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Superradiance and collective gain in multimode optomechanics
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We present a description of a strongly driven multimode optomechanical system that shows the emergence of
cooperative effects usually known from systems of atom-light interaction. Our calculations show that under
application of a coherent pump field the system’s response can be switched from a superradiant regime
to a collective gain regime by varying the frequency detuning of the pump. In the superradiant regime,
enhanced optical cooling of a single vibrational mode is possible, whereas the collective gain regime would
potentially enable one to achieve almost thresholdless phonon laser action. The threshold pumping power scales
as 1/N .

DOI: 10.1103/PhysRevA.90.053808 PACS number(s): 42.50.Wk, 42.50.Gy

I. INTRODUCTION

Collective scattering effects based on coherent interaction
of resonant systems have been of interest since the seminal
work by Dicke in 1954 [1]. Systems of atom-light interaction
showing superradiance have since been studied both theo-
retically [2–4] and experimentally [5–7] for many years, but
have gained increasing attention only in the last decade owing
to progress in laser cooling of atomic clouds [8,9]. These
systems allow the direct observation of cooperative scattering,
but are limited in their range of experimentally accessible
parameters. Furthermore, the coherent control of atoms within
small distances, that are required for this task, is generally
difficult to achieve. In recent years, interest has shifted to
a new class of systems of artificial atoms, such as quantum
dots [10] and Cooper pair boxes [11], that were found to show
analogous collective effects such as in ensembles of atoms.
With the rapid advances in the field of optomechanics, both
in the optical [12,13] and the microwave regime [14,15], new
candidates have emerged for the study of collective behavior
on the quantum level. The on-circuit implementation of the
optomechanical interaction at microwave wavelengths [14,15]
hereby introduces the possibility of coupling multiple nano-
mechanical oscillators to a common cavity, thus offering a
versatile approach to studying cooperative dynamics over a
wide range of parameters.

In this paper, we present a theoretical description of a mul-
timode optomechanical system with regard to the emergence
of collective behavior. The flexibility of this system lies in
the possibility of bringing it from a superradiative state to
a state, where collective gain can be observed, by varying
the detuning of the driving pump. We derive the collective
equations governing the dynamics of the system starting from
an optomechanical Hamiltonian description and discuss the
dependence of the system on its parameters. We specialize in
the case of N = 2 mechanical oscillators to provide a physical
explanation for the emergence of superradiance and collective
gain and then generalize to an arbitrary number of oscillators.

We mention that collective effects in optomechanical
systems have attracted some attention in recent years. Shkarin
et al. [16] and Buchmann et al. [17] have noticed how
collective effects can lead to the coupling of two mechanical
oscillators which can be used to transfer energy from one

mechanical oscillator to the other. Mumford et al. [18]
have studied the possibility of a Dicke-type phase transition
in a system involving two cavity modes and one phonon
mode. In extensive studies Xuereb et al. [19–21] consider
the possibility of long-range interactions in optomechanical
arrays. They show extreme sensitivity of the optomechanical
interactions to the net reflection coefficient of the dielectric
array [19,20]. They report [21] collective behavior of the
array in the bad cavity limit, i.e., when optomechanical
coupling � mechanical frequency � cavity damping. The
collective behavior that we report is in a different regime of
parameters, which is directly relevant to superconducting elec-
tromechanical systems [14,15] and graphene-based systems in
superconducting resonators [22].

Whereas we present our analysis and results with regard
to the set of systems as in [14,15,22], the extensive work of
Xuereb et al. [19–21] brings out many new possibilities which
depend on the overall reflectivity of the mechanical array,
making the optomechanical coupling vary significantly from
one element to the other.

This paper is structured as follows. In Sec. II we in-
troduce our model, which is based on recent experimental
progresses in on-circuit implementations of optomechanics
and derive a linearized Hamiltonian description the system. In
Sec. III we analytically solve the system’s equations for the
response function under resonant driving on the anti-Stokes
sideband. We briefly discuss the emergence of superradiant
collective behavior resulting from the coupling of the array
of similar mechanical oscillators to a common reservoir.
This superradiance behavior in such systems is free from
the complications arising from the dipole-dipole interactions
which can destroy superradiance in atomic ensembles [23]. In
Sec. IV we extend this analysis for the case of driving on the
Stokes sideband. After deriving a criterion for stable operation
of the optomechanical system, we analyze the characteristics
of the response function. Here, our calculations suggest that
the coupling mediated by the cavity field leads to collective
gain in the output field of the cavity. We conclude in Sec. V.

