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Photon-pair generation in nonlinear metal-dielectric one-dimensional photonic structures
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Nonlinear metal-dielectric layered structures are shown to be able to efficiently generate entangled photon
pairs using spontaneous parametric down-conversion. Increase of electric-field amplitudes in these structures
enhanced by the presence of metal layers is sufficient to compensate for losses inside thin metal layers. As an
example, photon pairs emitted from a structure composed of alternating nonlinear dielectric GaN layers and metal
Ag layers are analyzed in spectral, temporal, as well as spatial domains. Also, correlations and entanglement
between two photons in a pair are determined. Very narrow photon-pair spectra together with strong directionality
of photon-pair emission are observed making the photons suitable for photon-atom interactions. Highly enhanced
electric-field amplitudes provide high photon-pair generation efficiencies.
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I. INTRODUCTION

Spontaneous parametric down-conversion (SPDC) is a
quantum nonlinear process that was predicted in 1961 [1]
and experimentally observed for the first time in 1968 [2,3].
SPDC occurs in nonlinear media with nonzero second-order
nonlinear susceptibility tensor χ (2). During this process, the
conservation law of energy originating in homogeneity of time
is fulfilled. Also the conservation law of momentum is usually
obeyed, at least for the transverse components of wave vectors
of the interacting fields. This law originating in homogeneity
of space is approximately valid also for longer homogeneous
crystals along the propagation direction. The generation of
photon pairs has to fulfill both laws and so photon pairs
typically occur in states entangled in frequencies, momenta,
orbital angular momenta, or polarizations [4–8].

Phase-matching conditions can only be fulfilled under
specific conditions that determine the properties of photon
pairs. For this reason, new and efficient sources of photon pairs
have been developed using, e.g., periodically poled crystals.
Periodical poling which introduces periodical modulation of
χ (2) nonlinearity offers enhanced control of phase matching
of the nonlinear process, as well as modification of spectral
properties of the emitted photon pairs [9–11].

Modern optical structures that confine the fields in one
(layered structures) or two (waveguides, optical fibers) di-
mensions represent qualitative improvement from the point of
view of efficiency of photon-pair generation. The confinement
of interacting fields enhances their electric-field amplitudes on
one side; it qualitatively changes the conditions for an efficient
nonlinear interaction on the other side. The requirement for
phase matching of wave vectors is then replaced by the need
of large spatial overlap of the electric-field amplitudes of all
three interacting fields. As spatial profiles of the electric-field
amplitudes depend strongly on parameters and geometry of the
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structures, much broader possibilities for tailoring properties
of the emitted photon pairs exist.

A great deal of attention has been devoted to waveguiding
structures including planar or rectangular waveguides and
photonic fibers. Two-dimensional confinement, together with
sufficiently long structures, provides high absolute conversion
efficiencies of SPDC, even three or four orders in magnitude
larger compared to typical nonlinear bulk crystals. Efficient
SPDC in periodically poled waveguides has been investigated
in [12–14]. On the other hand, SPDC in photonic fibers [15–17]
provides photon pairs in transverse (guided) modes with radial
symmetry that are pivotal for optical-fiber communications.
From the perspective of applications in communications, ring
and vortex nonlinear silica fibers are promising [18,19].

As already mentioned, nonlinear layered structures confine
the fields along their propagation direction. Backscattering of
the fields creates a one-dimensional photonic-band structure
(PBG) with transmission peaks and forbidden bands [20–23].
The electric-field amplitudes are enhanced by this backscat-
tering, which under suitable conditions gives an efficient
nonlinear interaction. However, as the confinement of optical
fields occurs only in one dimension, the enhancement of
optical fields is considerably weaker compared to waveguiding
structures, at least for dielectric structures. On the other hand,
there exist the usual transverse phase-matching conditions and
the impinging fields can be easily coupled into the modes of
the structure [23]. Also, properties of a two-photon state can
be efficiently and easily controlled by spatial and temporal
spectra of the pump beam. Taking into account the precision
of well-established fabrication techniques, one-dimensional
PBGs represent promising sources of photon pairs.

Nonlinear dielectric layered structures have been already
investigated from the point of view of SPDC. Both semiclas-
sical (stochastic) [21] and quantum models [22,23] of SPDC
in dielectric layered structures have been elaborated. These
structures have been shown to be able to provide entangled
photon pairs antisymmetric with respect to the exchange of
signal and idler frequencies [24]. Also, random nonlinear
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dielectric layered structures have been analyzed as sources
of spectrally ultranarrow photon pairs [25,26]. Surface SPDC
has been shown to give important contribution to photon-pair
generation rates [27–29].

On the contrary, metal-dielectric layered structures have
been investigated from the point of view of transmission
properties [30,31]. It has been shown that, considering the
overall transmission, the total amount of metal inside the
structure can be considerably larger provided that it is split into
thin layers sandwiched by dielectric layers. This occurs due
to strong backscattering on metal-dielectric boundaries with
high contrast of refraction indices. This contrast is not only
sufficient for the compensation of losses in metal layers; it also
enhances the electric-field amplitudes considerably stronger
compared to only dielectric structures [32]. It also allows
us to consider efficient nonlinear processes in more complex
metal-dielectric structures. Narrow spectral interaction regions
and strong directionality of photon emissions are distinguished
properties of such structures. For this reason, the emitted
photon pairs are suitable for photon-atom interactions that
require both properties to maximize the strength of interac-
tion [33]. We note that such photon-atom interaction is in
the center of attention in recent years in quantum-information
processing as entanglement is easily generated in optical
fields but excitations are easily stored in atomic systems
[34–36]. Recently, the process of second harmonic generation
in metal-dielectric layered structures has been investigated
both theoretically and experimentally [37,38]. Also the first
brief investigation of SPDC in such structures has confirmed
high enhancement of photon-pair generation rates due to strong
backscattering occurring at metal-dielectric boundaries with
high contrast of refraction indices [39]. In the paper, we
extend this investigation to provide a comprehensive study of
properties of photon pairs emitted in metal-dielectric layered
structures.

Optical nonlinear response of metals can arise due to
several physical processes including the Fermi smearing [37],
strong redistribution of charges [38,40] and affecting the path
of electrons by a strong magnetic field. Other mechanisms
leading to nonlinearity are discussed in [38,41]. In this paper,
we derive nonlinearity of the considered Ag layers from
the action of the Lorentz force on electrons [41]. As for
the dielectric layers, we consider GaN that is transparent
for the pump field at wavelength λp = 400 nm and thus
allows the generation of photon pairs with wavelengths around
λ = 800 nm efficiently detected at the single-photon level by
Si-based detectors. Moreover, GaN has sufficiently high χ (2)

nonlinearity and the fabrication of thin layered GaN structures
is well mastered.

The paper is organized as follows. The model of SPDC
in metal-dielectric layered structures is presented in Sec. II.
Physical quantities characterizing the emitted photon pairs
are described in Sec. III. In Sec. IV, a metal-dielectric
resonator composed of two Ag layers and one GaN layer
is analyzed. An efficient structure composed of 11 GaN and
Ag layers is suggested and analyzed as a typical example in
Sec. V. Temporal properties of the emitted photon pairs are
investigated in Sec. VI. Noise originating in losses in metal
layers is addressed in Sec. VII. Conclusions are drawn in
Sec. VIII. Appendix A brings the derivation of χ (2) tensor

FIG. 1. Scheme of a metal-dielectric layered structure composed
of six GaN layers and five Ag layers.

for metals. Extension of the theory quantifying the noise is
given in Appendix B.

II. MODEL OF SPONTANEOUS PARAMETRIC
DOWN-CONVERSION

A vectorial model of SPDC in nonlinear layered structures
was formulated in [23] using the interaction Hamiltonian Ĥint.
Alternatively, the interaction momentum operator Ĝint can
be used to describe SPDC caused by a strong pump beam
propagating along the z axis [32,42,43]:

Ĝint(z) = 2ε0

∫ ∞

−∞
dt

∫
S

dxdy χ (2)(r)

:
[
E(+)

p (r,t)Ê(−)
s (r,t)Ê(−)

i (r,t) + H.c.
]
; (1)

r = (x,y,z). The pump field is characterized by its positive-
frequency electric-field vector amplitude E(+)

p (r,t). The
signal and idler fields are described by their negative-
frequency electric-field operator vector amplitudes Ê(−)

s (r,t)
and Ê(−)

s (r,t), respectively. Shortening of the tensor of non-
linear susceptibility χ (2) with respect to its three indices is
denoted by :. The symbol ε0 stands for the vacuum permittivity;
H.c. replaces the Hermitian conjugated term. We note that
whereas the nonlinear interaction Hamiltonian Ĥint gives the
interaction energy, the momentum operator Ĝint(z) provides
the overall flux of this energy through the transverse plane S
positioned at distance z.

