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Dissipative quadratic solitons supported by a localized gain
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We propose two models for the creation of stable dissipative solitons in optical media with the χ (2) (quadratic)
nonlinearity. To compensate spatially uniform loss in both the fundamental-frequency (FF) and second-harmonic
(SH) components of the system, a strongly localized “hot spot” carrying the linear gain is added, acting either
on the FF or on the SH component. In both systems, we use numerical methods to find families of dissipative
χ (2) solitons pinned to the “hot spot”. The shape of the existence and stability domains may be rather complex.
An existence boundary for the solitons, which corresponds to the guided mode in the linearized version of the
systems, is obtained in an analytical form. The solitons demonstrate noteworthy features, such as spontaneous
symmetry breaking (of spatially symmetric solitons) and bistability.
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I. INTRODUCTION

Formation and stabilization of solitary waves is one of the
central problems of nonlinear optics [1]. Self-trapped light
beams confined in transverse directions (spatial solitons) were
found in a variety of physical settings. Solitary waves exist
not only in conservative but also in dissipative materials
where the self-localization is supported by the fundamental
balance between the diffraction and self-focusing, as in lossless
media, and between the loss and gain [2,3]. Dissipative spatial
solitons have been studied in different media, including lasers
with saturable gain and absorption [2], systems where light
evolution is governed by the cubic-quintic complex Ginzburg-
Landau equation [3–9], and in semiconductor amplifiers [10].

A recently developed ramification of this topic is the
study of trapped nonlinear modes in settings combining
spatially localized gain (“hot spots”) and uniform losses (see
Ref. [11] for a brief review). Detailed theoretical analysis has
been developed for diverse one- [12–26] and two- [27–32]
dimensional realizations of models of this type, as well as
for periodic distributions of the inhomogeneous gain and loss
[33], and for both one- and two-dimensional discrete systems
(lossy lattices) with the gain applied at a particular “hot site”
of the lattice [34–36]. Related to this class of models is the
one with the spatially uniform linear gain and nonlinear loss
whose strength grows from the center to the periphery of the
system at any rate faster than the distance from the center,
which makes the dissipative solitons stable [37]. Also similar
is the model in the form of the localized PT dipole, i.e.,
a merged [38] or separated [39] pair of mutually balanced
pointlike gain and loss elements embedded into the nonlinear
medium, which supports a family of stable PT - (parity-time)
symmetric solitons pinned to the pair.

The numerous works dealing with dissipative and PT -
symmetric solitons supported by the localized gain (“hot
spots”) addressed media with the uniform [12–18,20–22,24–
33,37–39] or localized [19,23,34–36] Kerr nonlinearity. The
objective of the present work is to extend the analysis of
dissipative solitons supported by “hot spots” immersed into
optical media featuring the quadratic, alias χ (2), interactions,
which is another generic type of the optical nonlinearity
[40–43]. Previously, dissipative χ (2) solitons were studied in
models of spatially uniform optical cavities [44–46] and PT -

symmetric systems [47,48], but the option of using localized
gain has not been explored yet.

An advantage offered by the χ (2) media is based on
the fact that they provide a very strong nonlinearity, when
the mismatch between the fundamental-frequency (FF) and
second-harmonic (SH) fields is small enough [40–43] and
hence the necessary propagation distance, i.e., the size of
the experimental samples required for the observation of the
solitons can be reduced to a few centimeters. The strong
nonlinearity also makes it possible to decrease the necessary
power of the laser beams, which should be used to create
the solitons—roughly speaking, from a multi-kilowatt level
to that of several watts. However, a majority of perspective
χ (2) materials with high values of the quadratic nonlinearity
(e.g., single-crystal organics and semiconductors, such as
InAs, InSb, GaSb) feature excessive absorption at optical and
near-infrared wavelengths. Therefore, to facilitate the soliton
generation in such materials, one should compensate their
intrinsic absorption, using, in particular, the concept of spa-
tially localized gain. Besides providing the direct balance with
losses, the localized gain may also serve as a means for steering
nonlinear light beams (i.e., spatial optical solitons) [11].