II. MODEL

Let us consider a system of N independent mechanical
oscillators coupled to a common photonic cavity strongly
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FIG. 1. Schematic of the (theoretically) studied optomechanical
system in multimirror assembly, consisting of N mechanical oscilla-
tors coupled to a common cavity. The system is strongly driven with
a pump of frequency ωl and electric field strength El . The output field
aout is studied for an input probe field ain of frequency ωp .

driven with a pump of frequency ωl as schematically shown
in Fig. 1. Experimentally, such a system can be realized in an
on-circuit implementation using electromechanical capacitors
connected to a superconducting microwave resonator, as
recently demonstrated in [14,15]. Via capacitive coupling,
the mechanical oscillators modulate the resonance frequency
of the common microwave cavity. As opposed to optical
systems, the on-circuit implementation is coherently driven
with microwave photons and can in principle hold an ar-
bitrary number of mechanical oscillators with individual
resonance frequencies. With that, these systems are a promis-
ing candidate for the investigation of collective effects in
ensembles of harmonic oscillators, as theoretically described
in [24].

The optomechanical Hamiltonian of our proposed system
is given by

H = �ωcc
†c + ∑N

j=1[�ωjb
†
j bj − �c†cgj (b†j + bj )] + Hl,

(1)

where c and bj are the bosonic annihilation operators for
the cavity mode and the mechanical modes, respectively. The
cavity resonance frequency is given by ωc, ωj denotes the
resonance frequency of the j th mechanical oscillator, and gj

is the optomechanical coupling rate.
The system is strongly driven with a pump of frequency ωl

and power Pl . The corresponding Hamiltonian reads

Hl = i�El(e
−iωl t c† − eiωl t c), (2)

with an amplitude El = √
2κEPl/�ωl , where 2κE is the cavity

linewidth associated with external coupling. The total cavity
linewidth is given by 2κ = 2κE + 2κI , whereas κI accounts
for all internal losses.

In a frame rotating with the pump frequency ωl , linearized
about a steady state, the Hamiltonian reads

H ≈ ��a†a + �
∑N

j=1[ωjb
†
j bj − (Gja

† + G∗
j a)(b†j + bj )],

(3)

where we have defined the enhanced coupling rate as Gj =
αgj and c ≡ α + a, with the system’s steady-state amplitude
α = El/(κ + i�). � = ωc − ωl is the detuning from the cavity
resonance frequency. Note that we have dropped purely
classical and small terms. Note also that a is slowly varying
as we are in the rotating frame.

III. SUPERRADIANCE

In the following, we work in the resolved sideband regime
ωm � κ and assume similar mechanical resonators with ωj ≈
ωm. For cooperative effects to occur, the coupling needs to
become resonant. This can be achieved by choosing the pump
frequency ωl such that � ≈ ±ωm. With this choice, the slowly
varying intracavity field oscillates at the mean frequency of
the mechanical oscillators.

Let us first consider driving on the anti-Stokes sideband, i.e.,
� ≈ ωm. The physical process that we consider in this section
corresponds to the generation of a phonon −ωl + ω = ωm

which then can combine with a pump photon ωl to produce
an anti-Stokes photon ωl + ωm. Here, the interaction terms
Gja

†b†j and G∗
j abj become off-resonant and can be neglected

in the rotating wave approximation (RWA).
We introduce dissipative dynamics, accounting for leakage

of photons and phonons, in the form of the quantum Langevin
equations for the Heisenberg operators a and bj ,

ȧ = −(κ + i�)a + i

N∑
j=1

Gjbj + fa(t), (4a)

ḃj = −(�j + iωj )bj + iG∗
j a + fbj

(t), (4b)

where fi(t) are the quantum Langevin forces, which account
for vacuum noise and any thermal noise entering the system.
The correlation functions associated with the quantum and
thermal fluctuations are given by [25]