The strong undepleted pump field is characterized by
its incident temporal spectrum Ep(ωp) and spatial spectrum
E tr

p (kp,x,kp,y) defined in the transverse plane S. The pump
positive-frequency amplitude E(+)

p (r,t) occurring in Eq. (1)
can be decomposed in a layered structure with boundaries
localized at positions zj , j = 0, . . . ,N (for the scheme of the
structure, see Fig. 1) as follows:

E(+)
p (r,t) = 1

√
2π

3
c2

∫ π/2

−π/2
| sin(ϑp)| dϑp

∫ π/2

−π/2
dψp

×
∫ ∞

0
ω2

pdωp Ep(ωp)E tr
p [kp,x(�p),kp,y(�p)]

× exp[ikp,x(�p)x + ikp,y(�p)y]

×
∑

γ=TE,TM

∑
g=F,B

N+1∑
l=0

rect(l)(z)A(l)
pg,γ

(�p)e(l)
p,γ (�p)

× exp
[
ik(l)

pg,z
(�p)(z − zl−1)

]
exp(−iωpt) (2)
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using the notation �p ≡ (ωp,ϑp,ψp) for “spherical coordi-
nates” composed of the frequency ωp, radial propagation angle
ϑp, and azimuthal propagation angle ψp. The scalar electric-
field amplitudes A(l)

pF ,γ and A(l)
pB,γ in Eq. (2) characterize the

forward- and backward-propagating pump fields, respectively,
with γ polarization in an lth layer with index of refraction n(l)

p .
Polarization vectors e(l)

pF ,γ and e(l)
pB,γ determine polarization

directions of γ -polarized waves in an lth layer propagating
forward (index F ) and backward (B), respectively. Function
rect(l)(z) for l = 1, . . . ,N equals 1 for zl−1 � z < zl and is zero
otherwise; function rect(0)(z) [rect(N+1)(z)] is nonzero only
for z < z0 [zN � z] and equals 1. Speed of light in vacuum
is denoted as c. Decomposition of the pump electric-field
amplitude E(+)

p into its TE- and TM-polarized waves [44] in
Eq. (2) is done with respect to the plane of incidence of a plane
wave with given wave vector kp.

Cartesian components of the pump-field wave vector kp

can be written in the form

kp,x(�p) = −ωp sin(ψp) sin(ϑp)

c
,

kp,y(�p) = ωp cos(ψp) sin(ϑp)

c
,

(3)

k(l)
pa,z

(�p) = ±n(l)
p (ωp)ωp

c
cos

(
ϑ (l)

p

)
,

l = 0, . . . ,N + 1,

where the radial propagation angle ϑ (l)
p in an lth layer obeys

the Snell law,

n(0)
p sin

(
ϑ (0)

p

) = n(l)
p sin

(
ϑ (l)

p

)
, l = 1, . . . ,N + 1, (4)

ϑ (0)
p ≡ ϑp. When writing Eq. (3), air around the structure was

assumed (n(0)
p = n(N+1)

p = 1). As the transverse components of
wave vectors do not change during the propagation, the x and y

components of wave vector kp in Eq. (3) are not indexed. Also,
sign + (−) in Eq. (3) corresponds to the forward- (backward-)
propagating field.

The signal and idler fields with intensities at single-photon
level can be decomposed in the same way as the pump field in
Eq. (2). However, instead of coefficients A(l)

pg,γ
characterizing

the classical pump amplitudes, operator coefficients Â(l)
ma,α

describing the quantized signal (m = s) and idler (m = i)
fields are needed [42]. The formula (2) for the pump field
can be transformed into the form applicable to the signal and
idler fields:

Ê(+)
m (r,t) = 1

√
2π

3
c2

∫ π/2

−π/2
| sin(ϑm)| dϑm

∫ π/2

−π/2
dψm

×
∫ ∞

0
ω2

mdωm exp[ikm,x(�m)x + ikm,y(�m)y]

×
∑

γ=TE,TM

∑
a=F,B

N+1∑
l=0

rect(l)(z)Â(l)
ma,α

(�m)

×e(l)
m,α(�m) exp

[
ik(l)

ma,z
(�m)(z − zl−1)

]
× exp(−iωmt); m = s,i. (5)

Symbols introduced in Eq. (5) have the same meaning for the
signal and idler fields as those defined below Eq. (2) for the
pump field.

The pump electric-field amplitudes A(l)
pF ,γ and A(l)

pB,γ as well

as the signal and idler electric-field operator amplitudes Â(l)
mF ,α

and Â(l)
mB,α occurring in Eqs. (2) and (5), respectively, are mu-

tually coupled through the Fresnel relations at the boundaries
and free-space evolution inside the layers. These relations
make it possible to express the pump electric-field amplitudes
inside the layers in terms of the amplitudes A(0)

pF ,γ and
A(N+1)

pB,γ characterizing the forward- and backward-propagating
incident pump fields. On the other hand, the same relations
applied to the signal and idler fields provide the signal and idler
electric-field operator amplitudes inside the layers in terms of
operator amplitudes Â(N+1)

mF ,α and Â(0)
mB,α that correspond to the

forward- and backward-propagating outgoing signal and idler
fields. The transfer matrix formalism describing these relations
has been developed in [23,32,44]. Using quantization of
photon flux [45,46], the operator amplitudes Â(N+1)

mF ,α and Â(0)
mB,α

can be written using the annihilation operators â(N+1)
mF ,α (�m) and

â(0)
mB,α(�m) obeying the usual boson commutation relations:

Â(N+1)
mF ,α (�m) = i

√
�ωm

2ε0c
â(N+1)

mF ,α (�m);

Â(0)
mB,α(�m) = i

√
�ωm

2ε0c
â(0)

mB,α(�m). (6)

The symbol � stands for the reduced Planck constant. More
details can be found in [23,32].

An outgoing photon pair in the state |ψout
s,i 〉 is described

by the first-order perturbation solution of the Schrödinger
equation written as

∣∣ψout
s,i

〉 = i

�

∫ L

0
dz Ĝint(z)|vac〉. (7)

In Eq. (7), L denotes the structure length and |vac〉 means the
signal and idler vacuum state.

Substituting Eqs. (1), (2), (5), and (6) into Eq. (7), we reveal
the expression for the two-photon state |ψout

s,i 〉:
∣∣ψout

s,i

〉 = − 2i
√

2π
3
c7

N∑
l=1

∑
a,b,g=F,B

∑
α,β,γ=TE,TM

×
[ ∏

m=p,s,i

∫ π/2

−π/2
| sin(ϑm)|dϑm

∫ π/2

−π/2
dψm

∫ ∞

0
ω2

mdωm

]

×
√

ωsωi

n
(l)
s (ωs)n

(l)
i (ωi)

Ep(ωp)E tr
p [kp,x(�p),kp,y(�p)]

×δ(ωp − ωs − ωi)δ[kp,x(�p) − ks,x(�s) − ki,x(�i)]

×δ[kp,y(�p) − ks,y(�s) − ki,y(�i)]

×χ (2)(l)(�p,�s ,�i) : e(l)
pg,γ

(�p)e(l)∗
sa,α

(�s)e
(l)∗
ib,β

(�i)

×Llf

[
1

2

k

(l)
g,ab,z(�p,�s ,�i)Ll

]
A(l)

pg,γ
(�p)

×â(l)†
sa,α

(�s)â
(l)†
ib,β

(�i)|vac〉; (8)
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f (x) = exp(ix) sin(x)/x. Phase mismatch 
k
(l)
g,ab,z

(�p,�s ,�i) = k(l)
pg,z

(�p) − k(l)
sa,z

(�s) − k
(l)
ib,z

(�i) occurs in an
lth layer of length Ll = zl − zl−1. We note that there also
exist photon pairs emitted at the boundaries [27,28,32] that
are not described by Eq. (8). Contribution of this surface
SPDC behaves similarly as the analyzed volume contribution
given in Eq. (8). It increases the photon-pair generation rates.
We want to point out that the second-order susceptibility χ (2)

of metals depends not only on frequencies ω of the interacting
fields, but also on their propagation directions described by
angles (θ,ψ) (for mode details, see Appendix A). For GaN
layers, nonzero elements of the susceptibility tensor χ (2) take
the values [47]

χ (2)
xxz = χ (2)

xzx = χ (2)
yyz = χ (2)

yzy = χ (2)
zxx = χ (2)

zyy = 10 pm/V,

χ (2)
zzz = −20 pm/V.

