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The complexity of modeling light propagation in turbid media can be significantly simplified if one assumes
it to be diffusive. This is, however, only valid after the light has traveled a sufficient distance so that the diffusion
equation can be employed. So far, there has been no reliable way to determine this distance, despite the fact
that the assumption is often applied in optics. The discrete nature of scattering events plays an important role in
modeling propagation of weakly scattered light, so a continuum equation such as the diffusion equation cannot
be used to describe this process. Electric field autocorrelation functions g1(τ ) of light transmitted through turbid
colloidal samples are measured using diffusing wave spectroscopy and compared to Monte Carlo simulations in
order to obtain a better estimation of the continuum limit. The two methods to calculate g1(τ ) from the simulated
photon trajectories are compared; the first assumes the continuum limit by using the path-length distributions of
photon trajectories, while the second considers the square momentum transfers and therefore accurately calculates
g1(τ ) even if the detected signal is composed of weakly scattered light. The results of the two methods are used
to determine the lengths of the shortest diffuse photon trajectories; they grow with the sample thickness and
scattering anisotropy.
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I. INTRODUCTION

The diffusion equation is often used to model radiative
transfer in turbid media [1–3], such as the propagation of
light in a colloidal system. It assumes a continuum limit and
therefore cannot describe discrete scattering events on length
scales comparable to or shorter than the transport mean free
path l∗ [4]. Typically, a ratio of L/l∗ > 10 is suggested to
ensure validity of the continuum limit approximation, where
L is the sample thickness. This assumption is, however, rather
arbitrary and, in many cases, it is not clear if the continuum
approximation can be applied and how large the error might
be if it is not fully valid. Specifically, in backscattering, it
is difficult to determine the validity of the continuum limit.
Therefore, it is important to understand the conditions under
which the diffusion approximation can be applied and how
its limits are affected by sample properties and experimental
setup.

Diffusing wave spectroscopy (DWS) [5–8] is a popular
method that relies on the validity of the continuum limit.
The intensity correlation function of photons that are scattered
by particles in a homogenous medium allows calculating the
mean-square displacement of the particles. It was successfully
applied in fundamental research to study colloidal dynamics,
nondiffusive Brownian motion [9], samples with correlation
between the scattering particles [10], and to study the structure
and dynamics of three-dimensional foams [11]. Furthermore,
it was used to study the dynamics in the human cortex [12],
diagnostic microflow [13], the viscoelasticity of complex
fluids [14–16], and the effects of blood flow and extravascular
tissue shearing [17].
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In order to expand the application range of DWS beyond
the continuum limit, several extensions were proposed [18,19].
In [18], light propagation was modeled with the telegrapher
equation to account for ballistic transport between succes-
sive scattering events. Furthermore, the probability densities
of photon path lengths (determined by solving the time-
dependent radiative transfer equation) and scattering events
along a given path were introduced in [19] to account for
the contribution of very long paths with few scattering events
that are not captured by the standard diffusion approxima-
tion. Geometrical requirements for DWS experiments were
presented in [20]. The discrete nature of scattering particles
was taken into account in [21] by abandoning the continuum
limit approximation and instead considering the shape of the
photon trajectories. This has allowed accurate calculations of
the autocorrelation functions of a backscattered light.

In this paper, the electric field autocorrelation functions
g1(τ ) of light transmitted through cuvettes containing samples
of colloidal particles dispersed in water are determined exper-
imentally with DWS and compared to simulations obtained
with SCATTER3D [22,23]. The software package SCATTER3D

allows modeling the experimental conditions in great detail.
It uses Monte Carlo simulation to describe the transport of
light through a medium where individual scattering events
are calculated using Lorenz-Mie theory. These simulations
allow the investigation of the continuum limit approximation
when different ratios of L/l∗, media with different scattering
properties, and different polarization detection schemes are
considered. We vary L/l∗ in order to study the transition from
diffuse (large L/l∗) to nondiffuse (small L/l∗) transport of
light for which the continuum limit is not a valid approxima-
tion. This is achieved by using cuvettes of different interior
thicknesses (L = 1,2,5,10 mm) with a constant value of l∗
throughout the study.
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FIG. 1. (Color online) Setup of DWS experiment.