We study the existence of the solitons in settings which
combine the quadratic nonlinearity and localized gain acting
on the single harmonic, either the SH or FF one, while the
linear losses are present in both components. We demonstrate
that such solitons may exist and be stable in a wide range of
parameters. The structure of existence and stability domains
may be rather complicated, and complex effects, such as
symmetry breaking and bistability, occur therein.

The rest of the paper is structured as follows. Two
models, with the localized gain acting on either the FF or SH
component, are formulated in Sec. II. Results of studies of
dissipative solitons in the former system, both analytical and
numerical, are reported in Sec. III, which is followed by the
presentation of results for the system with the gain built into the
SH component in Sec. IV. The paper is concluded by Sec. V.

II. THE MODELS

First, we introduce the system with the “hot spot” acting
on the FF. It is based on the system of coupled dimensionless
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FIG. 1. (Color online) (a) Profiles of the absolute value of the FF (thick black line) and SH (thin red line) fields in the numerically found
stable soliton supported by the local gain applied at the fundamental-frequency harmonic [model based on Eqs. (1) and (2)] at β = 0, η0 = 0.5,
γ0 = 0.3, γ2 = 1.0, a = 2.0. Profiles of the modulus (black dotted line), imaginary (thick blue line), and real parts (thin red line) of (b) FF and
(c) SH fields. All quantities are plotted in dimensionless units.

equations for local amplitudes of the FF (q1) and SH (q2)
waves in the spatial domain, under conditions for the type-I
(degenerate)χ (2) interaction [40–43] in the presence of the
dissipation and localized gain:

i
∂q1

∂ξ
= −1

2

∂2q1

∂η2
− q∗

1 q2 exp(−iβξ ) + iγ1(η)q1,

(1)

i
∂q2

∂ξ
= −1

4

∂2q2

∂η2
− q2

1 exp(iβξ ) − iγ2q2,

where η and ξ are the transverse coordinate and propagation
distance, respectively,

γ1(η) = a exp
(−η2/η2

0

) − γ0 (2)

with positive γ0 and a is the gain-loss profile at the FF with
spatial width η0, γ2 > 0 represents the homogeneous loss at
the SH, and β stands for the wave-number mismatch. Using
the scaling invariance of the system, we fix η0 = 0.5, and the
generic results can be adequately presented, which is done
below, for strength γ0 = 0.3 of the background loss at the FF.

Note that in the cascading limit [40–43], which, in the
present case, corresponds to large values of β and/or γ2, the
SH field can be eliminated,

q2 ≈ (β − iγ2)−1eiβξ q2
1 , (3)

and the remaining equation for the FF,

i
∂q1

∂ξ
= −1

2

∂2q1

∂η2
− β + iγ2

β2 + γ 2
2

|q1|2q1 + iγ1(η)q1, (4)

reduces to the “hot-spot” model with the cubic nonlinearity
introduced in Ref. [13]. Here, our objective is to study the
system in the properly χ (2) regime.

The system with the localized gain acting at the SH is
adopted in the following form, which can never be reduced to
an effective counterpart with the cubic nonlinearity:

i
∂q1

∂ξ
= −1

2

∂2q1

∂η2
− q∗

1 q2 exp(−iβξ ) − iγ1q1,

(5)

i
∂q2

∂ξ
= −1

4

∂2q2

∂η2
− q2

1 exp(iβξ ) + iγ2(η)q2,

where γ1 is the spatially uniform loss coefficient at the FF,
while the spatial profile of the gain at the SH is taken as in
Eq. (2), viz.,

γ2(η) = a2 exp
(−η2/η2

0

) − γ0. (6)

By means of the rescaling we again set here η0 = 0.5, while
generic results are reported below for γ0 = 0.3, γ1 = 0.5.