The output state |ψout
s,i 〉 in Eq. (8) can be further decomposed

with respect to the signal and idler propagation directions and
field polarizations. Each term describing the signal field at
position rs and the idler field at position ri takes the form∣∣ψαβ

sa,ib
(rs ,ri ,t)

〉
=

∏
m=s,i

[
1

c2

∫ π/2

−π/2
| sin ϑm|dϑm

∫ π/2

−π/2
dψm

∫ ∞

0
ω2

mdωm

]

×φ
αβ

ab (�s ,�i) exp[i(ωs + ωi)t]

× exp
[−i

(
kout

sa
rs + kout

ib
ri

)]
â†

sa,α
(�s)â

†
ib,β

(�i)|vac〉,
a,b = F,B; α,β = TE,TM. (9)

Wave vectors kout
sa

and kout
ib

are defined outside the structure.

Spectral two-photon amplitude φ
αβ

ab (�s ,�i) defined by Eq. (9)
gives the probability amplitude of emitting an α-polarized
signal photon at frequency ωs and propagation direction
(ϑs,ψs) together with its β-polarized idler twin at frequency
ωi and propagation direction (ϑi,ψi) at the outputs a and b of
the structure.

III. QUANTITIES CHARACTERIZING PHOTON PAIRS

Spatial and spectral intensity properties of photon
pairs [22,32] can be derived from the joint signal-idler photon-
number density n

αβ

ab (�s ,�i) related to signal [idler] photons
with polarization α [β] and frequency ωs [ωi] propagating at
angles (ϑs,ψs) [(ϑi,ψi)] in direction a [b]. Using the formula
Eq. (9) for the two-photon state |ψαβ

sa,ib
(rs ,ri ,t)〉, the density

n
αβ

ab can be written as follows:

n
αβ

ab (�s ,�i) = | sin(ϑs) sin(ϑi)
∣∣ω2

s ω
2
i

c4
|φαβ

ab (�s ,�i)
∣∣2

. (10)

Signal photon-number density n
αβ

s,ab(�s) is then derived in
the form

n
αβ

s,ab(�s) =
∫ π/2

−π/2
dϑi

∫ π/2

−π/2
dψi

∫ ∞

0
dωi n

αβ

ab (�s ,�i).

(11)
Subsequently, the signal spectral photon-number density
n

ω,αβ

s,ab (�s) is determined along the formula

n
ω,αβ

s,ab (ωs) =
∫ π/2

−π/2
dϑs

∫ π/2

−π/2
dψs n

αβ

s,ab(�s). (12)

Similarly, the signal transverse photon-number density
n

tr,αβ

s,ab (ϑs,ψs) characterizing photons propagating in direction
(ϑs,ψs) is determined as

n
tr,αβ

s,ab (ϑs,ψs) =
∫ ∞

0
dωs n

αβ

s,ab(�s). (13)

Intensity correlations between the signal and the idler fields
in their transverse planes are described by the joint signal-idler
transverse photon-number density n

cor,αβ

ab (ϑs,ψs,ϑi,ψi) char-
acterizing a photon pair with signal [idler] photon propagating
along angles (ϑs,ψs) [(ϑi,ψi)] in direction a [b]:

n
cor,αβ

ab (ϑs,ψs,ϑi,ψi) =
∫ ∞

0
dωs

∫ ∞

0
dωi n

αβ

ab (�s ,�i).

(14)

If a signal photon is detected at angle (ϑ0
s ,ψ0

s ), the joint signal-
idler transverse photon-number density n

cor,αβ

ab (ϑ0
s ,ψ0

s ,ϑi,ψi)
gives the probability of detecting the accompanying idler
photon at direction (ϑi,ψi). This probability determines the
shape of the correlated area [48].

In the time domain, two-photon states are characterized
by a two-photon temporal amplitude A(τs,τi) that gives the
probability amplitude of detecting a signal photon at time τs

together with detecting the accompanying idler photon at time
τi . Using two-photon spectral amplitude φ

αβ

ab in Eq. (9), the
two-photon temporal amplitude A(τs,τi) can be expressed as

Aαβ

ab (θs,ψs,τs,θi,ψi,τi)

=
√| sin(ϑs) sin(ϑi)|�

4πε0c3

∫ ∞

−∞
dωs

∫ ∞

−∞
dωi

√
ω3

s ω
3
i φ

αβ

ab

×(�s ,�i) exp(−iωsτs) exp(−iωiτi). (15)

Temporal properties of photon pairs are usually experimentally investigated employing the Hong-Ou-Mandel interferome-
ter [49]. In this interferometer, two photons are mutually delayed by τl and then they interfere on a beam splitter whose output
ports are monitored by two detectors measuring in coincidence. A normalized coincidence-count rate R depends on time delay
τl according to the formula

R
αβ

ab (τl,ϑs,ψs,ϑi,ψi) = 1 − ρ
αβ

ab (τl,ϑs,ψs,ϑi,ψi), (16)
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where

ρ
αβ

ab (τl,ϑs,ψs,ϑi,ψi) = | sin(ϑs) sin(ϑi)|�2

2c4R
αβ

0,ab

∫ ∞

0
dωs

∫ ∞

0
dωiω

3
s ω

3
i Re

{
φ

αβ∗
ab (�s ,�i)φ

αβ

ab (ωi,ϑs,ψs,ωs,ϑi,ψi) exp[i(ωs − ωi)τl]
}
,

(17)

R
αβ

0,ab(ϑs,ψs,ϑi,ψi) = | sin(ϑs) sin(ϑi)|�2

2c4

∫ ∞

0
dωs

∫ ∞

0
dωi ω3

s ω
3
i |φαβ

ab (�s ,�i)|2.

Enhancement of the nonlinear interaction inside a layered
structure originates from increased electric-field amplitudes
due to backscattering on the boundaries. This enhancement
can be quantified using a reference structure defined in [23].
This reference structure uses the natural material nonlinearity
exploiting the greatest nonlinear coefficient, but it does not
contain any boundary that would scatter the propagating light.
The reference structure generates a signal photon in direction
(ϑs,ψs) together with an idler photon in direction (ϑi,ψi)
exploiting phase matching in the transverse plane reached
with a pump plane wave found in the spatial spectrum E tr

p .
The corresponding two-photon state |ψ ref

s,i 〉 is expressed as

∣∣ψ ref
s,i

〉 = − 2i
√

2π
3
c5

[ ∏
m=s,i

∫ π/2

−π/2
| sin(ϑm)| dϑm

×
∫ π/2

−π/2
dψm

∫ ∞

0
ω2

mdωm

]
Ep(ωs + ωi)

×E tr
p [ks,x(�s) + ki,x(�i),ks,y(�s) + ki,y(�i)]

×
N∑

l=1

√
ωsωi

n
(l)
s (ωs)n

(l)
i (ωi)

max(|χ (2)(l)|) Ll

×â†
s (�s)â

†
i (�i)|vac〉. (18)

Creation operator â
†
s (�s) [â†

i (�i)] describes the signal [idler]
photon at the output plane of the structure. Function max gives
the maximal value of elements of nonlinear tensor χ (2)(l). Using
the signal photon-number density nref

s (�s) of the reference
structure given in Eq. (11), the signal relative photon-number
density η

αβ

s,ab(�s) at frequency ωs and in emission direction
(ϑs,ψs) is conveniently defined using the relation

η
αβ

s,ab(�s) = n
αβ

s,ab(�s)

maxϑs,ωs

[
nref

s (�s)
] . (19)

In Eq. (19), the maximum is taken over the whole interval of
radial emission angles ϑs and frequencies ωs assuming a fixed
azimuthal emission angle ψ0

s .
In our numerical calculations, we consider a cw pump field

with amplitude ξp and a Gaussian transverse profile, i.e.,

Ep(ωp) = ξpδ
(
ωp − ω0

p

)
, (20)

E tr
p (kx,ky) = rp√

2π
exp

[
− r2

p

(
k2
x + k2

y

)
4

]
; (21)

ω0
p is the central frequency and rp stands for the radius of

transverse profile. It holds that
∫

dkx

∫
dky |E tr

p (kx,ky)|2 = 1.
Whenever the expression δ2(ω) occurs in the above-defined

formulas, it has to be replaced by the expression 2T/(2π )δ(ω)
obtained for the fields defined inside interval (−T ,T ). Physical
quantities obtained per unit time interval are reached in the
limit T → ∞.