This work reveals an estimate of the minimal photon path
length for which the continuum limit is valid. Moreover, the
dependence of these paths on the experimental setup and
sample under study is revealed.

II. THEORETICAL BACKGROUND

The diffusion equation is a continuum limit of a random-
walk description of light transport [24] that allows straight-
forward computation of the path-length distribution P (s) for
some experimental setups. The photon path of length s can be
described as a random walk with step size l∗. The transport
mean free path l∗ is a measure of the typical distance that light
needs to travel before it becomes diffuse. It is connected to
the scattering mean free path l via l/ l∗ = 1 − 〈cos(θ )〉, where
θ is the scattering angle. If for the considered experimental
conditions (in particular, the chosen L/l∗) the detected light is
diffuse (the continuum limit can be assumed), then the electric
field autocorrelation function g1(τ ) in a DWS experiment,
shown in Fig. 1, can be calculated as

g1(τ ) =
∫ ∞

0
PF (s)e−(2τ/τ0)s/ l∗ds, (1)

where PF (s) is the angular average histogram of the path-
length distribution. This corresponds to a hemispherical
detector which collects all the light emerging from a detection
spot, regardless of its propagation direction. Here, τ and τ0 =
1/(D k2) are the lag time and the characteristic diffusion time
(i.e., the time it takes a particle to move a distance of the order
of a wavelength λ), respectively. In the case of particles with
radius r in a Newtonian solvent with viscosity η, the diffusion
coefficient D is given by the Stokes-Einstein equation, D =
kB T /(6π η r). Here, kB is the Boltzmann constant and T is
the temperature. For samples with polydisperse particles, one
has to replace τ0 and l∗ in Eq. (1) by τeff and l∗eff ,

τeff = 1

Deff k2
,

1/l∗eff =
∑

i

1

l∗i
,

Deff = l∗eff

∑
i

Di

l∗i
, (2)

where i is the index of every species (particles of different
size) in the sample.

However, experimental constraints often require low ratios
L/l∗ (e.g., <10) and, as a result, a large portion of detected
light is not diffuse. For weakly scattered light, one needs a

more precise description and it seems straightforward to take
into account the shape of the photon paths. This approach was
followed by Middleton et al. [21] who calculated g1(τ ) based
on the distribution of the sums of square momentum transfers
PF (y), where y = ∑n

j=1 q2
j . This quantity is calculated from

the momentum transfers qj = 2k sin(θj/2) collected along the
path of length s. Here, θj are the corresponding scattering
angles and k = 2π/λ is the wave number. For polydisperse
samples, this approach can be extended to

� =
n∑

j=1

q2
j Dj, (3)

where Dj is the diffusion coefficient of the jth scattering
particle. Equation (3) allows the calculation of g1(τ ) as

g1(τ ) =
∫ ∞

0
PF (�)e−�τ d�. (4)

In contrast to s, � considers the shape of a photon
trajectory since it depends on the scattering angles θj. This
is particularly important if the detected signal is composed of
weakly scattered light whose trajectories of the same length
s can have significantly different �. The continuum limit
is thus only valid if photon trajectories are long enough to
contain a large number of scattering events such that their
particular shape is no longer important. In the continuum
limit approximation (n = s/ l) and assuming monodisperse
particles, Eq. (3) simplifies to �th = 〈q2〉Dn = 2k2D s/l∗,
where we used the relation 2〈sin2(θ/2)〉 = [1 − 〈cos(θ )〉] =
l/ l∗. This result demonstrates that for diffuse light, the
distributions PF (s) and PF (�) are the same, except for a
scaling factor of 2k2D/l∗.

