons can interact
for a certain distance, and then the initial dipole configuration
is destroyed [Fig. 1(a)]. However, if a certain degree of power
is reached, the two solitons can orbit around each other for

FIG. 1. (Color online) Propagation dynamics of two solitons
with the following parameters: (a) λ = 10, μ = 0.06, (xo,yo) =
(−2,1.4), and L = 15, (b) λ = 50, μ = 0.5, (xo,yo) = (−3,1), and
L = 17, and (c) and (d) λ = 100, μ = 3, (xo,yo) = (−2,1), and
L = 12. In (d), there is an input noise of 10%. The profiles are
shown in an x-y box of L × L. (See the Supplemental Material [27]
to observe propagation.)

longer distances. Because of the acceleration experienced by
the individual solitons, they radiate energy, decaying into
more asymmetric structures but remaining self-trapped by
the nonlocality [Fig. 1(b)]. We also find that for a high
enough power, the solitons finally develop a more symmetrical
spiraling structure. This occurs because the nonlocality tends
to smooth out the spatial variations produced by the solitons’
radiation. Furthermore, we find that for certain μ values, the
resulting beam can achieve a rotating dipole or azimuthon-
like structure [Fig. 1(c)]. Perturbing the initial solitons with
10% noise produces more complex dynamics, in which the
remaining self-trapped beams can also show a translation
movement [Fig. 1(d)], but the analysis of the dynamics in
the presence of noise is beyond the scope of this work.
Figure 2(a) shows the existence domain of the intervals whose
initial tilts allow the generation of rotating dipole solitons.
Note that in the case of higher λ values, i.e., higher power,
it is possible to impose higher initial tilts to generate rotating
dipole solitons. Due to the nonintegrability of Eq. (1), the
interaction between the solitons produces radiation waves. In
order to consider a more steady state after the initial power
decay, we calculate the power beam P averaged from z = 50
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FIG. 2. (Color online) (a) Existence domain of the dipole solitons
showing the averaged power beam P . (b) Averaged fractional spin
beam S of the dipole solitons. (c) Evolution of the power beam P in
propagation for λ = 75. (d) Evolution of the fractional spin beam S

for λ = 75.

to z = 100 over a fixed circular area centered at the origin that
has a radius of five times the width of a single soliton. We
find that the remaining power of the rotary self-trapped beams
becomes practically constant, and it is almost independent of
the μ previously imposed. Note that even though fundamental
solitons have zero angular momentum, the final generated
self-trapped beams do not have a trivial phase structure
and hence carry a nonzero beam orbital angular momentum
M = Im

∫
�∗∂φ�dr. Next, we normalize M to calculate the

fractional beam spin S = M/P , and we show in Fig. 2(b) the
averaged S from z = 50 to z = 100. Note that the fractional
beam spin is a monotonic increasing function of μ, and as
μ → μmax, S → 1, resembling the case of a single-charged
vortex soliton. In [28], Assanto’s group demonstrated that the
angular momentum depends linearly on the soliton mass of a
two-soliton cluster when the angular momentum is conserved.
Here we report an example in which even though both P and
S suffer a considerable decay from their initial values due to
radiation losses, it is still possible to achieve a steady state
where either P or S can be stabilized, as shown in Figs. 2(c)
and 2(d), respectively, allowing the generation and propagation
of stable rotating dipole solitons in nonlocal media by using
just fundamental solitons. Moreover, the spin beam achieved
at steady state can be controlled by adjusting just the initial
relative tilt previously imposed on the fundamental solitons.

IV. INTERACTIONS AMONG SEVERAL SOLITONS:
DECAYING INTO ROTATING DIPOLE SOLITONS

For N = 2, we have only two forces between solitons, while
for a more general case, the number of forces among solitons
becomes N2 − N. Thus, the number of initial configurations
that can produce rotary structures also increases. Then for N >

2, for simplicity, we only report the propagation dynamics for

the initial transverse field

�(x,y) =
N∑

n=1

�n(xn,yn) exp(−iζnx − iϑny) exp(i�n),

(4)

where each soliton is initially located at xn = R cos(�n) and
yn = R sin(�n), where R is a radius length, �n = 2πnm/N

is the phase distribution imposed to mimic the corresponding
phase distribution of a vortex soliton with a topological charge
m, and

√
ζ 2
n + ϑ2

n = μ gives the magnitude of an initial
tilt imposed on each soliton in the direction −r̂ . Similar
configurations were studied for the case of soliton clusters [7]
and optical necklaces [6], but here we focus on the dynamics
that occur when a tilt other than the initial tilt μ is imposed.