IV. A SIMPLE METAL-DIELECTRIC RESONATOR

Though both the metal and the dielectric layers are
nonlinear, the dielectric layers are able to provide much
higher photon-pair fluxes. For this reason, the presence of thin
metal layers is important for an enhancement of electric-field
amplitudes inside the structure. This enhancement then results
in much stronger nonlinear interaction and efficient production
of photon pairs. Compared to pure dielectric layered structures
like those composed of GaN and AlN, analyzed in [23,32],
metal-dielectric layered structures allow for much higher
enhancement of electric-field amplitudes due to the high
refraction-index contrast of the used metal and dielectric
materials. For comparison and considering the wavelength
800 nm, this contrast equals 2.51 [2.16] for GaN [AlN] layers
and 5.3 [2.51] for Ag [GaN] layers analyzed here. However,
strong attenuation and losses of the electric-field amplitudes
occur in metal layers. This puts restrictions to the possible
thicknesses of metal layers, as well as to the number of metal
layers embedded into the structure.

To get deeper insight into the behavior of metal-dielectric
layered structures, we first consider the simplest possible
structure composed of only one nonlinear GaN layer sand-
wiched by two thin Ag layers. Thus, the Ag layers form
mirrors of a simple resonator that enhances the electric-field
amplitudes inside the GaN layer. To achieve efficient nonlinear
interaction, we apply the method for designing an efficient
layered structure for SPDC suggested in [23]. Lengths l2 of
GaN layers and l1 of Ag layer vary in the method to reveal
the most efficient structure. In the method, only pairs (l1,l2) of
lengths that provide transmission maxima for the pump field
at a chosen wavelength λ0

p are analyzed. Concentrating on
the highest transmission maximum that also gives the greatest
enhancement of the pump field, the appropriate pairs (l1,l2)
of lengths form a one-dimensional parametric system. This
means that for any value of GaN layer length l2 there exists
only one value of Ag layers length l1.

In the analysis, we consider a plane-wave TE-polarized
pump field at central wavelength λ0

p = 400 nm impinging on
the structure at normal incidence. Structures with thick Ag
layers (l1 > 10 nm) provide frequency-degenerated photon
pairs. On the other hand, structures with thin Ag layers emit
frequency nondegenerated photon pairs. The greatest value of
relative signal photon-number density η defined in Eq. (19)
is reached for slightly frequency nondegenerated photon-pair
emission for l1 = 9.6376 nm and l2 = 95.1195 nm. We note
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FIG. 2. Topo graph of relative signal photon-number density ηs in
dependence on signal radial emission angle ϑs and wavelength λs for
a simple “metal-dielectric” resonator structure composed of one GaN
layer and two Ag layers. Both photons with arbitrary polarizations
propagate along the +z axis; λ0

p = 400 nm, l1 = 95.1195 nm, l2 =
9.6376 nm, ψ0

s = 0◦; log denotes the decimal logarithm.

that the signal and idler photons can leave the structure along
either the +z or the −z axes, so four possible combinations
for photon pairs exist. Nevertheless, different photon pairs
have comparable properties. That is why we pay attention to
only photon pairs with both photons propagating along the
+z direction. The structure generates photon pairs around
the radial emission angle ϑ = 83◦. Two emission maxima
in relative signal photon-number density ηs plotted in Fig. 2
are observed. Whereas one maximum contains TE-polarized
photons, the other maximum is composed of TM-polarized
photons. As elements χ (2)

xxz and χ (2)
xzx of susceptibility tensor

participate in the nonlinear interaction, a TE-polarized photon
is accompanied by a TM-polarized photon and vice versa. Two
maxima in relative signal photon-number density ηs , shown in
Fig. 2, are sharp compared to similar dielectric structures.
This is a consequence of strong interference of backscattered
optical fields caused by the high refractive-index contrast.
These sharp features are characteristic for both spectral and
spatial properties of photon pairs.

The advantage of “metal resonator” surrounding the nonlin-
ear GaN layer can be quantified comparing its signal photon-
number density ns [Eq. (11)] with that characterizing one GaN
monolayer structure of the same length (l = 114.3947 nm).
Ratio κ of these photon-number densities ns (see Fig. 3) shows
that the enhancement of up to five orders in magnitude is
reached in areas of maximal emission intensities, i.e., under
conditions of the strongest constructive interference of the
signal [idler] field. The enhancement factor rapidly drops down
when wavelengths λs and radial emission angles ϑs move away
from these optimal conditions.

V. AN EFFICIENT METAL-DIELECTRIC STRUCTURE

In order to sufficiently enhance the nonlinear interaction,
more complex metal-dielectric layered structures have to be
considered. There exists an interval of suitable numbers of the
used layers. On one side, a larger number of layers leads to
strong interference and also to high enhancement of electric-
field amplitudes. On the other side, a larger number of metal
layers results in strong attenuation of the electric fields. To
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FIG. 3. Topo graph of ratio κ of signal photon-number densities
ns of the simple metal-dielectric resonator structure and GaN
monolayer of equal thickness as it depends on signal radial emission
angle ϑs and wavelength λs . Parameters are written in the caption of
Fig. 2; log denotes the decimal logarithm.

keep balance between these effects, we have decided to design
a structure with five metal Ag layers sandwiched by six GaN
layers (for the scheme, see Fig. 1).

Following the design procedure, we have plotted the pump-
field intensity transmission coefficient Tp at the wavelength
λ0

p = 400 nm and for TE polarization [see Fig. 4(a)] as it
depends on layers’ lengths l1 and l2. The pump field impinging
on the structure at normal incidence has been assumed. In this

10

15

20

25

30

l 2
(n
m
)

60 70 80 90 100 110 120 130 140 150
l1 (nm)

Tp

0.0

0.2

0.4

0.6

0.8

1.0

(a)

10

15

20

25

30

l 2
(n
m
)

60 70 80 90 100 110 120 130 140 150
l1 (nm)

Ap

0.0

0.2

0.4

0.6

0.8

1.0

(b)

FIG. 4. Topo graphs of (a) the intensity transmission coefficient
Tp and (b) the intensity absorption coefficient Ap depending on layers’
lengths l1 and l2 for TE-polarized field at λ0

p = 400 nm. Positions of
maxima in the first transmission band are indicated by solid black
curves.
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FIG. 5. Maximum ηmax
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ηs depending on ratio L of layers’ lengths, L = l2/l1, for structures
composed of 11 layers such that the pump field at λ0

p = 400 nm
occurs in the center of the first transmission band (see Fig. 4).

graph, five transmission bands can be seen. It follows from the
theory of band-gap structures that the greatest enhancement
of electric-field amplitudes occurs in the transmission band
closest to the band gap. In this band, also the greatest values
of absorption Ap are found [see Fig. 4(b)], indicating large
electric-field amplitudes inside the metal layers [41].