III. EXPERIMENTAL SETUP AND MATERIALS

The measurements were done with a DWS RheoLab (LS
Instruments AG, Fribourg, Switzerland). Cuvettes made of
optical glass (refractive index 1.5) with interior width of 10 mm
and different thicknesses L = 1,2,5,10 mm were used. The
cuvette containing the sample under study is illuminated by
the uniform collimated laser beam with diameter of d = 8 mm
and wavelength γ = 687 nm, as depicted in Fig. 1. The
incident light is vertically linearly polarized with the Stokes
vector I = (I,Q,U,V ) = (1, − 1,0,0). Both copolarized and
cross-polarized transmitted light, whose detection schemes are
denoted throughout the paper as VV and VH, respectively, are
detected from a spot on the cuvette wall of 0.9 mm diameter.
Note that for L = 5 and 10 mm cuvettes, the L/d ratio is
smaller than suggested in [20] (d > 5L); i.e., the illumination
spot is not a good enough approximation of an infinitely wide
beam for the two thickest cuvettes considered here. This causes
deviations between the measured g1(τ ) and those calculated
using Eq. (A1), which is derived assuming laterally infinite
beam and cuvette.

The studied samples are made of polystyrene spheres
dispersed in water with radius probability density function
PDF(r) and mean value r̄ obtained by static light scattering.
The scattering intensity of a strongly diluted sample was
measured in an angular range of 20◦ to 150◦ relative to toluene
using a goniometer system from LS Instruments AG equipped
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with a HeNe laser with 633 nm wavelength. The resulting form
factors were fitted with a Gaussian distributed PDF(r) using
Lorenz-Mie theory. Best fits were found using a mean radius
r̄ = 227 nm with standard deviation σ = 12 nm (PS454),
r̄ = 100 nm and σ = 4 nm (PS200), and r̄ = 480 nm and
σ = 10 nm (PS960). The considered range of particle sizes
[r̄ − 6σ,r̄ + 6σ ] in all simulations is divided into 100 bins.
For the simulations, we used a refractive index of 1.587 for
the polystyrene particles and 1.332 for the solvent (water).
The particle concentration was adjusted such that all samples
have the same value of l∗ = 300 μm. All experiments were
performed at the temperature T = 25 ◦C at which water has
the viscosity η = 0.89 mPa s.

IV. SIMULATIONS

The simulation setup in SCATTER3D matches the experi-
mental conditions used by the DWS Rheolab and consists
of a virtual cuvette, modeled as a nonabsorbing medium,
surrounded by air. The polarization gating implementation
in SCATTER3D is explained in [22]. The Stokes vectors of
all detected photons are first expressed in the laboratory
coordinate system and then multiplied by the Mueller matrices
of a linear polarizer with vertical transmission (copolarized
light is detected), or horizontal transmission (cross-polarized
light is detected). After the multiplications, the copolarized
and cross-polarized light are given as I − Q and I + Q,
respectively. The orientation of the axes that define the
laboratory coordinate system is the same as of those used
to define the incident Stokes vector.

Effective variables in Eq. (2) are calculated following
an iterative procedure; i.e., for a given 1/μ∗

eff = l∗eff = l∗,
the transport coefficient μ∗

i = Niσ i
s (1 − gi) of every species

(particles of different r) is calculated until ε = (μ∗
eff −∑

i μ
∗
i )/μ∗

eff < 1%. Here, i = [1,100] is, as defined in Eq. (2),
the bin index in PDF(r), while gi and σ i

s are the anisotropy
factor of the scattering phase function and the scattering
cross section of particles with radius r , respectively. At every
iteration, the number density of each species, denoted as Ni ,
is changed according to PDF(r) until ε < 1%. The transport
mean-free-path lengths l∗i = 1/μ∗

i of all species, which are
used in Eq. (2), were calculated in this way. The scattering
phase functions of all samples are calculated using Lorenz-
Mie theory implemented in SCATTER3D. The found values
are Deff ≈ 1.1 × 10−6 mm2/s and τeff ≈ 6.2 ms (PS454),
Deff ≈ 2.4 × 10−6 mm2/s and τeff ≈ 2.8 ms (PS200), and
Deff ≈ 5.1 × 10−7 mm2/s and τeff ≈ 13 ms (PS960). The
effective anisotropy factors of the scattering phase functions
calculated as

geff =
∫

giPDF(r)σ i
s dr∫

PDF(r)σ i
s dr

(5)

amount to geff ≈ 0.76 (PS454), geff ≈ 0.27 (PS200), and
geff ≈ 0.91 (PS960).