III. SOLITONS SUPPORTED BY THE LOCAL GAIN
APPLIED AT THE FUNDAMENTAL-FREQUENCY

HARMONIC

A. Analytical considerations

Stationary solutions for pinned states with real propagation
constant b are looked for as

q1 = w1(η) exp(ib ξ ), q2 = w2(η) exp[i(2b + β) ξ ], (7)

where w1,2(η) are complex functions. The states are charac-
terized by their FF and SH powers, U1,2 = ∫ +∞

−∞ |q1,2(η)|dη,
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(a) (b)

FIG. 2. (Color online) (a) The soliton’s energy flow (total power) vs the gain coefficient at β = −1.3 (thick blue line), β = 0 (thin black
line), and β = 1.3 (dashed red line) for η0 = 0.5, γ2 = 1.0, and γ0 = 0.3, respectively. Colored dots indicate boundaries of the stability domains
(solitons are stable to the left from these points). (b) Detailed dependence for the same parameters at β = 1.3. All quantities are plotted in
dimensionless units.

the total power (alias energy flow), U = U1 + U2, being the
dynamical invariant of the system in the absence of loss and
gain. In the presence of these terms, stationary solutions satisfy
the power-balance condition,

dU

dξ
= 2

[
a

∫ +∞

−∞
exp

(
−η2

η2
0

)
|w1(η)|2dη

− γ0U1 − γ2U2

]
= 0, (8a)

for the “hot spot” acting at the FF, and the condition

dU

dξ
= 2

[
a2

∫ +∞

−∞
exp

(
−η2

η2
0

)
|w2(η)|2dη

− γ1U1 − γ0U2

]
= 0, (8b)

for the “hot spot” acting at the SH. Numerical solutions were
constructed by means of the relaxation method.

In accordance with the general concept of linear gain-
guided modes [49], the stationary pinned-mode solution to
the linearized version of Eq. (1) exists at a single equilibrium
value of the amplitude of the gain profile (2), a = a0, which

FIG. 3. (Color online) Soliton existence and stability domains at
η0 = 0.5, γ0 = 0.3. Solitons exist to the right from the vertical red
dotted line and below the solid lines. Stability domains are located
to the left from the dashed lines of the same color. All quantities are
plotted in dimensionless units.

provides for the fulfillment of Eq. 8(a), and at a single value
of the propagation constant b0. In particular, an approximate
solution to the linearized equations can be found for broad
modes, with

η0
√

γ0, η0

√
−b0 � 1. (9)

The bulk part of the respective solution, valid at η2 � η2
0, is

(q1(η))|bulk ≈ Q0 exp(ib0ξ −
√

2(b0 − iγ0)|η|), q2 = 0,

(10)

with a negative propagation constant b0 and arbitrary
amplitude Q0, while the consideration of the solution in a
vicinity of the “hot spot” amounts to the relation

�

(
∂(q1)bulk

∂η

)
≈ 2iQ0a exp(ib0ξ )

×
∫ +∞

−∞
exp

(
−η2

η2
0

−
√

2(b0 − iγ0)|η|
)

dη

≈ 2iQ0aeib0ξ η0[
√

π − η0

√
2(b0 − iγ0)],

(11)

where �(∂q1/∂η) = −2Q0
√

2(b − iγ0) stands for the jump
of the η derivative of the bulk solution (10) across the “hot
spot”. The substitution of this into Eq. (11) yields a complex
algebraic equation,

a0η0

⎛
⎝

√
π

2

√
b0 + iγ0√
b2

0 + γ 2
0

− η0

⎞
⎠ = i , (12)

which can be reduced to the quartic equation for the
propagation constant,

b0 +
√

b2
0 + γ 2

0 = 4

π
η2

0

(
b2

0 + γ 2
0

)
, (13)

and an explicit expression for the gain strength,

a0 = 2√
πη0γ0

√(
b2

0 + γ 2
0

)(
b0 +

√
b2

0 + γ 2
0

)
(14)

