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Damping of Bloch oscillations: Variational solutions of the Boltzmann equation
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Variational solutions of the Boltzmann equation usually rely on the concept of linear response. We extend
the variational approach for tight-binding models at high entropies to a regime far beyond linear response. We
analyze both weakly interacting fermions and incoherent bosons on a lattice. We consider a case where the particles
are driven by a constant force, leading to the well-known Bloch oscillations, and we consider interactions that
are weak enough not to overdamp these oscillations. This regime is computationally demanding and relevant
for ultracold atoms in optical lattices. We derive a simple theory in terms of coupled dynamic equations for the
particle density, energy density, current, and heat current, allowing for analytic solutions. As an application, we
identify damping coefficients for Bloch oscillations in the Hubbard model at weak interactions and compute them
for a one-dimensional toy model. We also approximately solve the long-time dynamics of a weakly interacting,
strongly Bloch-oscillating cloud of fermionic particles in a tilted lattice, leading to a subdiffusive scaling exponent.
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I. INTRODUCTION

Boltzmann equations are established tools to study the
nonequilibrium dynamics of electron gases in materials [1] and
of atomic quasiparticles in traps [2]. They describe the time
evolution of a phase-space probability distribution of particles
subject to external forces and collisions, e.g., due to disorder,
phonons or interactions. In most applications in condensed-
matter or material physics, the electrical field that drives the
electronic system out of equilibrium is weak. In this case,
linearizing the Boltzmann equation around a local equilibrium
solution delivers transport and linear response quantities such
as electronic or thermal conductivities and thermoelectric
coefficients; for a general overview see Ref. [1]. In spatially
inhomogeneous situations, the linearized Boltzmann equation
can be used to calculate diffusion constants, allowing us to
model the flow of mass and energy in spatially inhomogeneous
setups; an application with ultracold atoms in optical lattices
is given in Ref. [3].

Analytical solutions of the Boltzmann equation beyond the
linear response regime are usually infeasible, and one has to
resort to simulation. These simulations can be computationally
demanding: a high-dimensional collision integral has to be
evaluated numerically for each point in phase space and time.
To circumvent expensive dynamical simulations, we introduce
a novel variational approach for lattice systems. As we explain
in this paper, we linearize the Boltzmann equation around a
constant solution. This linearization is a good approximation
for distribution functions at high entropies. Our approach
reduces the Boltzmann equation to a coupled set of differential
equations, describing the dynamics of the most relevant modes
such as particle and energy densities and particle and heat
currents. It is variational, as it coincides with the conventional
variational approach of solving the Boltzmann equation at high
entropies in the linear response limit, as we show. However, the
explicit time dependence of the current and heat current allows
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us to model physics far beyond the linear response regime.
We use it to derive novel analytical results with relevance to
ultracold atoms in optical lattices.

Using linearization techniques to model the nonlinear
response might appear paradoxical. Note, however, that the
term linear response regime usually indicates a linear relation
between current and driving force. At low temperatures,
linearization of the Boltzmann equation requires a small drive,
as the difference δf between the equilibrium distribution f 0

and the nonequilibrium distribution f 0 + δf needs to be small.

FIG. 1. (Color online) Sketch of typical momentum distribution
functions f (k) in equilibrium [f 0; (blue) line with crosses] and out
of equilibrium [f 0 + δf ; solid (purple) line]. (a) A typical linear
response setup at low temperature or low entropy. The nonequilibrium
distribution is slightly displaced to positive momenta, e.g., due to an
external force. (b) The regime of interest in this paper (high entropies
and large fields). Here, the displacement to positive momenta is large.
Nevertheless, the difference δf between the equilibrium distribution
f 0 and the nonequilibrium distribution still remains small. In both
situations, linearization of the Boltzmann equation is possible.
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Our linearization around maximum entropy still requires δf

to be small, but it does not need to be linearly related to the
driving force when it is close enough to maximum entropy.
This situation is sketched in Fig. 1. We can therefore model the
nonlinear response regime while simultaneously linearizing
the Boltzmann equation, which is one of the central ideas in
this paper.

We use our method to model the damping of Bloch
oscillations, where the current oscillates as a response to a
constant drive. We also model an interacting atomic cloud
in a tilted optical lattice and derive a stroboscopic diffusion
equation that describes its long-time dynamics. This regime is
particularly relevant for ultracold fermionic atoms in optical
lattices that are currently only realizable at high temperatures
relative to the bandwidth in an optical lattice [4], justifying the
high-entropy approximation.

This paper is organized as follows. In Sec. II we introduce
our variational approach, leading to a set of coupled differential
equations for the currents and densities. From those, we
derive hydrodynamic equations in Sec. III in the limit of
strong damping, showing agreement with the conventional
variational approach. We specialize our equations to the case
of interacting fermions and incoherent bosons in Sec. IV,
where we derive expressions for the relevant scattering matrix
elements. Readers primarily interested in physical results
rather than the formalism may proceed to Sec. V, where we
derive an analytic theory for the damping of Bloch oscillations
at weak to intermediate interactions, including damping rates
and interaction-induced frequency shifts. We also compare
our analytical theory against a numerical simulation of the
Boltzmann equation. Finally, in Sec. VI, we study the spatially
inhomogeneous problem of an interacting, Bloch-oscillating
cloud in an optical lattice. Here, we derive an approximate
stroboscopic diffusion equation, which we solve asymptoti-
cally using a scaling ansatz.