The polydispersity of the scattering particles is imple-
mented in SCATTER3D as it was done in [25]; photons traveling
through a sample experience scattering events on particles
with size set by the PDF(r). The scattering mean free path
l = l∗(1 − geff) does not change during the simulation. As a
consequence, the difference compared to the light transport in

monodisperse solution is only in the fact that the particle size
is different for each scattering event. To reduce the calculation
time, the scattering amplitude functions S1 and S2 calculated
with Lorenz-Mie theory [23] were precomputed for each
particle size.

In order to find the boundary between diffuse and non-
diffuse light and how it is influenced by different scattering
particles, a minimum length of diffuse light trajectories was
found from the relations between � and s obtained with
the Monte Carlo simulations without modeling cuvette. The
average value of � is calculated for each PF (s) bin as
〈�〉s = ∑m

p=1 wp�p/
∑m

p=1 wp. Here, p and m are the index
of an individual photon and the number of photons inside the
PF (s) bin, respectively. The photon with index p, after the
polarization gating was applied (i.e., after its Stokes vector
in the laboratory coordinate system was multiplied by the
Mueller matrix of the corresponding polarizer), has weight
wp = Ip − Qp (copolarized light detected) or wp = Ip + Qp

(cross-polarized light detected), and �p. The first two elements
of the Stokes vector of a photon are denoted as Ip and Qp.
For diffuse light trajectories, �th = Deff yth = Deff 2k2 s/ l∗,
while the nonlinear relation between � and s is expected for
nondiffuse light. The amount of nondiffuse light in a detected
signal, which depends on the sample thickness and scattering
anisotropy, can be determined from the PF (s) distributions
for each sample once the length of the shortest diffuse light
trajectories is found. The inertia effects of water and scattering
particles, not captured by the Monte Carlo simulations, have
the strongest influence on the measured g1(τ ) when PS960 is
considered. The effect is more pronounced for larger scattering
particles and larger L/l∗. Therefore, the experimental data for
PS960 was corrected for inertia effects, as explained in the
Appendix.

V. RESULTS

The experimental setup of DWS RheoLab is simulated by
SCATTER3D to allow direct comparisons between simulated
and measured g1(τ ). Figures 2–4 compare measured and
simulated g1(τ ) of PS454 in cuvettes with interior thicknesses
L = 1,2,5,10 mm. For L = 5 and 10 mm, only the results for
cross-polarized light are shown because they overlap with the
results obtained with the copolarized detection channel. This
is in agreement with the distributions for PF (s) and PF (�) for
L = 1 and L = 2 mm in Fig. 5. Here, in the case L = 2 mm,
the distributions for the two polarization states are overlapping,
whereas for L = 1, the peak for the VV geometry is shifted
towards smaller s values compared to the VH geometry.
Moreover, the peak position in VV geometry is very close
to the value of the cuvette thickness (i.e., 1 mm) that leads
to an important contribution of photon trajectories with very
few scattering events, which conserves the initial polarization
state. In contrast, the VH geometry considers only photons that
have changed the polarization state and thus require a minimal
number of scattering events that leads to a peak shifted to
larger s values. The distributions of the two polarization states
of the other sample thicknesses [2 mm shown in Fig. 5(b); 5 and
10 mm not shown] are overlapping and, as a result, the obtained
g1(τ ) are insensitive to the polarization detection scheme. This
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FIG. 2. (Color online) Measured and calculated autocorrelation functions g1(τ ) of light transmitted through 1-mm-thick PS454 sample
when (a) cross-polarized and (b) copolarized light is detected. Markers represent measured g1(τ ), while dashed and solid lines are calculated
with Eqs. (1) and (4), respectively. (a) Inset: Comparison of measured g1(τ ) obtained in cross-polarization (circles) and copolarization (asterisks)
geometry. (b) Inset: The results at large lag times when copolarized light is considered.

suggests that for L � 2 mm (i.e., L/l∗ � 6.7), the polarization
information is lost.