FIG. 3. (Color online) Propagation dynamics of multiple solitons
with the parameters λ = 15,μ = 1, and R = 10 for (a) N = 3,
(b) N = 4, (c) N = 5, (d) N = 6, and (e) N = 8. The profiles
are shown in a x-y box of L × L, where L = 25 for the first
two columns and L = 10 for the last two columns. (f) Existence
domain for the generation of rotating dipoles from N = 5 (lowest
power beam P ) to N = 8 (highest power beam P ). (g) Three-
dimensional representation for propagation dynamics when N = 8.
(See Supplemental Material [27] to observe propagation.)
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FIG. 4. (Color online) Evolution of (a) power beam P and
(b) spin beam S when N = 4. For λ = 10, μ = 0.25 and R =
4, and for λ = 50, μ = 0.1 and R = 3. Variation of (c) power beam
P and (d) spin beam S when N = 8. In both cases λ = 10, μ = 1,
and R = 9.

This initial configuration produces stronger interactions
between adjacent solitons for larger N as they move towards
the center, generating more complex propagation dynamics,
as shown in Figs. 3(a)–3(e).

Using N = 3 and N = 4, it is possible to generate rotating
tripoles and quadrupoles, respectively, as expected. However,
quite remarkably, we find that for N � 5, after some emission
of radiation waves, the fundamental moving soliton config-
uration given by Eq. (4) decays, generating rotating dipoles
that can be stabilized when enough beam power is reached.
In Fig. 3(f), we show the corresponding existence region for
the generation of these rotating dipoles when N � 5. Thus,
for initial configurations given by either Eq. (3) or (4), the
final rotary beam more frequently observed in our numerical
simulations was by far the rotating dipole, although it was
possible to generate other rotary beams. Similar results were
observed experimentally by Kivshar’s group [29], but for
the case of soliton vortices, which transformed into spiraling
dipole azimuthons. Here we also report that it is possible to
excite structures that resemble a single-charge vortex soliton
due to symmetric initial conditions for the specific case of
N = 4. Figures 4(a) and 4(b) show the corresponding power
and S value, respectively. Note that both values tend to a stable
value and that the S value is initially zero. We also observe the
dynamics of N moving fundamental solitons but with phase
distribution �n = 4πn/N. We report that in several cases a
two-charge vortex soliton is generated, but eventually, it decays
into a rotating dipole soliton.

The initially imposed relative phase structure �n is crucial
for stable propagation. For example, for N = 8, using either
�n = 2πn/N or �n = 4πn/N, although both configurations
have the same initial P and S values, they produce very differ-
ent values in steady stable state for the power and spin beams,

as can be seen in Figs. 4(c) and 4(d), respectively. In both
scenarios, either a single- or a two-charge vortexlike soliton
is formed at the beginning of propagation. However, only
for the single charge does the beam remain stable for longer
propagations. Nevertheless, the single-charge vortexlike beam
eventually decays again into a rotating dipole soliton.

V. COMPARISON BETWEEN THE GAUSSIAN AND
EXPONENTIAL NONLOCAL RESPONSES

It has been demonstrated that while the response function
N (r), defined by the physical process that generates the
medium nonlinearity, remains real, positive definite, symmet-
ric, and monotonically decaying, certain physical phenomena,
such as the collapse arrest, do not depend strongly on
the particular shape of N (r) [23]. However, other physical
phenomena, such as the stability of higher-order nonlinear
modes, do depend on the shape of the nonlocal response
function [30]. Thus, it is natural and very important to ask if
the generation of the rotary beams from moving fundamental
solitons reported here can be achieved with another kind
of nonlocality response. For comparison with the Gaussian
nonlocal model, we report the generation of rotary beams for
the case of an exponential response function [31],

N (r) = (1/2πσ 2) exp(−r/σ ); (5)

this nonlocal response function arises naturally in the one-
dimensional case, where thermal nonlinearities generate this
exponential nonlocal response, which allows us to find analyt-
ical solutions for several kinds of higher-order solitons [31].
For the two-dimensional case, we have used the Petviashvili
relaxation method [26] to obtain the corresponding funda-
mental solitons, and then the solitons were propagated using
a split-step Fourier method in a way similar to what was done
for the case of the Gaussian nonlocal response. We choose the
exponential nonlocal response as a second model to consider
because this response has a noncontinuous first derivative at
r = 0, which might lead to more instabilities during the soliton
propagation. Future work will extend our analysis to cases
with more complex nonlocal responses, such as media which
possess singularities at r = 0 [32], media with asymmetric
nonlocal responses [33], media where N (r) is described by a
diffusion-type equation [34], or even media with competing
nonlocal cubic and local quintic nonlinearity interactions,
which have drawn considerable attention recently [32,35–40]
because several popular nonlinear media, such as nematic
liquid crystals and Bose-Einstein condensates, can exhibit this
type of nonlocal response. However, in this paper, we focus on
only the case in which N (r) is either Gaussian or exponential.