II. THE BOLTZMANN EQUATION AT HIGH ENTROPIES

We start from the Boltzmann equation. It describes the
time evolution of a phase-space distribution function f (r,k,t),
involving momentum k, position r, and time t . The left-hand
side of the Boltzmann equation describes the noninteracting,
semiclassical motion and involves a force F and a group
velocity vk. The right-hand side takes collisions into account
and consists of a collision functional I c

k [f ], which we leave
unspecified for the moment. The Boltzmann equation is given
by

∂tf + vk · ∇rf + F · ∇kf = −I c
k [f ]. (1)

Throughout this text, we consider simple cubic lattices with
nearest-neighbor hopping, where we set the lattice constant a

to 1. This results in the following periodic dispersion:

εk = −2J

d∑
i=1

cos(ki). (2)

Above, d is the dimension of the momentum space. The
periodic energy-momentum relation is crucial to our approach;
it emerges from the quantum-mechanical solution of lattice
particles and plays an important role for ultracold atoms in

optical lattices. The corresponding group velocity vk = ∇kεk
is also a nonlinear, periodic function of the quasimomentum,

vk = 2J

⎛
⎜⎝sin(k1)

...
sin(kd )

⎞
⎟⎠. (3)

This specifies the Boltzmann equation for the moment; we
study a specific collision functional in Sec. IV and thereafter.
The semiclassical momentum distribution function fk(r,t)
allows us to calculate several observables. In particular, the
particle density n, kinetic energy density e, current j, and heat
current h (or kinetic energy current) are obtained from the
following formulas:

n(r,t) =
∫

dk fk(r,t)/(2π )d,

e(r,t) =
∫

dk εkfk(r,t)/(2π )d,

(4)

j(r,t) =
∫

dk vkfk(r,t)/(2π )d,

h(r,t) =
∫

dk εkvkfk(r,t)/(2π )d .

Here and in the following, the momentum integral is taken
over the Brillouin zone Bd ∼ [−π,π ]d with periodic boundary
conditions, and the integration measure is dk = ∏d

i=1 dki . For
notational convenience, we sometimes suppress the depen-
dence of the distribution function on r and t and write fk for
fk(r,t). Our goal is to find an approximate solution for fk.

Let us, furthermore, specify the regime of interest. We
assume that our distribution function is close to constant in
the Brillouin zone:

fk(r,t) = n(r,t) + δfk(r,t),
(5)

max
k∈Bd

|δfk(r,t)| � 1.

Formally, the expression in the second line above will be our
perturbative expansion parameter. As a consequence,

e � 4dJ, (6)

and hence the kinetic energy is close to the center of the
band, which corresponds to maximal entropy. Therefore, our
expansion can be thought of as a high-entropy expansion.
Typical distribution functions in this regime are sketched in the
right plot in Fig. 1, while typical distributions at low entropy
in the linear response regime are shown at the left. The plot
expresses the fact that linearization at a high entropy can be
valid even when driving fields are large and the response is
nonlinear.

The first step in our approach is the linearization of the
Boltzmann equation in the deviations δf from equilibrium.
Using Eq. (5), we find

I c
k [n+ δf ] = I c

k [n] +
∫

k′

dk
(2π )d

M(n)kk′δfk′ + O(δf 2), (7)

where M(n) is the matrix of the linearized collision functional,
acting in momentum space. We stress that M is a nontrivial
operator, even in the limit of maximal entropy, which becomes
clear in Sec. IV, where we specialize our approach to a specific
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collision integral. As the constant distribution function n(r)
is an equilibrium distribution at maximal entropy for any
collision functional, we have I c

k [n(r)] = 0. Furthermore, the
matrix of the linearized collision functional has two important
properties: it conserves the particle number and kinetic energy:∫

k′
dk′ Mkk′n = 0,

∫
k′

dk′ Mkk′εk′ = 0. (8)

Because of the first identity, the linearized Boltzmann equation
reads

∂tf + vk · ∇rf + F · ∇kf = −M(n(r,t)) · f, (9)

where “·” denotes the matrix product. Note that due to the
dependence of M on the local density n, the above equation
is still a nonlinear equation in f . This equation is the starting
point of our further investigation.

Since we have to deal with many momentum integrals and
convolutions in this paper, it turns out to be convenient to
introduce some notation. We define a scalar product in the
space of real, periodic functions of k in the Brillouin zone Bd

as

〈fk|gk〉 := 1

(2π )d

∫
dk fk gk. (10)

Our goal is to truncate the linearized Boltzmann equation to
a minimal set of modes that captures the essential physics.
Focusing on the nonequilibrium transport of mass and energy,
we write the following minimal ansatz:

fk(r,t) = n(r,t) + e(r,t)
2J 2d

εk + j(r,t)
2J 2

vk + h(r,t)
6J 4

εkvk. (11)

It involves the variational parameters n(r,t), e(r,t), j(r,t), and
h(r,t), which are in fact functions of the spatial coordinate r
and time t . One should stress that the above ansatz for the
nonequilibrium distribution function is very common in a
linear response setup, where these parameters are assumed to
be constant [1], giving rise to nontrivial thermoelectric effects.
Yet our approach will allow them to vary in time, giving rise
to nonlinear response effects.