The simulated g1(τ ) based on PF (s) [i.e., using Eq. (1)]
agree well with the measurements in the case of thick cuvettes
(L = 5 and 10 mm), suggesting that the continuum limit is a
valid approximation for the experimental conditions (i.e., all
detected light is diffuse). However, in the case of L = 1 mm,

the simulations based on PF (s) deviate from the measurements
for both polarization directions. The same behavior is apparent
for a L = 2 mm cuvette, but the disagreement starts at larger
lag times τ that correspond to shorter light paths s compared
to the setup with a L = 1 mm cuvette. However, the results
based on PF (�) agree well with the experimental data for all
cuvette thicknesses L and polarization channels. This suggests
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FIG. 3. (Color online) Measured and calculated autocorrelation functions g1(τ ) of light transmitted through 2-mm-thick PS454 sample
when (a) cross-polarized and (b) copolarized light is detected. Markers represent measured g1(τ ), while dashed and solid lines are calculated
with Eqs. (1) and (4), respectively. Insets: The results at large lag times when (a) cross-polarized and (b) copolarized light are considered.
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FIG. 4. (Color online) Measured and calculated autocorrelation functions g1(τ ) when cross-polarized light transmitted through (a) 5-mm-
thick and (b) 10-mm-thick PS454 samples is considered. Markers represent measured g1(τ ), while dashed and solid lines are calculated with
Eqs. (1) and (4), respectively.

that for thin cuvettes, the continuum limit approximation is
not valid. To explore this limit, we investigate the relation
between s and � using a SCATTER3D setup where the cuvette
is not modeled (i.e., matched refractive indices are employed)
in order to avoid light reflections. The sample geometry is
the same as the cuvette interior. This allows us to study

the transition from single scattered to diffuse light transport
caused exclusively by the scattering process in samples with
different optical properties. Although the short trajectories of
transmitted light have small s, �, and y, the linear relation
yth = 2k2 s/ l∗ valid for diffuse light [21] is not expected.
First, the relation between s and � is studied in order to find
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FIG. 5. (Color online) Distributions PF (s) for (a) (L = 1)-mm-thick and (b) (L = 2)-mm-thick PS454 samples when cross-polarized (solid)
and copolarized (dashed) light are considered. The bin size is 0.01 mm (0.1 mm) for L = 1 mm (L = 2 mm). Insets: Distributions PF (�)
obtained from the same simulations as the PF (s) in the main figures. The bin size is 10 Hz (1000 Hz) for L = 1 mm (L = 2 mm). Distributions
with the same bin sizes are used to calculate autocorrelation functions in Figs. 2 and 3.
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FIG. 6. (Color online) 〈�〉s calculated for PS454 as described in the text. The PF (s) bins are of the same sizes as those used to calculate
g1(τ ) in Figs. 2–4. (a),(c) Results when cross-polarized light is detected, and (b),(d) results when copolarized light is detected. Solid red lines
represent theoretically calculated �th = ythDeff = 2k2 s/ l∗ Deff .

the shortest path lengths of diffuse light trajectories smin. The
simulated results for sample thicknesses L =1 to 10 mm are
shown in Fig. 6. The solid lines are relations for diffuse light
calculated as �th = yth Deff . From all subplots in Fig. 6, it is
obvious that the relation between 〈�〉s and s is similar for
copolarized and cross-polarized light. Moreover, if we define
smin as the smallest s value for which (�th − 〈�〉s)/�th < 1%,
we find that smin depends on L/l∗. This demonstrates that the
ratio of weakly scattered to diffuse light depends on L/l∗. The
relative contribution of diffuse light to the signal grows with s.
The weakly scattered light dominates the signal composed of

trajectories with path lengths < smin = 2.59 mm (1-mm-thick
sample) and <smin = 6.2 mm (2-mm-thick sample). This is the
most pronounced for a 1-mm-thick sample when copolarized
light is detected [see Fig. 5(a)], thus resulting in the largest
difference between g1(τ ) calculated using Eqs. (1) and (4).
The comparison between Figs. 5(a) and 5(b) shows that the
relative contribution of nondiffuse light trajectories is smaller
for a 2-mm-thick sample. Therefore, g1(τ ) calculated using
Eq. (1) for a 1-mm-thick sample start deviating from the
measurements at larger values (g1 ≈ 0.5) [see Fig. 2(b)] than
the corresponding g1(τ ) calculated for a 2-mm-thick sample
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FIG. 7. (Color online) Lengths of the shortest light trajectories
that can be considered diffuse. These data were determined as the
simulated value of s in Fig. 6 for which 〈�〉s starts to deviate from the
theoretical value, i.e., the smallest s for which (�th−〈�〉s)/�th<1%.

