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Invisible lenses with positive isotropic refractive index
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We analyze the optical properties of the so-called invisible lenses in the wave-optics regime and show that
they are practically invisible for a discrete set of frequencies. For other frequencies, the phase delay of the waves
that pass through the lens compared to those that do not disturbs the outgoing waves. The frequencies for which
the lens is invisible are influenced by the Gouy phase. This is the only known invisible device made of positive
isotropic material at finite frequencies.
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I. INTRODUCTION

Invisibility is the ultimate optical illusion, where light
rays propagate around an object through an optical medium
that surrounds it—the invisible cloak—and then resume their
original directions and transversal positions. In this way, the
rays beyond the object surrounded by the invisible cloak
move in the same way as if the object and the cloak were
not present at all, and an observer therefore sees “through”
the object. Since the discovery of invisible cloaking in 2006
[1,2], a large number of cloaks of different types have been
proposed, including non-Euclidean cloaks [3], carpet cloaks
[4,5], subluminal cloaks [6], and cloaks based on negative
permittivity [7] and negative refractive index [8] materials.
The cloaks that work for all directions of the incoming rays
are composed of materials that are either highly anisotropic or
with negative material parameters; almost isotropic materials
can be employed only in the case of carpet cloaks that work
just for a limited range of directions.

Despite that, there exists a class of objects that consist of
an isotropic optical material and still are invisible, at least
within geometrical optics. These objects have a spherically
symmetric refractive index profile and the simplest one of
them is described in the literature as the invisible lens [9,10].
Figure 1(a) shows rays propagating in this lens. Although the
invisible lens cannot function as an invisible cloak because
there is no room in it to include another object to become
invisible, the fact that a device formed of an isotropic material
may be invisible is remarkable.

So far, the invisibility properties of the invisible lens have
been derived from the behavior of light rays propagating in it.
This is reasonable in the geometrical optics limit of λ � a,
where λ is the wavelength of light and a is the radius of the
lens, but not if λ and a become comparable. The purpose of
this paper is to investigate the properties of the invisible lens in
the long-wavelength regime and show that for certain discrete
frequencies, it is practically invisible even in the full wave
description. This demonstrates the fact that optically isotropic
invisible objects are possible.
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II. THE INVISIBLE LENS

We begin our analysis with the two-dimensional (2D)
version of the invisible lens. It has the refractive index [10]
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where r is the radial coordinate. The index value at the
boundary, n(a) = 1, matches the index of the environment,
so there is no refraction or reflection at the lens boundary
and the rays smoothly enter the lens. The refractive index
diverges as n(r) ≈ (2/r)2/3 at r = 0, but this singularity can
be eliminated by the method of transmutation of singularities
[11] at the expense of introducing a slight anisotropy of the
index. In the regime of geometrical optics, a light ray that hits
the lens makes a loop around its center and exits at exactly the
same direction as it entered, without any transverse shift; see
Fig. 1(a). This way the ray, after leaving the lens, propagates
as if it had propagated just through an empty space, which
makes the device invisible within geometrical optics. The only
disturbance is a time (or, equivalently, phase) delay of the rays
that entered the lens compared to those that did not. This delay
is constant because rays are perpendicular to the wave fronts,
and equal to �t = 2πa/c, as can be verified easily for the
outermost ray hitting the lens with impact parameter a.

III. WAVES IN THE INVISIBLE LENS

Since there is a time delay of the rays that entered the
invisible lens, we can expect a phase slip at the border of
the lens “shadow” if it is illuminated by light waves. (By
“shadow” we mean the region occupied by the rays from the
source that passed through the lens.) If the time delay equals an
integer multiple of the wave period 2π/ω, then we can expect
at the boundary of the shadow a constructive interference of
the waves that passed through the lens and those that did not.
Otherwise, the interference will be at least partially destructive
and the wave will be disturbed. This gives a condition for
which we can expect the lens to be invisible in the wave-optics
regime,

ω = Nc/a, N ∈ N. (2)
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FIG. 1. (Color online) Rays in the (a) invisible lens and
(b) double invisible lens.