〈f †
a (t)fa(t ′)〉 = 0, (5a)

〈fa(t)f †
a (t ′)〉 = 2κδ(t − t ′), (5b)

〈f †
bj

(t)fbj
(t ′)〉 = 2�j n̄j δ(t − t ′), (5c)

〈fbj
(t)f †

bj
(t ′)〉 = 2�j (n̄j + 1)δ(t − t ′), (5d)

〈f †
bj

(t)fbk
(t ′)〉 = 0 (∀j �= k). (5e)

Here, n̄j denotes the thermal occupation of the heat
bath associated with the mechanical mode bj . Note that we
have adopted the standard Markov approximation for the
correlation functions given in Eq. (5), i.e., we have assumed
delta-correlated noise without memory.

For the case of N = 2 degenerate mechanical oscillators
with ω1 = ω2, the form of the quantum Langevin equations (4)
has been studied in [26]. Here, we focus on the more general
case of near-degenerate mechanical oscillators and study the
emergence of collective behavior depending on the detuning
of the mechanical oscillator frequencies. To proceed, we set
fa(t) = √

2κEain(t), hence assuming that a probe field ain(t),
strong enough compared to single photons but yet much
weaker than the pump, is applied. For simplicity, we also
neglect the force terms fbj

(t).
We solve Eq. (4) in frequency space, transforming functions

and operators as f (ω) = ∫ +∞
−∞ dt eiωtf (t) of f (t). Using the

input-output relation [27],

aout(ω) =
√

2κEa(ω) − ain(ω) ≡ R(ω)ain(ω), (6)
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FIG. 2. (Color online) Response function for �ω = 0 and N = 2
(solid curve) showing an increased linewidth compared to a system
with N = 1 (dashed red curve, scaled and translated to facilitate
comparison). The black dash-dotted curve corresponds to �ω =
4.5� and shows clearly separated modes. Parameters were chosen
as follows: κ/2π = 1.0 MHz, ωm = 10κ , � = 10−4κ , G1 = G2 =
1.5

√
κ�, close to typical experimental values [14,15].

we find the following solution for the cavity field in terms of
the response function of the cavity,

R(ω) = 2κE

χ−1
c (ω) + ∑N

j=1 |Gj |2χj (ω)
− 1, (7)

with the cavity response χc(ω) and the mechanical response
χj (ω) functions, given by

χc(ω) = 1

κ + i(� − ω)
, χj (ω) = 1

�j + i(ωj − ω)
. (8)

First, let us briefly discuss the results for driving on the
anti-Stokes sideband, while limiting our discussion to N = 2
mechanical modes. Without loss of generality we assume that
Gj are real valued. We furthermore require that �j � κ , which
is usually the case for typical realizations of the proposed
system [14,15]. In addition, let us denote the frequency
difference of the mechanical oscillators by �ω ≡ ω1 − ωm =
−(ω2 − ωm). Figure 2 shows the real part of the response
function in the vicinity of the resonant anti-Stokes sideband.
For the degenerate case of identical mechanical elements [26],
the system divides into a bright superradiant mode (solid
curve) with linewidth �+ = � + 2�opt and a dark mode
�− = � − 2�opt, which is effectively decoupled from the
cavity. The broadening is proportional to the optomechanical
damping rate �opt = G2

jχc. An analysis of the roots of the
denominator of R(ω) shows that the formation of a bright and
a dark mode occur only for �ω < G1G2/κ and the dark mode
asymptotically decouples from the cavity for �ω → 0. We
provide a detailed derivation of this result for the similar case
of driving on the Stokes sideband.

We finally note the connection between the superradiance of
the mechanical oscillators and the superradiance of the atomic
system in a cavity [28]. In both cases the system interacts with
the cavity photons of a single common cavity mode which in
turn interacts with the vacuum modes of the outside world—the
bath is made up of all the outside vacuum modes. It is well
known that the single atom decay rate in the cavity is given

by the Purcell formula g2/κ where g is the coupling of the
atom to the cavity. For the mechanical elements, the coupling
with the cavity gives an additional decay rate G2/κ = �opt.
In the atomic case, the decay rate of a single atom in the
presence of the other atoms is given by Ng2/κ , whereas in our
optomechanical system the decay rate of a single mechanical
oscillator is NG2/κ . Thus the similarity between the atomic
and the mechanical case is striking.