Structures corresponding to the maxima of the first trans-
mission band have been parameterized by the ratio L = l2/l1.
Maximum ηmax

s of relative signal photon-number density ηs

taken over frequency ωs and radial emission angle ϑs assuming
fixed azimuthal angle ψs,0 was chosen for quantification of
efficiency of the nonlinear process. Structures with parameter
L in the interval (0.1,0.25) were only considered because very
thin metal layers do not sufficiently enhance the electric-field
amplitudes. Moreover, their transmission bands are broader.
On the other hand, thick metal layers attenuate the propagating
electric fields. Maximal values ηmax

s of relative signal photon-
number density ηs were found in two regions: L ∈ (0.17,0.18)
and L ∈ (0.225,0.24). In these regions, ηmax

s reaches values
around 106. The first region of L analyzed in Fig. 5 is more
suitable and contains the most efficient structure (L = 0.178)
with lengths l1 = 101.752 nm and l2 = 18.083 nm. The
obtained values of maxima ηmax

s are higher by two orders
of magnitude compared to the values of maxima ηmax

s of
the metal resonator investigated in Sec. IV. Additionally,
these values are even higher by seven orders of magnitude
compared to those of pure dielectric layered structures studied
in [23]. Detailed analysis of SPDC inside the metal-dielectric
structures shows that dielectric layers are the major source
of photon pairs. Metal layers give photon-pair numbers lower
by six orders in magnitude compared to the dielectric layers.
Nevertheless, they play a critical role in the enhancement of
electric-field amplitudes inside the structure due to their high
indices of refraction. We have also analyzed SPDC involving
a TM-polarized pump field along the same vein. However,
the obtained values of maxima ηmax

s have been found to
be considerably lower than those discussed above for the
TE-polarized pump field.

Relative signal photon-number density ηs of this structure
(plotted in Fig. 6) reveals two emission peaks. One peak is
centered at the wavelength λs = 737.837 nm and the radial
emission angle ϑs = 47.686◦ deg, the other peak occurs at
the wavelength λs = 873.601 nm and the radial emission
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FIG. 6. Topo graphs of relative signal photon-number density ηs

in dependence on signal wavelength λs and radial emission angle ϑs

for two regions containing (a) TE-polarized and (b) TM-polarized
photons; λ0

p = 400 nm, l1 = 101.752 nm, l2 = 18.083 nm; log
denotes the decimal logarithm.

angle ϑs = 61.095◦. The signal photon at wavelength λs =
737.837 nm is TE polarized and its twin has TM polarization.
On the other hand, the signal photon at wavelength λs =
873.601 nm has TM polarization, whereas its twin is TE polar-
ized. This means that the first photon pair exploits the element
χ (2)

xxz of susceptibility tensor, whereas the second photon pair
uses the element χ (2)

xzx . The emission peaks are very narrow in
both the wavelength λs and radial emission angle θs . The in-
tensity peaks’ widths 
λs are narrower than 1 × 10−3 nm (full
width at half maximum, FWHM). In radial emission angle, the
intensity peaks’ widths 
θs are narrower than 5 × 10−2◦. It is
worth stressing that the sharpness of these peaks arises from
the behavior of TM-polarized fields. The analyzed system has
nearly radial symmetry which is only weakly broken by the
varying values of χ (2) elements in azimuthal direction. So
the emitted photon pairs form two narrow concentric rings;
slightly changing intensities are found around these rings.

The electric-field amplitude profiles of the interacting
fields along the propagating z axis for (p,s,i) = (TE,TE,TM)
interaction are shown in Fig. 7. The pump electric-field
amplitude profile is determined for the incident electric-field
amplitude 1 V/m impinging on the structure at z = 0 m.
The signal and idler electric-field amplitude profiles are such
that they give the outgoing amplitude 1 V/m at the end
of the structure and 0 V/m for the outgoing amplitude at
z = 0 m. The TE-polarized pump and signal fields have their
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FIG. 7. Profile of the modulus of the electric-field amplitude
for (a) pump, (b) signal, and (c) idler fields along the z axis for
the pump field with amplitude 1 V/m incident at z = 0 m and
outgoing signal and idler fields with amplitudes 1 V/m at the end
of the structure composed of 11 GaN-Ag layers described in the
caption to Fig. 6. In the TM-polarized idler field, the z component of
electric-field amplitude is by several orders of magnitude lower than
the plotted y component; λp = 400 nm, ϑp = 0◦, λs = 737.8367 nm,
ϑs = 47.686◦, λi = 873.6015 nm, ϑi = −61.095◦.

electric-field amplitudes inside the structure enhanced several
times. In contrast, the enhancement factor of TM-polarized
idler field equals around 105 due to highly constructive
interference of the backscattered fields at the boundaries. For
comparison, the enhancement factor for GaN/AlN layered
structures typically equals several tens [23].

Also, correlated areas characterizing spatial correlations
between the signal and the idler intensities are narrow. Two
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FIG. 8. Correlated area ncor of (a) signal [(b) idler] photon
observed after detection of an idler [signal] photon at direction
ϑ0

i = −61.095◦ and ψ0
i = 0◦ [ϑ0

s = 47.686◦ and ψ0
s = 0◦] for the

structure analyzed in Fig. 6. The correlated areas are normalized such
that

∫
dϑ

∫
dψ ncor(ϑ,ψ) = (π/180)2.

different shapes of correlated areas found in the analyzed
structure are shown in Fig. 8 for a pump beam with Gaussian
transverse profile of radius rp = 1 mm. If we fix the emission
direction of the TM-polarized idler photon at ϑi = −61.095◦,
the correlated area of TE-polarized signal photon has roughly
a Gaussian shape which originates in the Gaussian pump-field
transverse shape [see Fig. 8(a)]. On the other hand, when
the TE-polarized signal photon is detected at ϑs = 47.686◦,
the correlated area of TM-polarized idler photon is highly
elliptic [see Fig. 8(b)]. The reason is that its extension along
the azimuthal angle ψi is determined by the pump-beam
radius rp, whereas its extension along the radial angle ϑi is
strongly limited by the properties of TM modes related to their
strong backscattering on the boundaries. The dependence on
pump-beam radius rp can be used to tailor the extensions of
correlated areas [48].

VI. TEMPORAL PROPERTIES
OF EMITTED PHOTON PAIRS

Due to stationarity, the two-photon spectral amplitude
φ(ωs,ωi) gets a general form fi(ωi)δ(ω0

p − ωs − ωi), in which
the δ function expresses the energy conservation law. The
squared modulus |fi |2 is then linearly proportional to the
idler spectral photon-number density nω

i (ωi). For the analyzed
structure, the spectral density nω

i of a photon pair with the
signal photon propagating along direction ϑ0

s = 47.686◦ and
ψ0

s = 0◦ and the idler photon propagating along direction
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FIG. 9. (a) Idler spectral photon-number density ni as a function
of idler wavelength λi and (b) probability density pi of detecting an
idler photon at time τi provided that its signal twin was detected
at time τs = 0 s; pi(τi) = C|A(τs = 0,τi)|2 using an appropriate
normalization constant C. A photon pair is emitted in directions
ϑs = 47.686◦ and ψs = 0◦ and ϑi = −61.095◦ and ψi = 0◦ in the
structure described in the caption to Fig. 6. Normalization is such
that

∫
dωi ni(ωi) = 1 and

∫
dτi pi(τi) = 1.

ϑ0
i = −61.095◦ and ψ0

i = 0◦ attains the form of a very narrow
peak of width 4.45 × 10−4 nm [FWHM; see Fig. 9(a)].

The narrow spectral peak is responsible for longer temporal
correlations of fields’ intensities compared to those charac-
terizing photon pairs generated in typical bulk crystals. For
the analyzed structure and cw pumping, intensity temporal
correlations occur at the time scale of ns [for the conditional
probability density pi of detecting an idler photon at time τi ,
see Fig. 9(b)]. It is worth noting that the signal- and idler-field
group velocities differ considerably. The TE-polarized signal
photons propagate, on average, faster than the TM-polarized
idler photons that undergo, on average, a much higher number
of back reflections on the boundaries after their emission. If
pulsed SPDC occurred in the structure, the idler-field detection
interval would be much wider than that of the signal field.