In particular, for normalization η0 = 0.5 adopted above
and a typical value of the loss constant, γ0 = 0.3, Eqs. (13)
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(a) (b)

FIG. 4. (Color online) (a) The soliton total power (energy flow) and (b) propagation constant vs wave-number mismatch β at η0 = 0.5,
a = 2.0, and γ0 = 0.3. The solitons are stable in the range of parameters displayed here. All quantities are plotted in dimensionless units.

and (14) yield a0 ≈ 1.222, b0 ≈ −0.445 , while the respective
numerical findings are a0 = 1.323 , b0 = −0.389. Finally, for
very small values of γ0 [see Eqs. (5)], Eqs. (13) and (14) can
be simplified to explicit formulas:

a3
0 = γ0/

(
πη4

0

)
b0 ≈ −(π/2)η2

0a
2
0 . (15)

This result is compatible with the underlying condition
(9) under the same condition which is adopted in the first
inequality of (9), η0

√
γ0 � 1.

B. Numerical results

We have found that numerically constructed dissipative
χ (2) solitons (see a typical example in Fig. 1) exist strictly at

a > a0. [Here, a0 is realized not necessarily as the approximate
analytical result given by Eq. (12), but as the numerically found
value, admitting the existence of the linear gain-guided mode
in the FF component.] This finding is quite natural, as the full
model includes additional losses at the SH, the compensation
of which requires an increase of the gain strength. Furthermore,
the existence and stability domains strongly depend on the sign
of wave-number mismatch β. (The stability was identified by
means of systematic simulations of the perturbed evolution of
the solitons using the standard split-step fast-Fourier-transform
algorithm.) Figure 1 shows a typical soliton profile. Note that
stable soliton solutions exhibit a nontrivial phase distribution.

For β > 0, the range of the gain strength supporting stable
solitons is significantly narrower than for β < 0. It is shown in

(a) (b)

(c)

FIG. 5. (Color online) Profiles of the absolute value of the FF (thick black line) and SH (thin red line) fields of the solitons supported by the
local gain applied at the second harmonic [model based on Eqs. (5) and (6)] at β = −3, η0 = 0.5, γ0 = 0.3, γ1 = 0.5 for symmetric solitons at
a2 = 0.98 (a) from the bottom branch and (b) from the upper one, and (c) the asymmetric soliton at a2 = 1.2. The corresponding branches are
shown at Fig. 6(a). All quantities are plotted in dimensionless units.
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(a) (b)

(c)

FIG. 6. (Color online) The soliton total power U vs gain coefficient a2 for the solitons supported by the local gain applied at the second
harmonic at γ0 = 0.3, η0 = 0.5, and γ1 = 0.5 for (a) β = −3, (b) β = −1.75, and (c) β = −4.5, respectively. The red line marked “b”
corresponds to the bottom branch, the black line marked “u” to the upper branch, the blue line marked “as” to the asymmetric branch, which
emerges from the upper one through the spontaneous symmetry-breaking bifurcation, and the short dashed green segment to the fully unstable
branch. The blue dot indicates the boundary of the stability domain of the asymmetric branch (solitons are stable to the left from this point).
All quantities are plotted in dimensionless units.