As a matter of fact, the whole process can be thought of as
a scattering of phonons of different mechanical oscillators into
a common cavity mode of indistinguishable photons. In this
case, we observe superradiance and each mechanical oscillator
is more rapidly damped, i.e., emits phonons more rapidly
which are converted into anti-Stokes cavity photons.

IV. COLLECTIVE GAIN

We will now study the system under resonant driving in the
Stokes sideband with � ≈ −ωm. The physical process here is
different—it leads to the spontaneous generation of a phonon
and a Stokes photon. Thus the phonon field can grow and one
can have phonon laser action.

In what follows, we describe the characteristics and the
origin of the collective behavior resulting in this regime.
Using the same approach as before, we start by dropping
nonresonant terms (RWA) in the linearized optomechanical
Hamiltonian (3). This yields the quantum Langevin equations,

ȧ = −(κ + i�)a + i

N∑
j=1

Gjb
†
j + fa(t), (9a)

ḃ
†
j = −(�j − iωj )b†j − iG∗

j a + f
†
bj

(t), (9b)

with quantum Langevin forces defined by Eq. (5). A short
calculation yields the system’s response function,

R(ω) = 2κE

χ−1
c (ω) − ∑N

j=1 |Gj |2χj (ω)
− 1, (10)

with χc(ω) as above and χj (ω) = 1/[�j − i(ωj + ω)].
For a critical driving power in the Stokes sideband, the

system exhibits self-sustained oscillations [29] and becomes
unstable. We thus limit our investigation to the stable driving
regime, which can be found by evaluating the Routh-Hurwitz
stability criterion (see, e.g., [30]) for the quantum Langevin
equations (9). For similar mechanical oscillators with � ≈ �j

and �ω ≈ 0 the stability condition evaluates to

N∑
j=1

|Gj |2 < �κ. (11)

Under this condition, the system will also remain stable with fi-
nite frequency detuning �ω �= 0. For typical structures [14,15]
we have � � κ and are thus limited to the weak coupling
regime, i.e., G2

j � (κ/2)2, for stable operation. When the
condition (11) does not hold, phonon lasing occurs and Eq. (9)
have to be generalized to include nonlinearities to reach
stable operation [31]. With that, the cavity response χc(ω) is
approximately independent of frequency near the mechanical
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FIG. 3. (Color online) Same as in Fig. 2 except for driving on
the Stokes sideband with G = 0.5

√
κ�. The response function of

the degenerate multimode system (solid curve) shows a decreased
linewidth. Here, the dash-dotted curve corresponds to �ω = 1.25�.

resonance frequencies ωj :

χc(ω) ≈ χc(−ωj ) = 1

κ + i(� + ωj )
≈ 1

κ
. (12)

The second approximation in Eq. (12) holds for near-
degenerate mechanical frequencies, i.e, � + ωj � κ .

In the following, we put special emphasis on the case of
N = 2 mechanical oscillators and generalize our discussion
to more than two modes afterwards. Figure 3 shows the
numerical evaluation of R(ω) for this case in the vicinity of
the resonance. For the multimode system, the linewidth of
the resonant feature is decreased in comparison to the system
of a single mechanical oscillator, whereas the amplitude is
strongly increased (collective gain). It should be borne in mind
that the collective gain, that we discuss, is in terms of the
phonon variables, as we are investigating phonon laser action.
This should be differentiated from the narrowing of the cavity
linewidth which was found in [19].

To get an understanding of the cooperative effects leading
to this signature, we analyze the roots of the denominator of
R(ω). In the approximation of Eq. (12) the roots are given by

ωc
± = 1

2

[
ωe

1 + ωe
2 ±

√(
ωe

1 − ωe
2

)2 − 4χ2
c G2

1G
2
2

]
, (13)

with the effective complex frequencies of the mechanical
oscillators ωe

j = −ωj − i(�j − �opt) and the optomechanical
damping rate �opt = G2

jχc. We can identify χcG1G2 as the
effective coupling between the mechanical modes, mediated
by the photonic field. The real and imaginary parts of Eq. (13)
are shown in Fig. 4. The square root term gives rise to two
regimes separated by a bifurcation point at �ω = χcG1G2. For
a frequency detuning �ω smaller than the effective coupling,
the effective frequencies of the mechanical modes become
degenerate and form two collective normal modes. This applies
to resonant driving both on the Stokes and on the anti-
Stokes sideband. For off-resonant driving the bifurcation point
vanishes; the formation of collective modes, however, persists.