Using the above scalar product and the above ansatz, it is
straightforward to verify that

n = 〈1|fk〉, e = 〈εk|fk〉,
(12)

j = 〈vk|fk〉, h = 〈εkvk|fk〉.
Hence, the coefficients n, e, j, and h are exactly the particle
density, kinetic energy, mass, and kinetic energy currents,
respectively. Above, we have made use of the following
integral identities:∫

dk
(2π )d

ε2
k = 2J 2d,

∫
dk

(2π )d
vi

kvj

k = 2J 2δij

(13)∫
dk

(2π )d
ε2

kvi
kvj

k = 6J 4δij ,

which explains the choice of numerical prefactors in Eq. (11).
Is is worth mentioning that the conventional variational

approach would follow a different strategy from this point
on, which we sketch in the next section. Here, we project the
linearized Boltzmann equation, (9), onto the mode functions

of our variational ansatz:

〈1| (∂t + vk∇r + F∇k) fk〉 = 0,

〈εk| (∂t + vk∇r + F∇k) fk〉 = 0,
(14)〈vk| (∂t + vk∇r + F∇k) fk〉 = −〈vk|M|fk〉,

〈εkvk| (∂t + vk∇r + F∇k) fk〉 = −〈εkvk|M|fk〉.
Above, |1〉 denotes the constant function in momentum
space. We have used that the scattering terms vanish for the
particle number and energy modes, i.e., 〈1|M|fk〉 = 0 and
〈εk|M|fk〉 = 0, as discussed above. Using the ansatz Eq. (11),
Eq. (13), and the orthogonality of the different momentum
modes allows us to reformulate those equations. In fact,
we arrive at a set of coupled differential equations for the
coefficients n, e, j, and h:

ṅ + ∇rj = 0,

ė + ∇rh − Fj = 0,
(15)

j̇ + 2J 2 ∇rn + F e = −M11j − M12h,

ḣ + 3

d
J 2 ∇re = −M21j − M22h.

This calculation is presented in Appendix A. Equation (15)
is one of the central results of this paper. Above, we used the
following d × d matrices:

M11 = 1

2J 2
〈vk|M

∣∣vT
k

〉
, M12 = 1

6J 4
〈vk|M

∣∣εkvT
k

〉
,

M21 = 1

2J 2
〈εkvk|M

∣∣vT
k

〉
, M22 = 1

6J 4
〈vk|M

∣∣εkvT
k

〉
.

The first two Eqs. (15) are nothing but the continuity equations
for the particle and kinetic energy density, respectively. The
source term Fj in the kinetic energy continuity equation
corresponds to Joule heating. The third and fourth equations,
in contrast, describe the dynamics of the particle and heat
current, respectively. In contrast to the previous two modes,
those modes are damped by the scattering matrix elements.
In the remainder of this article, we study different limits of
these equations. To begin with, we show that they describe
hydrodynamics as a limiting case.

III. THE HYDRODYNAMIC LIMIT

First, we demonstrate that our ansatz captures hydrodynam-
ics at high entropies as a limiting case. In the hydrodynamic
limit, the Boltzmann equation is reduced to coupled equations
for the particle density n(r,t) and kinetic energy density e(r,t).
The number of coupled hydrodynamic equations is determined
by the number of conservation laws (here, particle number
and energy). We consider the case where momentum is not
conserved, e.g., due to Umklapp scattering processes. The
hydrodynamic limit amounts to expressing j and h in terms of
gradients of n and e. As the currents passively follow those
gradients, their own dynamics can be thought of as overdamped
(no retardation). We show now that this picture is indeed
correct: in setting the time derivatives of j and h to 0, we
derive the hydrodynamic equations in the high-temperature
(high-entropy) limit.
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We begin by setting the time derivatives of j and h in
Eq. (15) to 0. The particle and heat currents in the diffusive
limit are hence a solution to the inverse problem,(

2J 2 ∇rn + F e

3
d
J 2 ∇re

)
= −

(
M11 M12

M21 M22

)
·
(

j

h

)
. (16)

Those equations can be solved for j and h and, in combination
with the continuity equations, form a closed set of equations
for n and e.

We now sketch how to produce the same result using
the conventional variational approach. There, the diffusive
currents are calculated from the linearized Boltzmann equa-
tion, (9), in decomposing f = f 0(n,e) + δf , where δf is
assumed to be a small deviation from equilibrium. Neglecting
the time derivative and δf on the left-hand side yields a relation
structurally similar to Eq. (16):

(vk∇r + F∇k)f 0 = −M · δf. (17)

We use our variational ansatz, (11), for f and decompose it into
f 0(n,e) = n + e εk/(2J 2d) and δf = f − f 0 = jvk/(2J 2) +
hεkvk/(6J 4). One can easily check that f 0 approximates the
Fermi function to leading order in e; see also Ref. [5]. Using
this decomposition, Eq. (17) becomes

(∇rn + eF)vk + ∇re εkvk

= −M ·
(

j(r,t)
2J 2

vk + h(r,t)
6J 4

εkvk

)
. (18)

This equation gives exactly Eq. (16) if we project it onto
the modes vk and εkvk and use Eq. (13). We have just
demonstrated that using the conventional variational approach
at high entropies yields the same result as obtained from our
new method, where we manually set the time derivatives of j
and h to 0. For more details on hydrodynamics at high energies
in this setup, see also [5]. We show below that our method is not
limited to the diffusive regime but models nonlinear transport
as well.