To see whether this simple argument is valid, consider a
monochromatic plane wave ψin = exp[i(kx − ωt)] incident
on the lens that is centered at the origin of coordinates. For
simplicity, we consider scalar waves. The total wave ψtot

outside the lens (in the region r � 1) can be written as a sum of
the incoming wave ψin and a scattered wave ψscatt. To find the
scattered wave, we use the partial-wave expansion and expand
the plane wave ψin as a superposition of cylindrical waves [we
omit the time factor exp(−iωt) in the following]:

ψin = exp(ikx) =
∞∑

m=−∞
imJm(kr) exp(imϕ), (3)

where Jm are the Bessel functions. Each term in this sum can be
expressed as a sum of a converging and diverging cylindrical
wave described by Hankel functions due to the identity

Jm(kr) = 1
2

[
H (2)

m (kr) + H (1)
m (kr)

]
. (4)

If we imagine for a moment that the invisible sphere is
not present yet (so the refractive index n = 1 in the whole
2D space), we can think of the expansion (3) with Eq. (4)
substituted into it, as if for each m there is a converging
cylindrical wave imH (2)

m (kr) exp(imϕ)/2 that changes into a
diverging wave imH (1)

m (kr) exp(imϕ)/2 at the origin. Now
when we put the invisible sphere at the origin, the converging
cylindrical wave will still be the same, but the diverging wave
will now be phase shifted compared to the situation without
the lens present. If we denote this shift by αm, we get the total
wave

ψtot =
∞∑

m=−∞

im

2

[
H (2)

m (kr) + H (1)
m (kr) exp(iαm)

]
exp(imϕ).

(5)
The scattered wave is then the difference between Eqs. (5) and
(3),

ψscatt =
∞∑

m=−∞
im

exp(iαm) − 1

2
H (1)

m (kr) exp(imϕ). (6)

The strength with which the invisible sphere scatters the mth
cylindrical component can be quantified by the square of the
magnitude of the coefficient in front of H (1)

m (kr), i.e., of the
fraction in Eq. (6). This evaluates to Sm = cos2(αm/2). To give
little scattering at some frequency ω, the quantities Sm should
be small.

To see how the invisible sphere behaves in waves incident
on it, we have numerically calculated the quantities Sm

FIG. 2. (Color online) The coefficients Sm(ω) for different values
of m with ω shown in the units c/a. The top picture shows the cases
of m = 0,1, and 2 (full blue line, dashed red line, and dotted black
line, respectively). The bottom picture shows the cases of m = 0 and
15 (dotted red line and full blue line, respectively) on a larger interval
of frequencies. The vertical dashed lines mark the positions of integer
frequencies satisfying condition (2).

as functions of frequency ω for different values of m.
For this purpose, we found the numerical solutions of the
Helmholtz equation [� + ω2n(r)2/c2]ψ = 0 in the medium
with refractive index (1) in the region r � 1. This solution
(with a free multiplication factor) was then matched to a
superposition of the Hankel functions H (1)

m (kr) and H (2)
m (kr)

[the mth term in Eq. (5)] to get a function that is continuous
at r = 1 including its derivative. In this way, we obtained
the coefficients Sm as well as the semianalytical solution
of the Helmholtz equation for each m, and were then able
to construct the total wave as a superposition of these
solutions.

Figure 2 shows the calculated coefficients Sm(ω) for several
values of m (we are using the units in which c = a = 1).
Remarkably, Sm(ω) are all very small for integer ω, which are
exactly the frequencies satisfying the condition (2). This means
that at the integer frequencies, we can indeed expect negligible
scattering from the invisible lens. This is demonstrated in
Figs. 3(a) and 3(b) that show the plot of the wave calculated
by our method for two integer values of ω. At the same time,
at half-integer frequencies, the coefficients Sm(ω) are large,
which suggests a stronger scattering. The plot of the waves
in this case for two half-integer values of ω can be seen in
Figs. 3(c) and 3(d). The phase slip at the boundary of the
shadow is clearly visible. This makes the performance of the
invisible lens similar to that of a non-Euclidean cloak [12] and
a conformal cloak [13]. There, similarly as here, the invisibility
is very good for a discrete set of frequencies where the rays
that have entered the cloak interfere constructively with those
that have not.