Different group velocities of the signal and idler pho-
tons inside the structure also result in highly asymmetric
coincidence-count rate profiles observed in the Hong-Ou-
Mandel interferometer, as documented in Fig. 10. In this
interferometer, a much longer average delay of the idler
photon has to be compensated by a delay line placed into
the signal-photon path to achieve mutual interference of both
photons at a beam splitter. Fast oscillations caused by nonzero
difference of the signal and idler central frequencies are also
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FIG. 10. Normalized coincidence-count rate R in the Hong-Ou-
Mandel interferometer depending on mutual time delay τl between
the signal and the idler photons. The structure described in the caption
to Fig. 6 is analyzed.

visible in the normalized coincidence-count rate R in Fig. 10.
We note that the Hong-Ou-Mandel interferometer represents
the simplest tool for the observation of temporal correlations
between photons.

VII. LOSSES IN THE STRUCTURE AND NOISE PHOTONS

Non-negligible losses occur in the analyzed metal-dielectric
layered structures because of the presence of highly absorbing
metal layers. When one photon from a photon pair is absorbed
whereas the other photon leaves the structure, the emitted joint
signal and idler field contains also the single-photon noise
present both in the signal and in the idler fields. According to
the theory developed in Appendix B, these noise contributions
are comparable to the photon-pair one. Ratios R

TE,TM
s,FF and

R
TE,TM
i,FF given in Eqs. (B5) in Appendix B and quantifying

contributions of the signal and idler noise photon-number
densities relative to the photon-number densities ns and ni

given in Eq. (12), respectively, are plotted in Fig. 11. They
are appropriate for the structure with 11 layers and the joint
signal and idler field composed of the forward-propagating
TE-polarized signal and TM-polarized idler photons. Despite
the low amount of Ag embedded in the structure (5 × 18 nm),
the numbers of signal and idler noise photons are comparable
to the number of emitted photon pairs. Comparable values
of ratios R

TE,TM
s,FF (1.20 for ϑs = 47◦ and λs = 738 nm) and

R
TE,TM
i,FF (0.97 for ϑi = 61◦ and λi = 834 nm) for the signal

noise and idler noise fields at the corresponding radial emission
angles ϑ and for the corresponding frequencies ω indicate
that the numbers of emitted noise photons depend mainly on
the number of photon pairs generated inside the structure. It
is worth noting that the values of ratios R

TE,TM
s,FF and R

TE,TM
i,FF

increase in the vicinity of forbidden bands, i.e., in the area with
strong backscattering and interference (see Fig. 11).

As discussed in Appendix B, photons from photon pairs in
which only one photon enters the detection system represent
an additional source of the noise. In the analyzed structure,
photon pairs with a forward-propagating TE-polarized signal
photon and a backward-propagating TM-polarized idler pho-
ton contribute to the noise in the signal field. On the other
hand, photon pairs with a backward-propagating TE-polarized
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FIG. 11. Topo graph of ratio (a) R
TE,TM
s,FF [(b) R

TE,TM
i,FF ] of signal

[idler] noise photon-number density and photon-pair density in
dependence on signal [idler] radial emission angle ϑs [ϑi] and
wavelength λs [λi] determined along Eq. (B5) in Appendix B.
The photon-pair field contains the forward-propagating TE-polarized
signal and TM-polarized idler photons; λ0

p = 400 nm, l1 = 101.752
nm, l2 = 18.083 nm.

signal photon and a forward-propagating TM-polarized idler
photon are responsible for an additional noise in the idler
field. As the numbers of emitted photon pairs with different
propagation directions are comparable, the numbers of noise
photons constituting these contributions are also comparable.
However, these noise contributions can be eliminated if
multiple coincidence-count detections are measured.

A considerable amount of the noise present in the generated
photon-pair states restricts applicability of such states to the
schemes based on coincidence-count measurements. In these
schemes, a single-photon noise contributes to the measurement
only via random coincidences that are, however, seldom due
to the weakness of the field. Possible applications suitable for
photon-pair states emitted from metal-dielectric layered struc-
tures include quantum cryptography using photon pairs [50]
or quantum optical coherence tomography [51], to name few.
On the other hand, these states are not suitable for constructing
heralded single-photon sources [52].

VIII. CONCLUSIONS

Using quantization of photon flux, a model of SPDC in
metal-dielectric layered structures has been developed. Apply-
ing this model, an efficient structure composed of six dielectric
GaN layers and five metal Ag layers has been designed and

analyzed. Highly enhanced electric-field amplitudes caused
by metal layers not only compensate for losses in the metal
layers; they also allow efficient photon-pair generation in
the nonlinear GaN layers. Despite the small number of used
layers, the generated photon pairs have very narrow spectra.
They are also emitted into very narrow intensity rings in the
transverse plane. Compared to a structure consisting of only
one GaN monolayer with the same amount of material, the
analyzed structure provides photon-pair fluxes greater by seven
orders in magnitude. Correlated areas of the emitted photon
pairs are very narrow and differ for TE- and TM-polarized
fields. Whereas they attain a circular shape for TE-polarized
fields and a Gaussian radially symmetric transverse pump-
beam profile, they are highly elliptic for TM-polarized fields
due to squeezing in the radial direction. Temporal intensity
correlations in a photon pair occur at the time scale of ns
owing to many backreflections on the boundaries. Compared
to nonlinear dielectric layered structures, photon-pair fluxes
greater by four orders in magnitude are found. On the other
hand, they also generate a single-photon noise originating in
broken photon pairs and having photon fluxes comparable
to those of photon pairs. Metal-dielectric layered structures
provide, in general, the strongly directionally emitted and spec-
trally narrowband photon pairs necessary, e.g., for quantum-
information processing with photons and atoms.
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APPENDIX A: χ (2) TENSOR FOR METALS

An expression for tensor χ
(2)
jkm of nonlinear susceptibility

appropriate for metals containing electrons moving by the
Lorentz force caused by an external pump field [41] is derived
in this Appendix. Position r(t) of an electron obeys the
equation of motion

d2r(t)

dt2
+ γ

dr(t)

dt
= − e

m
E(t) − e

m

dr(t)

dt
× B(t), (A1)

in which m stands for the electron mass, γ is the collision
factor, and e denotes the positive elementary charge. Symbol
E (B) means the electric- (magnetic-) field amplitude. The
vector product is denoted as ×. Considering mean volume
density of electrons N , macroscopic polarization P(t) is
determined by the expression −eNr(t). Equation (A1) can
thus be transformed into an equation for polarization P(t),

∂2P
∂t2

+ γ
∂P
∂t

= ε0�
2
pE − e

m

∂P
∂t

× B; (A2)

�p ≡ e
√

N/(ε0m) is the plasma frequency.
The perturbation approach is applied to find the solution of

Eq. (A2). Polarization P is decomposed into strong linear and
weak nonlinear parts. Also, the second term on the right-hand
side of Eq. (A2) is much smaller than the first one. Solution
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of Eq. (A2) for three monochromatic waves representing
the pump, signal, and idler fields can then be easily found
following [53]. It allows us to express the nonlinear tensor
χ (2) as follows:

χ
(2)
j lm(kp,ks ,ki)

= − iε0

2πNe

∑
o,q=x,y,z

[
L∗(ωp)L∗(ωs)A(ωs,ωi)εjloεoqmk∗

i,q

+L∗(ωp)L∗(ωi)A(ωi,ωs)εimoεoqlk
∗
s,q

+L(ωi)L
∗(ωs)A(ωs,ωp)εmloεoqj kp,q

−L(ωi)L(ωp)A(ωp,ωs)εmjoεoqlk
∗
s,q

−L(ωs)L(ωp)A(ωp,ωi)εljoεoqmk∗
i,q

+L(ωs)L
∗(ωi)A(ωi,ωp)εlmoεoqj kp,q

]
. (A3)

In Eq. (A3), εijk denotes the Levi-Civita tensor, L(ω) =
�2

p/(ω2 + iγ ω), and A(ω,ω′) = ω/ω′. The expression in
Eq. (A3) for tensor χ (2) reveals its strong dependence on
frequencies of the interacting fields. Wave vectors k occurring
in Eq. (A3) are assumed to be complex, as the fields are
strongly attenuated in metals (due to the skin effect). The
expected values of elements of χ (2) tensor for metals are of the
order of 10−13 m/V.