IV. WEAKLY INTERACTING FERMIONS AND
INCOHERENT BOSONS

For the remainder of the paper, we concentrate on in-
terparticle scattering. We consider fermions and incoherent
bosons. We study the semiclassical Boltzmann equation for
two-particle scattering processes due to its relevance for
ultracold atoms in optical lattices. This allows us to calculate
the scattering elements Mij that fully specify Eq. (15).

The fermionic Boltzmann equation can be derived from the
Hubbard model in the presence of a linear potential:

HF = −J
∑
〈ij〉,σ

c
†
iσ cjσ + U

∑
i

ni↑ni↓ + g
∑

i

rini . (19)

Similarly, a bosonic Boltzmann equation can be derived from
the Bose-Hubbard model:

HB = −J
∑
〈ij〉

b
†
i bj + U

∑
i

ni(ni − 1) + g
∑

i

rini . (20)

In second-order perturbation theory in U/J , the result-
ing Boltzmann equations have the following collision

integral:

I c
k [f ]=2πU 2

∫
dk1

(2π )d
dk2

(2π )d
dk3

(2π )d

× [
fkfk1 f̄k2f̄k3 − f̄kf̄k1fk2fk3

]
× δ(k + k1 − k2 − k3 mod G) δ

(
εk + εk1 − εk2 − εk3

)
.

(21)

Fermionic and bosonic statistics enter via the following factors,
describing Pauli blocking and Bose enhancement:

f̄ki
=

{
(1 + fki

) for bosons;
(1 − fki

) for fermions. (22)

In the case of fermions, we assumed a homogeneous mixture
of spins for simplicity, and hence the distribution function
fk = fk↑ = fk↓ describes one spin component.

A systematic derivation of the Boltzmann equation from
an underlying quantum Hamiltonian can be found, e.g., in
Refs. [6–9]. This derivation is based on several approximations
including weak interactions and slowly varying gradients and
external potentials. In order to justify the real-space basis rather
than a description in terms of Wannier-Stark states, we have
to assume that the external potential V (r) = g · r is weak.
The semiclassical model still captures the physics of Bloch
oscillations due to the periodicity of the kinetic energy εk and
group velocity vk in k.

Our theory is based on the Boltzmann equation, (21). We
do not aim to describe anything beyond its range of validity.
The Boltzmann equation can, of course, only capture parts
of the rich physics described by the Hubbard model. Many
physical effects that involve strong interactions and quantum
coherence are lost. In particular, we treat bosons essentially as
classical particles with Bose statistics, and hence in this case,
our approach can only describe an incoherent, highly entropic
Bose gas. For fermions, we cannot describe any ordered state.
The fermionic Boltzmann equation was quantitatively tested as
a means to model ultracold atoms in optical lattices in Ref. [3],
where good agreement was found.

In the collision integral, (21), we took Umklapp scattering
into account, which is crucial. Umklapp scattering processes
are scattering events that violate momentum conservation
but satisfy momentum conservation modulo reciprocal lattice
vectors G. This can be thought of as a momentum transfer to
the lattice. Umklapp scattering breaks translational invariance
and favors equilibration into the frame of reference set by
the lattice. This is necessary to have finite conductivities and
scattering matrix elements in a clean and defect-free lattice.

We now use the standard methodology of computing matrix
elements of the linearized collision integral [1]. To simplify
the notation, we define

φi
k =

{
vi

k, 1 � i � d;
εkvi−d

k , d < i � 2d.
(23)

We expand the collision integral around its maximum entropy
equilibrium solution n(r,t). From Eq. (7) we derive the
following formula for the matrix elements:

〈
φi

k

∣∣M∣∣φj

k

〉 = ∂

∂ε

∣∣∣∣
0

〈
φi

k

∣∣I c
k

[
n + εφ

j

k

]〉
. (24)
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The resulting matrix elements are〈
φi

k

∣∣M∣∣φj

k

〉
= 2πU 2

4
n(1 ± n)

∫
dk0

(2π )d
dk1

(2π )d
dk2

(2π )d
dk3

(2π )d

× (
φi

k0
+ φi

k1
− φi

k2
− φi

k3

) (
φ

j

k0
+ φ

j

k1
− φ

j

k2
− φ

j

k3

)
× δ(k0 + k1 − k2 − k3 mod G) δ

(
εk0 + εk1 − εk2 − εk3

)
.

(25)

The fermionic scattering rate is proportional to n(1 − n),
which reflects particle-hole symmetry. The bosonic one is
proportional to n(1 + n), which captures Bose enhancement.

The resulting integrals can be computed numerically. Below
we calculate them analytically for a one-dimensional discrete
Boltzmann equation. Our analysis implies that certain off-
diagonal scattering matrix elements are strictly 0:〈

εkvi
k

∣∣M∣∣vj

k

〉 = 〈
vi

k

∣∣M∣∣εkvj

k

〉 = 0 (26)

for all i,j ∈ {1, . . . ,d}. This can be seen by translating all
momenta in the integral in Eq. (25) by π . This transformation
leaves the δ constraints and the heat current modes εkvk
invariant. In contrast, the particle current mode changes sign,
vk → −vk, which is why the integral is 0. This implies that
thermoelectric effects vanish at maximal entropy, which is
usually not the case at low temperatures.