A similar case of normal mode splitting is known in the
context of strong coupling between a single mechanical
oscillator and the cavity mode [32]. In our case, however,
we are required to work in the weak coupling regime, where

FIG. 4. (Color online) Real (a) and imaginary (b) part of the
denominator roots of R(ω) for on-resonance driving on the Stokes
sideband. Upper red (lower blue) curve corresponds to the negative
(positive) sign in (13). Dashed curves were calculated for off-
resonant driving with δ ≡ ωc − ωl + ωm = 0.1κ . The bifurcation
point vanishes for δ �= 0. In (b) the upper curve with amplitude A−
decouples from the cavity for �ω → 0 (see main text for details).
Parameters were chosen as in Fig. 3.

the cavity response function is approximately independent of
frequency in the vicinity of the mechanical resonances. In this
system, the collective modes form due to the effective coupling
between the mechanical oscillators, mediated by the photonic
field.

The mode showing collective gain with �+ = � − 2�opt

(lower curve in Fig. 4) defines the response of the
optomechanical system, as other mode (upper curve)
asymptotically decouples from the cavity for �ω → 0. Here,
the underlying physical process can be seen as a scattering
from indistinguishable photons in the cavity field into a single
collective phonon mode, whereas (in the case of N mechanical
oscillators) the other N − 1 phononic modes do not couple to
the light field at all. This can also be understood by analyzing
response function R(ω) in terms of partial fractions,

R(ω) = 2κE

[
A+

ω − ωc+
− A−

ω − ωc−
− 1

]
− 1. (14)

This analysis shows that A− → 0 for �ω → 0. This
also applies to the anti-Stokes sideband, where only the
superradiant mode with �+ = � + 2�opt contributes to the
response function.

In a somewhat different picture this effect can be understood
in terms of the structure of the response function. R(ω) of the
fully degenerate system with identical mechanical oscillators
is equal to the response function of a system with a single oscil-
lator in a cavity with an effective coupling rate of G′ = √

2G.
This applies both to the Stokes and the anti-Stokes sideband
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FIG. 5. (Color online) Real part of response function for off-
resonant driving with detuning δ ≡ ωc − ωl + ωm in the vicinity of
the Stokes sideband. Parameters were chosen as in Fig. 3.

and can readily be generalized for a system of N oscillators.
Here, the effective coupling rate reads G′ = √

NG. In the
same way, generalization of the collective linewidth yields
�+ = � ± N�opt, whereas the plus (minus) sign holds for the
anti-Stokes (Stokes) sideband. This implies that the threshold
power for phonon laser action would drop by a factor of N [33].

For off-resonant driving the collective behavior persists;
the response function, however, gradually changes from an
absorptive to a dispersive structure, as shown in Fig. 5.
The resonant feature considerably broadens and decreases in

amplitude. Qualitatively, this behavior occurs for any number
of oscillators and is not distinctive for the multimode system.
In the here discussed case of frequency degeneracy, the system
of N mechanical oscillators with coupling rates G is equal to
a system of a single oscillator with a coupling rate of

√
NG.

V. CONCLUSIONS

In summary, we have derived and analyzed the emergence
of superradiance and collective gain in optomechanical multi-
mode systems. We have discussed the necessary conditions for
these collective effects to occur and outlined the experimental
feasibility. In light of recent progress in on-circuit implemen-
tations of optomechanics [14,15], the experimental realization
of the proposed system should be within reach. We showed
that the system can easily be switched from a superradiant
state, allowing enhanced cooling of a single vibrational
mode, to a collective gain regime where phonon laser ac-
tion [34] with a single collective phononic mode is potentially
possible.
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[32] S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer,

Nature (London) 460, 724 (2009).
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