(g1 ≈ 0.3) [see Fig. 3(b)]. The contribution of nondiffuse light
in a detected signal is even smaller for a 5-mm-thick sample,
while for a 10-mm-thick sample, the signal is composed of

diffuse light only. The distributions for 5- and 10-mm-thick
samples are not presented due to limited number of pages.

The results for PS200 and PS960 serve as a further
validation and are presented in the Appendix. Here, we only
present the results of the shortest diffuse light trajectories that
were obtained as described above. The results are summarized
in Fig. 7. The length of the shortest diffuse light trajectories
smin is normalized to the scattering mean free path of the
corresponding sample. It can be seen that smin/l grows with
L and particle size (i.e., geff). Due to limited number of
pages, we cannot present all simulated g1(τ ) using Eqs. (1)
and (4) for the different L, but we note here that the smallest
L to ensure diffuse transport of light [i.e., simulated g1(τ )
obtained using Eqs. (1) and (4) overlap over the whole range
of lag time] is 4 mm (PS200), 3 mm (PS454), and 2 mm
(PS960). Therefore, the smallest L/l∗ for which all transmitted
light is diffuse is 14 (PS200), 10 (PS454), and 7 (PS960);
i.e., L/l = 18 (PS200), L/l = 42 (PS454), and L/l = 74
(PS960). Although the largest difference between g1(τ ) of
copolarized and cross-polarized light is for PS200 [see, e.g.,
inset in Fig. 8(b)] among all considered samples, the linear
polarization is best preserved when light is scattered on the
largest particles (i.e., PS960). First, the comparison between
g1(τ ) of copolarized and cross-polarized light calculated using
Eq. (4) (or between the corresponding measurements) shows
that the linearly polarized light depolarizes before it becomes
diffuse; i.e., the smallest L/l∗ for which g1(τ ) of copolarized
and cross-polarized transmitted light overlap over the whole
range of lag time is 10 (PS200), 7 (PS454), and 7 (PS960). This
corresponds to L/l = 14 (PS200), L/l = 28 (PS454), and
L/l = 74 (PS960). Therefore, the number of scattering events
required for depolarization grows with the size of scattering

0

0.2

0.4

0.6

0.8

1

10-8 10-6 10-4 10-2

g
1

lag time (s) 
 (a)

L=1mm: VH - detection

measurements
simul. PF(Γ)
simul. PF(s)

0

0.2

0.4

0.6

0.8

1

10-8 10-6 10-4 10-2

g
1

lag time (s) 
 (b)

L=1mm: VV - detection

0

0.1

0.2

0.3

0.4

0.5

10-4 10-3 10-2
0

0.2

0.4

0.6

0.8

1

10-8 10-6 10-4 10-2

FIG. 8. (Color online) Measured and calculated autocorrelation functions g1(τ ) of light transmitted through 1-mm-thick PS200 sample
when (a) cross-polarized and (b) copolarized light is detected. Markers represent measured g1(τ ), while dashed and solid lines are calculated
with Eqs. (1) and (4), respectively. (a) Inset: The results at large lag times when cross-polarized light is considered. (b) Inset: g1(τ ) when
cross-polarized (circles) and copolarized (asterisks) light are measured.
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particles. Note, however, that the sample thickness resolution
of 1 mm is not sufficient, thus resulting in the same minimum
L/l∗ necessary to depolarize and diffuse light transmitted
through the PS960 sample. However, the same conclusion
as for light transmission through PS200 and PS454 can be
expected even when the PS960 sample is used, if the samples
with intermediate thicknesses are considered.