The second property is that, by symmetry, the current-
current scattering matrix is of the shape (shown here for d = 3)

1

2J 2
〈vk|M|vk〉 = 2

⎛
⎜⎝τ−1

d τ−1
o τ−1

o

τ−1
o τ−1

d τ−1
o

τ−1
o τ−1

o τ−1
d

⎞
⎟⎠; (27)

i.e., the matrix decomposes into diagonal scattering rates τ−1
d

and off-diagonal scattering rates τ−1
o which are all identical.

These two properties are important in the following analysis.
In the following, we apply our approach to two nontrivial

examples and derive novel results: the damping of Bloch
oscillations due to interactions in a spatially homogeneous
system and the expansion of a cloud of fermions or incoherent
bosons in a tilted lattice subject to Bloch oscillations, which
we term stroboscopic diffusion.

V. DAMPING OF BLOCH OSCILLATIONS

We now use our approach to model the damping of
Bloch oscillations in the Hubbard model. We assume that
the conditions for its semiclassical treatment in terms of the
Boltzmann equation apply.

Bloch oscillations emerge in lattice systems that are
exposed to an additional linear potential. Without interactions,
they are captured already by the semiclassical equations of
motion ṙ = vk and k̇ = F. Those equations can easily be
integrated, yielding a linearly growing momentum k = k0 +
Ft . The periodic group velocity vk(t) imposes an oscillatory
motion of the position space variable r(t). It is an interesting
question to ask how this behavior changes in the presence of
interparticle interactions.

Bloch oscillations belonged to the pioneering observations
with ultracold atoms in optical lattices [10,11]. They were first
predicted for electrons in periodic potentials by Bloch [12].
The difficulty in observing Bloch oscillations in regular solids
lies in the fast time scale of scattering on impurities, phonons,
lattice defects, or other electrons, relative to the driving
strength. Besides ultracold atoms, there are more quantum
systems that show these oscillations, among which are semi-
conductor superlattices [13] and optical waveguide arrays [14].

The damping of Bloch oscillations has been observed
in experiments with ultracold atoms [15], and it has been
studied theoretically in many physical realizations [16–25].
For various fermionic lattice models, the damping of Bloch
oscillations has been studied numerically using dynamical
mean-field theory [17,18,24,25].

At this point, let us address an important aspect of the driven
Hubbard model and the corresponding Boltzmann equation.
Both models describe thermally isolated systems: all Joule
heating that is generated by the current remains in the system.
Also, ultracold atoms in optical lattices are thermally isolated.
Therefore, they realize the Hubbard model better than electrons
in solids, which are coupled to a bath. When being driven by a
constant force, the fermions in a lattice monotonously heat up.
The system in the long-time limit is therefore in a maximum
entropy state, characterized by a flat momentum distribution
and a vanishing current.

Eckstein and Werner simulated damping of Bloch oscil-
lations and heating in the fermionic Hubbard model by an
electric field numerically [24]. For weak interactions, they
found the current to oscillate with an exponentially decaying
amplitude. For stronger interactions, these oscillations were
found to become overdamped, and the current was found to
decay exponentially. Below, we present an analytic theory
of the damping of Bloch oscillations, showing the same
phenomena.

Buchleitner and Kolovsky [19] studied bosonic atoms in a
homogeneous lattice that were initially in the superfluid phase,
using a lattice Gross-Pitaevskii equation. They showed the
irreversible decay of Bloch oscillations by interactions. This
approach is different from ours: for bosons, we consider a fully
incoherent system at high entropy. This allows us to use the
Boltzmann equation.

In this section we consider a homogeneous system. Homo-
geneity implies the absence of all spatial gradients in Eqs. (15).
Due to the anisotropy of the lattice, the direction of the constant
force also matters. As in other studies on this topic [17,24],
we consider a setup in which the force points into the lattice
diagonal,

F = F 1 = (F,F, . . . ,F )T︸ ︷︷ ︸
d

. (28)

As discussed above, the absence of thermoelectric effects close
to maximal entropy leads to a decoupling of the velocity and
heat current modes via scattering. Due to the structure, (27),
of the current-current scattering matrix, it is enough to
parametrize j = j 1 and study the two coupled equations,

ė − F j = 0,
(29)

j̇ + F e = −2τ−1 j,
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where

τ−1 = τ−1
d + (d − 1)τ−1

o . (30)

Equations (29) can be combined into the following second-
order differential equation:

j̈ = F 2 j − 2τ−1 j̇ . (31)

This is nothing but the equation of the classical damped
harmonic oscillator, which is solved by

j (t) = e−t/τ [A exp(t
√

τ−2 − F 2)

+B exp(−t
√

τ−2 − F 2)] (32)

for arbitrary constants A and B. We have thus mapped the
damping of the kinetic energy in the Hubbard model in
the presence of a constant force to the classical harmonic
oscillator. Note that the oscillator frequency (which is the
Bloch frequency ωB for F > τ−1) depends on the scattering
rate,

wB =
√

F 2 − τ−2, (33)

and that it goes to 0 at F = τ−1. This critical value of F

separates overdamped from underdamped Bloch oscillations.
In the overdamped limit, Fτ � 1, we can approximate the

square root in the full solution, Eq. (32), as√
1/τ 2 − F 2 ≈ τ−1

(
1 − 1

2 (τF )2
)
. (34)