We find that an exponential nonlocal response also allows
the generation of rotary beams from fundamental tilted
solitons. Similar to the case of the Gaussian response, with the
exponential response, it is possible to generate rotating dipoles
with at least two fundamental solitons as well as other kinds of
rotary self-trapped structures when N � 2. Remarkably, we
also corroborate the frequent generation of rotating dipoles
in the case in which multiple fundamental tilted solitons are
present from the start for a range of initial tilt values. Thus,
nonlocality can provide the physical mechanism necessary to
stabilize the rotating dipole solitons generated, independent
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FIG. 5. (Color online) Evolution of six (N = 6) fundamental
tilted solitons in nonlocal media with a Gaussian [(a) and (c)]
and exponential [(b) and (d)] response function N (r). (a) μ = 2.3,
(b) μ = 2.3, (c) μ = 2.7, and (d) μ = 2.7. In all cases R = 10 and
P = 220.69 for each fundamental soliton. The profiles are shown in
an x-y box of L × L, where L = 24 for the first two columns and
L = 12 for the last two columns.

of the particular response function N (r). However, we also
find in our numerical simulations that identical initial physical
conditions, i.e., an identical number of initial fundamental
solitons N, power P, distribution of the solitons given by
(xn,yn), relative phase, and the corresponding momentum
imposed by (ζn,ϑn), can produce quite similar nonlinear
dynamics with either a Gaussian [Fig. 5(a)] or an exponential
[Fig. 5(b)] nonlocal response function. However, we also
observed cases where identical initial conditions with either
a Gaussian [Fig. 5(c)] or an exponential [Fig. 5(d)] nonlocal
response function generate different rotary beams. Thus, we
find that, in principle, predict the final rotary beam generated
remains complex, mainly due to the strong decay of initial
power by the emission of radiation waves, and we find that the
final rotary beam generated does depend on the kind of N (r)
used.

Finally, we also report that the stable rotary beams gen-
erated here depend strongly on the initial position of the
tilted solitons. In the particular case of N = 4, using the
initial configuration given by Eq. (4), we never observed
the formation of stable rotating dipoles, but this situation
changes drastically if we slightly modify the initial position
of two fundamental solitons, for example, �1 and �3, by
adding an angular displacement �ε , as shown in Fig. 6. Under
this new initial asymmetrical configuration, it is possible
to generate rotating dipole solitons. The final rotary beam
generated depends again on the particular choice of N (r).
In our simulations, under this initial configuration, we only
observed the generation of rotating dipoles for the case with an

FIG. 6. (Color online) Evolution of four fundamental solitons
(N = 4) in Gaussian [(a) and (c)] and exponential [(b) and (d)] nonlo-
cal response, where two of the solitons have been initially moved by an
angular displacement given by �ε . (a) �ε = π/12, (b) �ε = π/12,
(c) �ε = π/18, and (d)�ε = π/18. For each fundamental soliton,
P = 220.69 and μ = 0.5. In all cases R = 10. The profiles are shown
in an x-y box of L × L, where L = 24 for the first column and L = 12
for the other three columns.

exponential nonlocal response [Figs. 6(b)–6(d)], even though
the Gaussian nonlocal response is normally considered more
appropriate for stabilizing self-trapped beams.

Thus, we find that the minimum critical number of initial
solitons which is required to develop a stable rotary dipole
structure is N = 2, but for an accurate prediction of the rotary
beam generated, in addition to the physical variables of the
fundamental solitons such as their power, initial momentum,
and position and the corresponding distribution phase, the
nonlocal responseN (r) plays a very crucial and quite complex
role in generating stable rotating dipole solitons. Even though
we cannot claim an accurate stability analysis from our
purely numerical simulations, we do observe the generation
of rotating dipoles that remain stable during propagations up
to z = 500 for either the Gaussian or the exponential nonlocal
response.

VI. CONCLUSIONS

In summary, we study the morphing of fundamental moving
solitons into basic rotary self-trapped structures. We found that
nonlocality provides the physical mechanism that is crucial
for the generation of stable rotating dipoles from fundamen-
tal moving solitons. The rotary self-trapped beams can be
generated with at least two transverse counterpropagating
solitons. Using a higher number of solitons can also produce
several complex self-trapped structures, but in many cases,
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remarkably, a stable dipole soliton is finally generated. We
demonstrate that this phenomenon is observed not only for
the case of a Gaussian nonlocal response but also for an
exponential nonlocal response. However, we also find that
Gaussian and exponential nonlocal responses may produce
very different soliton propagation dynamics even if they have
the same initial conditions, demonstrating a certain complexity
to predicting the generation of rotating dipoles or another
kind of rotary beam, mainly due to radiation losses. We hope

that this work helps develop new tools to produce rotary
self-trapped nonlinear beams.
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