APPENDIX B: LOSSES IN LAYERED
STRUCTURES AND NOISE PHOTONS

The analyzed metal-dielectric layered structures may pro-
duce a considerable amount of noise photons due to strong
absorption of the metal. The reason is that an absorbed
photon leaves its twin in the structure. If this twin exits the
structure, it forms the noise that is superimposed on the emitted
photon-pair field. In this Appendix, we develop a theory that
quantifies the contribution of noise photons. We assume for
simplicity that photon pairs are generated only in dielectric
layers, in accord with our results that have revealed only
weak generation of photon pairs in metal layers. However,
the inclusion of metal layers as sources of photon pairs is
straightforward.

A detailed inspection of Eq. (8) for the two-photon state
|ψout

s,i 〉 reveals that this state is composed of contributions
describing photon pairs emitted in different layers. We assume
that similar decomposition can be done also for the joint
signal-idler photon-number density n

αβ

ab (�s ,�i) defined in
Eq. (10):

n
αβ

ab (�s ,�i) ≈
∑
l∈diel

∑
a′,b′=F,B

T
(l)α
s,aa′ (�s)T

(l)β
i,bb′ (�i)

× n
(l)αβ

a′b′ (�s ,�i). (B1)

In Eq. (B1), symbol n
(l)αβ

ab (�s ,�i) stands for the joint signal-
idler photon-number density of photon pairs emitted in an lth
layer. Symbol

∑
l∈diel means summation over dielectric layers.

The photon-number density n
(l)αβ

ab (�s ,�i) is determined along
Eq. (10) using a two-photon spectral amplitude φ

(l)αβ

ab (�s ,�i)
appropriate for the lth layer. The intensity transmission
coefficients T

(l)α
m,aa′ introduced in Eq. (B1) give the probability

that an α-polarized photon in field m propagating in direction
a′ in an lth layer leaves the structure in direction a.

Whereas T
(l)α
m,Fa′ + T

(l)α
m,Ba′ = 1 holds for dielectric struc-

tures, intensity absorption coefficients D
(l)α
m,a′ are needed in

metal-dielectric structures to generalize this relation:

T
(l)α
m,Fa′ + T

(l)α
m,Ba′ + D

(l)α
m,a′ = 1; m = s,i;

α = TE,TM; a′ = F,B. (B2)

The intensity absorption coefficient D
(l)α
m,a′ determines the

probability that an α-polarized photon propagating in direction
a′ in an lth layer in field m is absorbed inside the structure.
Using absorption coefficients D

(l)α
m,a′ , the signal noise photon-

number density dα
si,a(�s ,�i) quantifying the amount of single

α-polarized photons at frequency ωs propagating at angle
(ϑs,ψs) in direction a and originating in pairs with an idler
photon with frequency ωi at angle (ϑi,ψi) is expressed as
follows:

dα
si,a(�s ,�i) =

∑
l∈diel

∑
β=TE,TM

∑
a′,b′=F,B

T
(l)α
s,aa′ (�s)

×D
(l)β
i,b′ (�i)n

(l)αβ

a′b′ (�s ,�i). (B3)

An overall signal noise photon-number density dα
s,a(�s) is then

simply determined by integrating over all possible idler-field
frequencies ωi and propagation angles (ϑi,ψi):

dα
s,a(�s) =

∫ ∞

0
dωi

∫ π/2

−π/2
dϑi

∫ π/2

−π/2
dψi dα

si,a(�s ,�i). (B4)

Formulas analogous to those written in Eqs. (B3) and (B4) can
be derived also for the idler-field noise contribution.

To judge contributions of noise single photons to the
generated state with α-polarized signal photons in direction
a and β-polarized idler photons in direction b, we define
ratios R

αβ

m,ab(�m) of noise photon-number densities dα
s,a(�s)

and d
β

i,b(�i) with respect to densities n
αβ

m,ab(�m) belonging to
photon pairs and written in Eq. (11):

R
αβ

s,ab(�s) = dα
s,a(�s)

n
αβ

s,ab(�s)
, R

αβ

i,ab(�i) = d
β

i,b(�i)

n
αβ

i,ab(�i)
. (B5)

Also, photon pairs with polarizations and propagation
directions different from the analyzed one and denoted by
indices (a,α) and (b,β) in Eq. (B5) contribute to noise photons
provided that one of their two photons is captured by detectors.
In this case, ratios R̃

αβ

m,ab(�m) defined along the relations

R̃
αβ

s,ab(�s) = dα
s,a(�s) + ∑TM

β ′=TE

∑B
b′=F n

αβ ′
s,ab′ (�s)

n
αβ

s,ab(�s)
− 1,

(B6)

R̃
αβ

i,ab(�i) = d
β

i,b(�i) + ∑TM
α′=TE

∑B
a′=F n

α′β
i,a′b(�i)

n
αβ

i,ab(�i)
− 1,

appropriately characterize the noise of the emitted state.
However, this part of noise can be removed, in principle, when
multiple coincidence-count measurements are applied in the
experiment.

To determine ratios R
αβ

m,ab(�m) and R̃
αβ

m,ab(�m) characteriz-
ing noise in the emitted state, we need intensity transmission
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FIG. 12. Scheme of a structure composed of N layers. Whereas
amplitudes A(l) describe the fields at the left-hand side of an lth
layer (l = 1, . . . ,N + 1), amplitudes B (l) are appropriate for the right-
hand side of this layer (l = 1, . . . ,N ); amplitudes A(0) give the fields
in front of the structure. Amplitudes A

(l),ext
B and B

(l),ext
F belong to

the fields added into an lth layer. Subscript F (B) identifies the
forward- (backward-) propagating fields. Matrices T (l) characterize
an lth boundary and matrices P (l) determine the free-field evolution
in an lth layer.

and absorption coefficients for the signal and idler photons
born in each dielectric layer. In what follows, we concentrate
our attention to field m (m = s,i) and an lth layer (for the
scheme of a general structure, see Fig. 12). To describe prop-
erly damping in metal layers, we have to introduce time into
the description, at least implicitly. We reach this by defining
the appropriate boundary conditions. We have to distinguish
two cases characterizing the photons propagating forward and
backward in the lth layer.

We first add to the lth layer backward-propagating α-
polarized photons described by amplitude A(l),ext

mB,α (�m) and
follow their evolution inside the structure. This evolution is
described by the transfer-matrix formalism elaborated for the
nonlinear layered structures in [23,32]. The remaining bound-
ary conditions are such that photons do not enter the structure
from its front [A(0)

mF ,α(�m) = 0] and rear [A(N+1)
mB,α (�m) = 0]

ends. The backward-propagating photons added into the lth
layer propagate first in the layers to the left from the lth layer,
they can penetrate into the layers to the right from the lth layer
later and they can even return back to the left-hand-side layers
from the right-hand-side ones. Following the scheme plotted
in Fig. 12 and showing the used amplitudes, we can write two
sets of linear equations characterizing the propagation through
the left- and right-hand-side layers separately:(

A(l)
mF ,α(�m)

A(l),ext
mB,α (�m) + [

P (l)
m (�m)

]∗
22B

(l)
mB,α(�m)

)

= L(l)
m,α(�m)

(
0

A(0)
mB,α(�m)

)
,

(
A(N+1)

mF ,α (�m)

0

)
= R(l)

m,α(�m)

([
P (l)

m (�m)
]

11A
(l)
mF ,α(�m)

B(l)
mB,α(�m)

)
.

(B7)

Matrices L(l)
m,α(�m) [R(l)

m,α(�m)] introduced in Eq. (B7)
describe the propagation of both forward- and backward-
propagating fields in the layers positioned to the left [right]
from the lth layer. They can be expressed in terms of matrices
T (j )

m,α(�m) and P (j )
m (�m) characterizing propagation through

a j th boundary and free-field propagation in a j th layer,
respectively:

L(l)
m,α(�m) =

2∏
j=l

[
T (j−1)

m,α (�m)P (j−1)
m (�m)

]
T (0)

m,α(�m),

(B8)

R(l)
m,α(�m) =

l+1∏
j=N

[
T (j )

m,α(�m)P (j )
m (�m)

]
T (l)

m,α(�m).

More details including definitions of the elements of matrices
T (j )

m,α(�m) and P (j )
m (�m) can be found in [23,32].