Therefore, the velocity and hence also the kinetic energy mode
decay according to

e(t) ≈ e0 exp
(− 1

2 t τ F 2
)
, F τ � 1, (35)

in this limit. The damping rate is hence given by τF 2/2, which
can also be derived from the conventional transport theory
for an isolated system. In the opposite case of strong Bloch
oscillations, F τ  1, the square roots in Eq. (32) become
negative. Equation (32) can be approximated as

e(t) ≈ e0 e−t/τ cos(ωBt), F τ  1. (36)

Most prominently, the oscillations decay exponentially at
the rate τ−1. Note that this result cannot be obtained from
conventional transport theory, as the response of the induced
currents to the driving field is highly nonlinear (namely,
oscillatory) in this limit. Finally, in the marginal case of
Fτ = 1, Bloch oscillations get critically damped. For the
initial condition e(0) = e0 and ė(0) = 0, the dynamics of the
kinetic energy mode is given by

e(t) = (e0 + e0t/τ ) e−t/τ , F τ = 1, (37)

which contains corrections to a purely exponential decay of
the energy mode. Note that this limit is highly nonperturbative
in the ratio τF .

Comparison with Boltzmann simulations

We compare our analytic results for the damping of Bloch
oscillations to a simulation of the Boltzmann equation. We
simulate a discrete version of the one-dimensional Boltzmann
equation with a collision integral, (21), as a toy model. This
is a computationally tractable model that also allows us to
calculate the scattering matrix elements analytically. Note that

it does not capture the physics of the one-dimensional Hubbard
model due to the integrability of the latter.

Abbreviating fi = fki
, the equation reads

ḟi + F
fi+1 − fi−1

2
k
= I [f ]ki

. (38)

This involves the discrete collision integral

I [f ]k = −U 2

J

1

N

∑
k1,k2,k3

δ
(
εk + εk1 − εk2 − εk3

)
× (

fkfk1 f̄k2 f̄k3 − f̄kf̄k1fk2fk3

)
× δ(k + k2 − k2 − k3 mod π ). (39)

We simulated a fermionic system:

f̄ki
= (1 − fki

). (40)

The momenta k1, k2, and k3 in the sum run over the N

discrete values {−1 + 1
N

,−1 + 3
N

, . . . ,−1 + 2N−1
N

} × π . The
δ symbols denote discrete Kronecker δ constraints.

As in our previous studies [3,5], the presence of Umklapp
processes is crucial to ensure equilibration to the fixed frame
of reference of the lattice. The distribution function fk was
initially prepared as a Fermi function at T = J , a typical
temperature for current experiments with ultracold fermionic
atoms.

For our discrete one-dimensional Boltzmann equation, the
matrix elements that lead to a relaxation of the current-current
mode, (25), can be calculated analytically. The calculation
is shown in Appendix B. For a large number of discrete
momenta N , the matrix element is

τ−1 = 〈vk|M|vk〉 ≈ 4 n(1 − n) U 2 J. (41)

We considered the fermionic case; the bosonic case yields
4 n(1 + n) U 2 J (see Appendix B). This formula for the
scattering rate concludes our analytic result.

We now compare our simple analytic theory with the nu-
merical simulation of the discrete one-dimensional Boltzmann
equations, (38) and (39). We consider the case n = 1/2, for
which we have τ = 4 J/U 2.

Figures 2, 3, and 4 show the cases of overdamped,
underdamped, and marginally damped Bloch oscillations,
respectively. While the dashed (red) lines show the numerical
simulations, Eqs. (38) and (39), the solid black lines show
the analytic predictions given by Eqs. (35), (36), and (37),
respectively. As for the initial conditions, we adjusted the
initial kinetic energy e0 to be the same for both methods
and chose ė(0) = 0. As the analytic formulas depend only
on the force F and on the calculated damping rate τ−1, no
fitting parameters were involved. Surprisingly, the analytic
formulas describe the complex dynamics of the Boltzmann
equation extremely well, despite the fact that they are based
on a high-entropy expansion.

The weakly damped and overdamped regimes of Bloch
oscillations have also been observed numerically for the
Hubbard model by Eckstein and Werner [24], using dynamical
mean-field theory. Just as in our case, they found a transition
from overdamped to underdamped Bloch oscillations. Our
mapping of the problem to the harmonic oscillator equa-
tion might give an analytic explanation for the numerically
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FIG. 2. (Color online) Overdamped Bloch oscillations of the
kinetic energy at filling 1/2. We compare a full numerical simulation
[dashed (red) curve] of the Boltzmann equation, (38), with our
analytic result from Eq. (35) (solid black curve). The parameters are
U/J = 4 (yielding τ = 0.25/J ) and F = 0.4J such that Fτ = 0.1.

observed transition. While we are not able to capture the
regime of strong interactions and strong drive, we are able
to treat the case of weak-interaction-induced damping. For
a quantitative comparison, one would have to compute the
corresponding scattering matrix elements in the limit of infinite
spatial dimensions.