VI. CONCLUSIONS

The electric field autocorrelation functions g1(τ ) of light
transmitted through three samples with different size of scat-
tering particles and four cuvettes of different thicknesses are
measured and obtained with Monte Carlo simulations. For the
two thinnest cuvettes, the simulation results deviated from the
measurements at large lag times if the path-length distributions
PF (s) were used to calculate g1(τ ). The deviations were even
more pronounced when copolarized instead of cross-polarized
light was detected. The g1(τ ) calculated using distributions
based on the sums of square momentum transfers PF (�)
accurately predict measurements over the whole range of
lag times for all samples, cuvettes, and polarization channels
considered. Both distributions were obtained from the same
Monte Carlo simulations. Therefore, it is concluded that
the deviations are caused by employing the continuum limit
approximation (s = n l) when using PF (s) to calculate g1(τ ).
The shape of g1(τ ) at large lag times is determined by the
short light trajectories, while the continuum limit can be
assumed for diffuse light. The path lengths and sums of the
square momentum transfers are linearly dependent if the light
propagation is diffuse. On the other hand, we showed that the
path lengths of short light trajectories are nonlinearly related to
the corresponding sums of square momentum transfers. From
this relation, we estimated for which light paths the continuum
limit can be assumed. In this manner, the shortest diffuse light
trajectories smin were determined. We furthermore showed that
smin grows with the sample thickness and scattering anisotropy.
We also showed that the minimum L/l necessary to detect only
diffuse light grows with the scattering anisotropy. Finally, it
is shown that linearly polarized illumination is depolarized
before it becomes diffuse, no matter the sample considered,
and that polarization is preserved longer when light is scattered
on larger particles. Note that whether the light trajectories are
diffuse depends on their shape, which is captured by the sum of
the squared momentum transfers that directly depends on the
scattering angles contained in the light path. On the other hand,
the distribution PF (s) does not distinguish between the photon
trajectories of the same length but having very different shapes
(different sums of the square momentum transfers), which are
typical for weakly scattered light.

The question of whether the continuum limit can be passed
on some of the nondiffuse photon trajectories that might

be sufficiently long to contain large enough number of
scattering events, so that s = n l is satisfied, is a subject of
future work.

We hope that the findings presented in this paper, in
particular those regarding the length of the shortest diffuse
light trajectories, will help researchers, specifically in the field
of biomedical optics. It can also help sample preparation for
diffusing wave spectroscopy, since either the optimal sample
turbidity or cell thickness can now be determined. Finally, we
would like to mention that while our experiments focused
on diffusing wave spectroscopy, the results also apply to
electromagnetic waves in general, as long as the radiative
transfer theory is valid.
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APPENDIX

Here, the electric field autocorrelation functions g1(τ ) for
PS200 and PS960 are presented as a further validation of
SCATTER3D. In particular, it is shown that the drawn conclu-
sions are valid, independent of the particle size. Distributions
and figures showing 〈�〉s vs s are not shown due to limited
number of pages. However, the results for the lengths of the
shortest diffuse light trajectories smin are shown in Fig. 7.
The results for PS200 are presented in Fig. 8 (L = 1 mm),
Fig. 9 (L = 2 mm), and Fig. 10 (L = 5 and L = 10 mm).
Although all three samples have the same l∗, the largest
difference between g1(τ ) for copolarized light calculated using
Eqs. (1) and (4) is due to a large relative contribution of
light with weakly corrugated trajectories (the light with small
�). Note that PS200 has the smallest scattering coefficient.
The results for PS960 are presented in Fig. 11 (L = 1 mm),
Fig. 12 (L = 2 mm), and Fig. 13 (L = 5 and L = 10 mm). The
inertia of scattering particles and fluid [26] are not captured
in Monte Carlo simulations. The effect is more pronounced
for larger scattering particles and larger L/l∗. Therefore, the
measured g1(τ ) for PS960 are “corrected” for the inertia
effects of scattering particles and fluid in order to compare
them to simulations. As expected, the largest discrepancy
between simulated and measured g1(τ ) is for a L = 10 mm
cuvette at short lag times defined by long light trajectories.
The difference between measurements and corrected g1(τ )
is negligible for L = 1 and L = 2 mm cuvettes. Next, the
procedure for correcting measurements is described. First, the
mean-square displacement of scattering particles 〈�x2(τ )〉 is
extracted from the measured g1(τ ) using the expression

g1(τ ) =
(

L
l∗ + 4

3

)
k

√
〈�x2(τ )〉[

1 + 4
9k2 〈�x2(τ )〉]sinh

[
L
l∗ k

√
〈�x2(τ )〉] + 4

3k
√

〈�x2(τ )〉cosh
[

L
l∗ k

√
〈�x2〉] . (A1)