Figure 4 shows the waves for larger frequencies, namely,
for ω = 20 and ω = 20.5. We see again that for integer
frequency, the invisibility is almost perfect, while for half-
integer frequency, the wave is disturbed at the boundary of
the lens shadow. The fact that the lens is not completely
invisible even at the integer frequencies is unavoidable due
to the theorem of the uniqueness of the inverse-scattering
problem for waves [14].
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FIG. 3. (Color online) Plot of the waves resulting from illumi-
nation of the 2D invisible lens by a plane wave from the left for
(a) ω = 1, (b) ω = 5, (c) ω = 1.5, and (d) ω = 5.5. In the cases
(a) and (b), the lens is practically invisible; in (c) and (d), there is
a phase slip along the shadow boundary. The border of the lens is
marked by the black circle.

FIG. 4. (Color online) Plot of the waves resulting from illumi-
nation of the 2D invisible lens by a plane wave for (a) ω = 20 and
(b) ω = 20.5.

FIG. 5. (Color online) Wave simulation corresponding to exactly
the same situation and parameters as Fig. 3 using the software
COMSOL.

To verify our results by an independent method, we have
also performed simulations of the invisible lens illuminated
by plane waves by two different numerical methods. In
particular, we used simulations by the finite-element method
implemented by the commercial software COMSOL (see Fig. 5),
and the finite-difference time-domain (FDTD) free software
MEEP [15] (see Fig. 6). We see that the agreement of the
three methods is quite good. In particular, our semianalytical
method and COMSOL simulations give almost identical results.
The MEEP simulations differ slightly, which we ascribe to
numerical errors. However, the overall character of scattering
by the invisible lens remains unchanged also in the MEEP

simulations.

FIG. 6. (Color online) Wave simulation corresponding to exactly
the same situation and parameters as Fig. 3 using the software MEEP

[15].
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FIG. 7. (Color online) The coefficients Sl(ω) for different values
of l = 0,1,2 (top: full blue line, dashed red line, and dotted black line,
respectively) and m = 0,15 (bottom: dotted red line and full blue
line, respectively) on a larger interval of frequencies. The vertical
dashed lines mark the half-integer frequencies for which constructive
interference occurs.

IV. 3D INVISIBLE LENS

Next we proceed to the 3D case. For simplicity, we will ana-
lyze the behavior of scalar waves in the 3D invisible lens; as we
will see at the end of Sec. V, the general properties of scattering
by an invisible lens depend very little on the type of waves.

In the 3D case, instead of Bessel and Hankel functions, we
have to use spherical Bessel and Hankel functions; the angular
part of the wave is now described by spherical harmonics
Ylm(θ,ϕ). Similarly to the 2D case, a plane wave can be
expressed as a superposition of these spherical waves [16],
in analogy to Eq. (3). When the plane wave propagates
along the z axis, only the waves with m = 0 will be present
in the superposition. Following the completely analogous
procedure, we calculate the coefficients of the scattered
diverging spherical wave h

(1)
l (kr)Yl0(θ,ϕ) as Sl = cos2(αl/2),

where αl is the phase shift of the component h(1)
l (kr) introduced

by the presence of the invisible lens. The coefficients Sl(ω)
calculated numerically for several values of l are shown in
Fig. 7. Apparently and maybe a bit surprisingly, now it is the
half-integer frequencies for which Sl(ω) are small instead of
the integer ones, which was the case for Sm(ω) (Fig. 2). This

FIG. 8. (Color online) Two rays initially parallel to the z axis
(black dashed line) entering the lens with the same impact parameter
intersect each other twice on the z axis.