We now proceed to a second application of our variational
approach.
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FIG. 3. (Color online) Underdamped Bloch oscillations of the
kinetic energy at filling 1/2. Dashed (red) curve: numerical simulation
of the Boltzmann equation, (38), for the parameters U/J = 1
(yielding τ = 4/J ) and F = 2.5J , such that Fτ = 10 gives rise to
the regime of weak damping. Solid black curve: analytic result from
Eq. (36).
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FIG. 4. (Color online) Marginally damped Bloch oscillations of
the kinetic energy at filling 1/2. Dashed (red) curve: numerical
simulation of the Boltzmann equation, (38), for the parameters
U/J = 1 (yielding τ = 4/J ) and F = 0.25J , such that Fτ = 1 gives
rise to the marginal case. Solid black curve: analytic result from
Eq. (37).

VI. AN INTERACTING, BLOCH OSCILLATING CLOUD
IN A TILTED LATTICE

We now consider a generalization of the problem of damped
Bloch oscillations in a spatially inhomogeneous situation. The
dynamics of a finite cloud of bosons or fermions in a tilted
lattice is an interesting problem with relevance for ultracold
atoms in optical lattices.

In the regime where the potential energy difference between
neighboring lattice sites is weaker than the scattering rate,
Fτ � 1 (note that we set the lattice constant and � to 1), this
problem can be studied in terms of coupled hydrodynamic
equations for particle and energy densities, which was done in
Ref. [5]. Here, we are interested in the regime of strong Bloch
oscillations, Fτ  1, where the conventional hydrodynamic
ansatz breaks down. For bosons, this problem was studied by
Kolovsky et al. [23], using the Gross-Pitaevskii framework,
and we comment on the connection to our work below. Strong
driving is a challenging problem which usually has to be
studied using the full Boltzmann equation, but it turns out that
our variational method can be used to approximately solve this
problem at high entropies.

In this section, we consider a quantum gas at low densities
n, such that we approximate

n(1 − n) ≈ n(1 + n) ≈ n. (42)

Hence, both fermionic and bosonic particles essentially as-
sume classical statistics and can be treated simultaneously
(again, we assume incoherent, particle-like bosons). Note that
even in this limit, quantum effects are still present and manifest
themselves in the lattice dispersion relation, allowing for Bloch
oscillations.
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FIG. 5. (Color online) Sketch of an interacting, Bloch oscillating
cloud of atoms in a tilted lattice. Without interactions, individual
particles are Bloch localized due to energy conservation and the
bounded kinetic energy. This localization can, however, be lifted
by interparticle scattering. As the scattering rate increases with the
particle density, we can expect fast diffusion in the bulk and slow
diffusion in the tails of the cloud.

A. The physical heuristic

Let us start by developing some physical intuition regarding
this problem. First, note that noninteracting particles in a
tilted lattice are confined in position space. This is due to
energy conservation and the fact that kinetic energies are
bounded in a lattice. As all individual particles are Bloch
oscillating, the cloud’s collective motion is periodic in units of
τB = 2π/F . In contrast, interacting particles can exchange
energies by collisions and, therefore, can explore a much
wider range in position space. Also, collisions between the
particles break the periodicity of the cloud’s collective motion.
At weak interactions, we can expect the cloud to dominantly
Bloch oscillate and slowly diffuse due to scattering events.
We are interested in the stroboscopic motion of the cloud
in units of τB , separating the slow diffusive dynamics of
the cloud from its fast Bloch oscillations. Thus, we may
ask about the corresponding diffusion constant Dstrob and its
dependence on the local densities and system parameters. For
the semiclassical limit of the Hubbard model at high energies
and low densities, we have shown before that the scattering rate
satisfies τ−1(n) = τ−1

0 n for some constant τ0. As scattering
enhances the rate of diffusion, we can expect the diffusion
constant to be proportional to the scattering rate,

Dstrob(n) ∼ n/τ0. (43)

Note that this is in stark contrast to the conventional diffusion,
where the diffusion constant Dconv is proportional to the
scattering time,

Dconv(n) ∼ τ0/n; (44)

see also Refs. [3] and [5]. Hence, we expect an inverse
dependence of the diffusion constant on the scattering rate:
scattering enhances stroboscopic diffusion, whereas it slows
down diffusion conventionally. This heuristic is illustrated in
Fig. 5. Our goal in this section is an approximate derivation
and asymptotic solution of the stroboscopic diffusion equation,
involving an explicit form of the diffusion constant.

B. Derivation of stroboscopic diffusion

In the following, we are aiming for an approximate analytic
solution of the expansion problem. Again, we assume that
the force points in the diagonal direction of the lattice,

F = F (1,1, . . . ,1)T . As in Ref. [5], we assume the cloud
to be translationally invariant in the perpendicular direction.
Equations (15) reduce to

ṅ + ∇j = 0,

ė + ∇h − F j = 0,
(45)

j̇ + 2J 2∇n + F e = −τ−1
j j,

ḣ + 3J 2

d
∇e = −τ−1

h h.