Figs. 2 and 3 that if the mismatch is positive there is a certain
range of values of the gain coefficient where solitons do not
exist even at a > a0. [As it is shown at Fig. 2(b), at threshold
points the tangential line to the U (a) curve becomes vertical
while U remains finite.] For negative values of the mismatch,
solitons exist at all values a > a0 of the gain coefficient.
Moreover, solitons do not exist for large values of the positive
wave-number mismatch, but they still exist for large absolute
values of the negative mismatch (see Figs. 3 and 4). [In Fig. 4
at the threshold value of β the tangential line to the U (β)
curve becomes vertical, while U remains finite.] Note that
this fact is opposite to the solitons’ behavior as a function of
the wave-number mismatch in conservative systems, where,
while one-dimensional (1D) solitons exist for any value of a
positive mismatch, they are found only below a maximum
absolute value of the negative mismatch. This finding can
be explained in the above-mentioned cascading limit. Indeed,
the positive mismatch in the so-derived effective equation (4)
corresponds to the self-focusing sign of the resultant cubic
nonlinearity. However, it was shown earlier in Ref. [21] that in
the cubic medium stable gain-guided solitons exist at a > a0 if
the nonlinearity is defocusing. Note that the existence domain
becomes wider with the growth of losses at the SH (see
Fig. 4).

The stability analysis has revealed that solitons are unstable
when the gain strength exceeds a certain critical value,

a > acr(β), which slightly depends on the mismatch, decreas-
ing with its growth (see Fig. 3). The width of the stability
domain increases with the growth of the SH loss rate γ2, all
the solitons being unstable at γ2 = 0.

IV. SOLITONS SUPPORTED BY THE LOCAL GAIN
APPLIED AT THE SECOND HARMONIC

Proceeding to the analysis of the model based on Eqs. (5)
and (6), we first fix the mismatch β and vary the gain strength
a2. It is thus found that stable solitons exists only at β < 0.
Typical profiles of the solitons are shown in Fig. 5.

There are several branches of the dependence of the
soliton’s total power on the values a2. The bottom branch (the
red line marked “b” in Fig. 6) exists at a2 > a20 ≈ 0.945 28,
where a20 corresponds to the gain-guided mode in the SH
equation, with U1 → 0 but U2 	= 0 (see Fig. 7). Naturally,
a20 does not depend on β, as, in terms of the linearized
version of the SH equation in (5), β reduces to an immaterial
propagation-number shift. In the analytical form, a20 can be
predicted by Eqs. (13)–(15), with η0 replaced by

√
2η0, and

b0 replaced by the SH propagation constant. In particular,
the approximation corresponding to Eq. (15) (very small γ0)
implies that a20 = 2−2/3a0 ≈ 0.63a0, for the same values of
γ0 and η0. As for the finite value of U2 from which the branch
originates, it is the one at which the parametric gain generated
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FIG. 7. (Color online) Powers U1, U2, and U vs a2 for the solitons
from the bottom branch at γ0 = 0.3, η0 = 0.5, and γ1 = 0.5 for β =
−3(thick blue lines) and β = −2 (thin black lines). The solitons are
stable in the range of parameters displayed here. All quantities are
plotted in dimensionless units.

by the χ (2) term in the first equation of system (5) provides for
the compensation of the FF loss ∼ γ1.

Getting back to the numerical solutions of the full nonlinear
system (5), we have found that they exist if the gain coefficient
is smaller than a certain critical value. (At threshold points
the tangential line to the U (a) curve becomes vertical, while
U remains finite.) The existence domain shrinks when the

mismatch decreases (compare different panels in Fig. 6) and
disappears at small values of the mismatch. (For the present
parameters, it disappears, approximately, at β < −4.35 [see
Figs. 6(c) and 9].) Solitons from this branch have a spatially
symmetric shape. While β increases, this branch become
partially unstable, and, at values of β large enough, stable
solutions disappear. The intermediate branch (the green line
in Fig. 6) is totally unstable. The upper branch (the black
line marked “u” in Fig. 6) exists above a threshold value
of the gain strength, which depends on β. [Once again, at
the threshold points the tangential line to the U (a) curve
becomes vertical, while U remains finite.] Solitons from this
branch are spatially symmetric, actually staying stable below
a point of the spontaneous symmetry breaking. At some
value of the gain parameter, an asymmetric stable solution
appears (the blue line marked “as” in Fig. 6), while the
symmetric solutions become unstable. Asymmetric solutions
are stable below some critical gain value (the blue circle
in Fig. 6). At large values of β, stable solutions disappear.
Interestingly, stable solitons from the upper and asymmetric
branches may exist for small values of the gain strength, even
at a2 < a20 ≈ 0.945 28, i.e., below the above-mentioned value
necessary for the existence of the gain-guided linear mode [see
Eq. (13)].