FIG. 9. (Color online) Plot of the scalar waves in the 3D invisible
lens for (a) ω = 5 and (b) ω = 5.5. Here there is a phase slip along
the shadow boundary for the integer ω, while the lens is practically
invisible for half integer ω due to the effect of the Gouy phase.

suggests the existence of some additional phase factor of π

compared to the 2D case that the waves pick up (or lose) when
they propagate through the lens. As we will show now, this
factor is indeed present and is due to the Gouy phase.

V. GOUY PHASE

Consider two rays parallel to the z axis entering the lens
with the same impact parameter; see Fig. 8. Each of these rays
lies in a plane that contains the z axis. This axis is therefore
also the intersection line of these two planes, and since the rays
have the same impact parameter, they must intersect each other
at two points on the z axis; see Fig. 8. On the other hand, two
parallel rays with different impact parameters lying in a plane
containing the z axis would not intersect. We see that in this
way the invisible lens performs a certain type of focusing, but
only in one direction, i.e., similar to the effect of a cylindrical
lens: a bunch of initially parallel rays of a circular cross section
would assume a linear cross section in the lens when crossing
the z axis. It is well known that there is a Gouy phase factor
of π/2 connected with this type of cylindrical focusing [17].
Multiplying this factor by two because the focusing occurs
twice, we find that the wave will indeed be shifted by an
additional phase factor of π .

Figure 9 shows the plot of the scalar waves in the 3D
invisible lens. As we could now expect, for integer frequencies,
there is a phase slip of π at the boundary of the shadow, while
for half integer ω, the invisibility of the lens is almost perfect.

FIG. 10. (Color online) MEEP simulations for the 3D invisible
lens. The frequencies correspond to Fig. 9: (a) ω = 5, (b) ω = 5.5.
The full vector description of the waves by Maxwell’s equations
was employed and the electric field of the incoming plane wave was
perpendicular to the plane of the image.
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FIG. 11. (Color online) The coefficients Sm(ω) for the double
invisible lens for m = 0,1,2 (full blue line, dashed red line, and
dotted black line, respectively).

Figure 10 shows the wave simulations for the 3D invisible
lens by the software MEEP. In contrast to Fig. 9, the MEEP

simulations were performed for the full vector description of
the waves by Maxwell’s equations. The incoming wave is
polarized such that the electric field is perpendicular to the
plane of Fig. 10, and the refractive index is realized by purely
dielectric properties of the material (i.e., μr = 1). We see that
the character of the scattering is very similar to that for scalar
waves in Fig. 9, which shows that the performance of the
invisible lens does not depend much on the type of waves.
We did not perform simulations of this situation by COMSOL

because it was challenging to handle the 3D situation with
sufficient resolution.

VI. OTHER INVISIBLE LENSES

The invisible lens discussed so far is only one representative
of a whole class of lenses with a similar behavior. We can
force the ray to make not just one, but an arbitrary number of
loops inside the lens by choosing a suitable refractive index.
An example of the “double invisible lens” with two loops is
shown in Fig. 1(b). The refractive index can be calculated,
e.g., by the methods explained in Refs. [9,18]. Since the delay
of the ray now corresponds to twice the circumference of
the lens, the constructive interference will occur when this
distance is covered by an integer number of wavelengths, i.e.,
for ω = Nc/(2a), N ∈ N. The behavior of coefficients Sm(ω)
perfectly confirms this—they are very small for both integer

FIG. 12. (Color online) Plot of the waves in the 2D double
invisible lens for (a) ω = 5 and (b) ω = 5.5. In both cases, the
interference is constructive and the lens is almost perfectly invisible.

and half-integer frequencies; see Fig. 11. Plots of the waves in
the 2D double invisible lens are shown in Fig. 12.

VII. CONCLUSION

In conclusion, we have demonstrated that the invisible lens
is almost perfectly invisible for light waves for a discrete set of
frequencies for which the constructive interference condition
is satisfied. This condition is different in the 2D and 3D case
due to the effect of the Gouy phase. The slight imperfection
is unavoidable due to the theorem of the uniqueness of the
inverse-scattering problem for waves [14]. The invisible lens
is the only known isotropic device with a positive refractive
index with invisible properties.
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