Two sets of equations written in (B7) are coupled. These
equations can easily be rearranged such that one linear set of
equations for amplitudes A(N+1)

mF ,α (�m), B(l)
mB,α(�m), A(l)

mF ,α(�m),
and A(0)

mB,α(�m) characterizing the fields leaving the left- and
right-hand-side layers is obtained:⎛

⎜⎜⎜⎝
0

1

0

0

⎞
⎟⎟⎟⎠ A(l),ext

mB,α (�m) = M(l)
m,α(�m)

⎛
⎜⎜⎜⎝

A(N+1)
mF ,α (�m)

B(l)
mB,α(�m)

A(l)
mF ,α(�m)

A(0)
mB,α(�m)

⎞
⎟⎟⎟⎠ , (B9)

M(l)
m,α(�m)

=

⎛
⎜⎜⎜⎝

0 0 −1
[
L(l)

m,α

]
12

0 −[
P (l)

m

]∗
22 0

[
L(l)

m,α

]
22

−1
[
R(l)

m,α

]
12

[
R(l)

m,α

]
11

[
P (l)

m

]
11 0

0 −[
R(l)

m,α

]
22 −[

R(l)
m,α

]
21

[
P (l)

m

]
11 0

⎞
⎟⎟⎟⎠ .

(B10)

The solution of Eqs. (B9) provides the output amplitudes that
determine photon fluxes both inside the lth layer and outside
the whole layered structure. Their analysis provides us the
needed intensity transmission and absorption coefficients as
follows.

According to the Poynting theorem, time-averaged power
P (l)

mB,α(�m) generated in the lth layer by the added field A(l),ext
mB,α

is expressed as follows:

P (l)
mB,α(�m) = n(l)

m (ωm) cos
(
ϑ (l)

m

)
×[∣∣A(l),ext

mB,α (�m) + [
P (l)

m (�m)
]∗

22B
(l)
mB,α(�m)

∣∣2

+ ∣∣[P (l)
m (�m)

]
11A

(l)
mF ,α(�m)

∣∣2 − ∣∣A(l)
mF ,α(�m)

∣∣2

− ∣∣B(l)
mB,α(�m)

∣∣2]
. (B11)

This power is partly dissipated in both the left- and the right-
hand-side layers and its remaining part leaves the structure
either at its front or rear end. Power P (l)F

mB,α(�m) [P (l)B
mB,α(�m)]

beyond the rear end [in front] of the structure is determined as
follows:

P (l)F
mB,α(�m) = cos(ϑm)

∣∣A(N+1)
mF ,α (�m)

∣∣2
,

(B12)
P (l)B

mB,α(�m) = cos(ϑm)
∣∣A(0)

mB,α(�m)
∣∣2

.

Power P (l)D
mB,α(�m) dissipated in the left- and right-hand-side

layers can then be derived from the conservation law of energy:

P (l)D
mB,α(�m) = P (l)

mB,α(�m) − P (l)F
mB,α(�m) − P (l)B

mB,α(�m).
(B13)
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If power P (l)
mB,α(�m) equals that of one photon per second,

the powers P (l)F
mB,α(�m), P (l)B

mB,α(�m), and P (l)D
mB,α(�m) give,

in turn, intensity transmission coefficients T
(l)α
m,FB(�m) and

T
(l)α
m,BB(�m) and intensity absorption coefficient D

(l)α
m,B(�m):

T
(l)α
m,aB(�m) = P (l)a

mB,α(�m)

P
(l)
mB,α(�m)

, a = F,B,

D
(l)α
m,B(�m) = P (l)D

mB,α(�m)

P
(l)
mB,α(�m)

. (B14)

Now we add to the lth layer forward-propagating α-
polarized photons described by amplitude B(l),ext

mF ,α (�m). These
photons propagate first in the right-hand-side layers, they enter
into the left-hand-side layers later, and they can propagate
back to the right-hand-side layers again. Also in this case,
no photon enters the structure from its front [A(0)

mF ,α(�m) = 0]
and rear [A(N+1)

mB,α (�m) = 0] ends. Similarly to that for the added
backward-propagating photons, we can write two sets of linear
equations characterizing the propagation through the left- and
right-hand-side layers separately:

(
A(l)

mF ,α(�m)[
P (l)

m (�m)
]∗

22B
(l)
mB,α(�m)

)

= L(l)
m,α(�m)

(
0

A(0)
mB,α(�m)

)
,

(
A(N+1)

mF ,α (�m)

0

)
= R(l)

m,α(�m)

×
(

B(l),ext
mF ,α (�m) + [

P (l)
m (�m)

]
11A

(l)
mF ,α(�m)

B(l)
mB,α(�m)

)
. (B15)

Matrices L(l)
m,α(�m) and R(l)

m,α(�m) are defined in Eqs. (B8).
Equations (B15) can be transformed into a linear set of
equations for amplitudes A(N+1)

mF ,α (�m), B(l)
mB,α(�m), A(l)

mF ,α(�m),
and A(0)

mB,α(�m) of fields leaving the left- and right-hand-side

layers: ⎛
⎜⎜⎜⎝

0

0

−[
R(l)

m,α(�m)
]

11[
R(l)

m,α(�m)
]

21

⎞
⎟⎟⎟⎠ B(l),ext

m,α (�m)

= M(l)
m,α(�m)

⎛
⎜⎜⎜⎝

A(N+1)
mF ,α (�m)

B(l)
mB,α(�m)

A(l)
mF ,α(�m)

A(0)
mB,α(�m)

⎞
⎟⎟⎟⎠ ; (B16)

matrix M(l)
m,α(�m) is defined in Eq. (B10). The solution of

Eqs. (B16) allows us to determine photon fluxes that give the
powers discussed above. For the forward-propagating photons
added into the lth layer, power P (l)

mF ,α(�m) given into this layer
by the external field with amplitude B(l),ext

mF ,α is derived in the
form

P (l)
mF ,α(�m) = n(l)

m (ωm) cos
(
ϑ (l)

m

)
×[∣∣B(l),ext

mF ,α (�m) + [
P (l)

m (�m)
]

11A
(l)
mF ,α(�m)

∣∣2

+ ∣∣[P (l)
m (�m)

]∗
22B

(l)
mB,α(�m)

∣∣2 − ∣∣B(l)
mB,α(�m)

∣∣2

− ∣∣A(l)
mF ,α(�m)

∣∣2]
. (B17)

This power can be divided into three parts. Its first part
[P (l)F

mF ,α(�m)] is delivered beyond the rear end of the structure,
whereas its second part [P (l)B

mF ,α(�m)] is transferred into
the space in front of the structure. Finally, the third part
[P (l)D

mF ,α(�m)] dissipates inside the metal layers. These powers
then serve for the determination of intensity transmission co-
efficients T

(l)α
m,FF (�m) and T

(l)α
m,BF (�m) and intensity absorption

coefficient D
(l)α
m,F (�m). Whereas formulas analogous to those

written in Eqs. (B11) and (B12) give powers P (l)F
mF ,α(�m),

P (l)B
mF ,α(�m), and P (l)D

mF ,α(�m), expressions derived from those in

Eqs. (B13) provide coefficients T
(l)α
m,FF (�m), T

(l)α
m,BF (�m), and

D
(l)α
m,F (�m).
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[21] M. Centini, J. Peřina, Jr., L. Sciscione, C. Sibilia, M. Scalora,
M. J. Bloemer, and M. Bertolotti, Phys. Rev. A 72, 033806
(2005).
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and O. Haderka (SPIE, Bellingham, WA, 2012), Vol. 8697,
p. 869727.

[40] P. Ginzburg, A. Hayat, N. Berkovitch, and M. Orenstein, Opt.
Lett. 35, 1551 (2010).

[41] M. C. Larciprete, A. Belardini, M. G. Cappeddu, D. de Ceglia,
M. Centini, E. Fazio, C. Sibilia, M. J. Bloemer, and M. Scalora,
Phys. Rev. A 77, 013809 (2008).

[42] L. Mandel and E. Wolf, Optical Coherence and Quan-
tum Optics (Cambridge University Press, Cambridge, U.K.,
1995).
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