It is worth noting that there is a domain of bistability at
Fig. 6(a), where two different symmetric solitons may exist
for the same set of parameters. Profiles of such solitons are
shown in the top panels of Fig. 5. For other values of β, a

(a) (b)

(c)

FIG. 8. (Color online) The soliton total power U vs β at γ0 = 0.3, η0 = 0.5, γ1 = 0.5 for (a) a2 = 1.0, (b) a2 = 1.3, and (c) a2 = 0.85.
The red line marked “b” corresponds to the bottom branch, the black line marked “u” to the upper branch, and the blue line marked “as” to
the asymmetric branch. The blue dot indicates the boundary of the stability segment of the asymmetric branch (solitons are stable to the right
from this point), and the red dot the boundary of the stability segment of the bottom symmetric branch (solitons are stable to the left from this
point). All quantities are plotted in dimensionless units.
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FIG. 9. (Color online) Existence and stability domains at γ0 =
0.3, η0 = 0.5, γ1 = 0.5. Red lines correspond to the bottom branch
(branch “b” in Figs. 6 and 8). The existence domain is situated
between the solid lines marked “1” and “3”, these solitons being
symmetric and stable to the left from the dashed line marked “2”.
Solitons from the upper branch (branch “u” at Figs. 6 and 8) exist
above the solid black line marked “4”, being symmetric and stable
below the solid blue line marked “5”, which indicates symmetry-
breaking points. Asymmetric solitons (branch “as” at Figs. 6 and 8)
exist above the solid blue line, and are stable below the dashed blue
one marked “6”. All quantities are plotted in dimensionless units.

bistability domain for symmetric and asymmetric solutions
may exist too (see Fig. 9).

Now, we fix the value of the gain parameter a2 and vary
the mismatch β (see Fig. 8). In this case, stable solutions
from the bottom branch (the red line marked “b”, to the left
from the red point) exist in a finite range of small negative
values of the mismatch. Solutions from the upper branch (the
black line marked “u”, on the left of the symmetry-breaking
point) and asymmetric branches (the blue line marked “as”,
to the right from the blue point) require larger values of the

negative mismatch for their stability. As the gain decreases, the
stability domain of the solitons from the upper and asymmetric
branches shifts towards larger values of the negative mismatch,
getting wider. For example, at a2 = 0.6 the upper branch exists
at β < −12.9, the symmetry breaking occurs at β ≈ −17.95,
and asymmetric solutions are stable at β > −35.6. However,
such solitons imply high powers, which may be a problem in
terms of their creation in the experiment. Note that there is a
domain of bistability at Fig. 8(a), where two different stable
symmetric solitons may exist for the same set of parameters.

V. CONCLUSIONS

We have introduced models which support stable dissipative
solitons in media with the quadratic nonlinearity, into which a
“hot spot” is embedded, with the linear localized gain acting
either on the FF (fundamental-frequency) harmonic, or on the
SH (second harmonic), with the spatially uniform linear losses
present in both components. By means of numerical methods,
we have found that χ (2) solitons, pinned to the “hot spot,” exist
and are stable in wide ranges of parameters in both systems.
The existence boundary, which corresponds to the gain-guided
modes in the linearized systems, was found in an approximate
analytical form. The structure of the existence and stability
domains may be rather complicated. Various phenomena, such
as the spontaneous symmetry breaking of spatially symmetric
solitons and bistability, have been revealed by the analysis. It
may be quite interesting to develop the analysis for 1D settings
with pairs of the “hot spots,” and for two-dimensional settings
as well.
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