Note that Eq. (A1) assumes laterally infinite cuvette and
illumination, which is not the case for the experimental

conditions considered here. However, the cuvettes L = 1 and
L = 2 mm mimic the aforementioned conditions well. On
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FIG. 9. (Color online) Measured and calculated autocorrelation functions g1(τ ) of light transmitted through 2-mm-thick PS200 sample
when (a) cross-polarized and (b) copolarized light is detected. Markers represent measured g1(τ ), while dashed and solid lines are calculated
with Eqs. (1) and (4), respectively. (a) Inset: g1(τ ) when cross-polarized (circles) and copolarized (asterisks) light are measured. (b) Inset: The
results at large lag times when copolarized light is considered.

the other hand, Eq. (A1) also assumes diffuse light which
is detected, regardless of the sample used, when light is
transmitted through L = 5 and L = 10 mm cuvettes. The
extracted 〈�x2(τ )〉 represents the mean-square displacement
of scattering particles including the inertia effects. Next, the
mean-square displacement of scattering particles not affected

by inertia effects 〈�x2(τ )〉′ is calculated from [26]

〈�x2(τ )〉
〈�x2(τ )〉′ = 1 − 2

√
1

π

τf

τ
+ 8

9

τf

τ
− τp

τ
+ �

(
τp

τf

,
τ

τf

)
.

(A2)
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FIG. 10. (Color online) Measured and calculated autocorrelation functions g1(τ ) when cross-polarized light transmitted through (a) 5-mm-
thick and (b) 10-mm-thick PS200 samples is considered. Markers represent measured g1(τ ), while dashed and solid lines are calculated with
Eqs. (1) and (4), respectively.
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FIG. 11. (Color online) Measured and calculated autocorrelation functions g1(τ ) of light transmitted through 1-mm-thick PS960 sample
when (a) cross-polarized and (b) copolarized light is detected. Markers represent measured (circles) and corrected measured (squares) g1(τ ),
while dashed and solid lines are calculated with Eqs. (1) and (4), respectively. Insets: The results at large lag times.

Here, inertia effects of scattering particles and fluid are
represented by the characteristic times τp = 2

9 r̄2ρp/η and
τf = r̄2ρf /η, respectively. The characteristic time τf is the
time necessary for a perturbed flow field to diffuse a distance of
one particle’s radius. Note that the fluid perturbation due to the
motion of a scattering particle is not captured by the “standard”

Langevin equation. The small correction term �( τp

τf
, τ
τf

) [26]
is neglected in this work. The densities of scattering particles
ρp = 1060 kg/m3 and water ρf = 1000 kg/m3 are used.
Finally, the corrected g1(τ ) is calculated using Eq. (A1) with
〈�x2〉′ as an input. The largest difference between g1(τ )
calculated using Eqs. (1) and (4) is for a L = 1 mm cuvette
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FIG. 12. (Color online) Measured and calculated autocorrelation functions g1(τ ) of light transmitted through 2-mm-thick PS960 sample
when (a) cross-polarized and (b) copolarized light is detected. Markers represent measured (circles) and corrected measured (squares) g1(τ ),
while dashed and solid lines are calculated with Eqs. (1) and (4), respectively. Insets: The results at large lag times.
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FIG. 13. (Color online) Measured and calculated autocorrelation functions g1(τ ) when cross-polarized light transmitted through (a) 5-mm-
thick and (b) 10-mm-thick PS960 samples is considered. Markers represent measured (circles) and corrected measured (squares) g1(τ ), while
dashed and solid lines are calculated with Eqs. (1) and (4), respectively. Insets: The results at short lag times.

when copolarized light is detected. By comparing the results
for, e.g., a L = 1 mm cuvette among all three samples, it can

be concluded that g1(τ ) are decaying at the shortest lag times
for PS200 due to the largest Deff .
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[22] M. Šormaz and P. Jenny, J. Opt. Soc. Am. A 29, 2174 (2012).
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