We assume two distinct scattering rates 1/τj and 1/τh for
the damping of the particle and kinetic energy currents, re-
spectively. Note that those equations already break a complex
integrodifferential equation (the Boltzmann equation) down to
four coupled partial differential equations in position space.
Equations (45) are still a rich and complicated set of coupled
equations. We cannot expect to be able to derive a single
equation for particle density alone in a rigorous way, without
neglecting parts of the physics. We can nevertheless attempt to
find an approximate equation capturing the dominant effects,
involving several truncations. For the sake of clarity we give a
summary of the following steps:

(1) We first study the system where the scattering rates
1/τj and 1/τh are constants. This makes the equations linear.

(2) We allow for complex solutions. Due to linearity, the
real and imaginary parts are separate solutions.

(3) We approximate j in terms of n and e, which results in
only three coupled equations.

(4) We average over the fast time scale of Bloch oscilla-
tions. This decouples the dynamics of n and e,h. We construct
a real equation.

(5) We finally substitute τj → τj (n) and τh → τh(n) in
our simplified equations. These equations describe the strobo-
scopic dynamics of n(x,t).

As we are interested in the strongly Bloch-oscillating
regime, we expect the current mode j to dominantly oscillate
at frequency F . Therefore, we substitute

j (x,t) = eiF t j̃ (x,t). (46)

We assume that the dynamics of j̃ is much slower; it describes
the spatial envelope of the oscillating current mode. After the
substitution, the equation for j in Eq. (45) reads

˙̃j + iF j̃ + 2J 2e−iF t∇n + F e−iF t e = −τ−1
j j̃ . (47)

This equation contains drive and damping; we expect the long-
time dynamics to be determined by ˙̃j = 0, which leads to the
asymptotic solution

j ≈
(

1

iF + τ−1
j

)
(−2J 2∇n + Fe). (48)

Above, we have transformed j̃ back to j . Note that the limit
Fτ � 1 yields the current in the conventional hydrodynamic
limit at high energies; see, e.g., Ref. [5]. However, as we are
interested in the opposite limit of Fτ  1, we use 1/(iF +
τ−1
v ) ≈ −i/F − τ−1

j /F 2 to approximate

j ≈ −ie + 2J 2τ−1
j

F 2
∇n − τ−1

j

F
e + 2iJ 2F−1∇n. (49)
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The first term expresses the fact that, without interactions,
current and kinetic energies are related by the momentum shift
of π/2; hence Bloch oscillations convert j into e periodically
in time, and vice versa [see also Eq. (51)]. The second term
expresses a real diffusive contribution to the current that
will be crucial. The third term describes the damping of the
current mode due to scattering, and the last term gives another
imaginary contribution to the current that we discard in the
following. As this truncation is done at the level of the current,
the continuity equations still guarantee the conservation of
energy and particle number.

Using our approximate result for the particle current,
Eq. (45) simplifies to

ṅ + ∇ 2J 2τ−1
j

F 2
∇n = i∇e,

ė + ∇h − τ−1
j e + iF e = −2J 2τ−1

j

F
∇n, (50)

ḣ + 3J 2

d
∇e = −τ−1

h h.

In the absence of spatial gradients, the second equation
describes the damping of Bloch oscillations in the kinetic
energy,

ė − τ−1
j e + iF e = 0 + O(∇n,∇h), (51)

which leads to a rapidly oscillatory motion of the kinetic
energy. The kinetic energy therefore has the approximate
solution e(x,t) ∼ e0(x)e(iF−τ−1)t . Therefore, the gradient of
the kinetic energy in Eq. (50) averages out in time. This
approximation is similar to the rotating-wave approximation
in quantum optics. Hence, particle diffusion approximately
decouples from energy diffusion:

ṅ + ∇ 2J 2τ−1
j

F 2
∇n ≈ 0. (52)

This is the approximate stroboscopic diffusion equation we
were looking for. We now study the corresponding system
with a density-dependent diffusion constant, where τ (n) =
τ0/n. Defining Dstrob

0 = 2J 2/(F 2τ0), this equation can also be
written as

ṅ = Dstrob
0 ∇ (n∇n) . (53)

It is important to realize that, asymptotically, decoupling
particle and energy diffusion in this limit does not violate any
conservation laws, as it would in Ref. [5]. Let us consider the
long-time limit, where all local kinetic energies have already
been damped to 0. The potential energy balance is still satisfied
due to

Ėpot =
∫

gx ṅ(x,t)

= 1

2

∫
gx Dstrob

0 ∇2n(x,t)2

= 1

2

∫
g(∇2x) Dstrob

0 n(x,t)2 = 0, (54)

where we have used partial integration. We now present an
asymptotic analytic solution of Eq. (53).

FIG. 6. (Color online) Numerical solution of Eq. (53) plotted
against the scaling function G[x]. The simulated particle densities
n(x,t) were rescaled as t1/3n(xt1/3,t) and plotted as a function of
x for different times t = 1, 5, 25, and 50. The plot reveals that the
numerical solutions n assume the shape of the scaling function G[x]
upon rescaling at long times.

C. Scaling solution

As a final step, let us use a scaling (“Barenblatt”) ansatz to
obtain an asymptotic solution; see also [5] and [26]. We use
the following ansatz for the particle density:

n(x,t) = 1

tα
G[x/tα]. (55)

We absorb Dstrob
0 into the time variable, making Eq. (53)

dimensionless. Combining the latter with the above scaling
ansatz and substituting x by z = x/tα yields

0 = −t−1−ααG[z] − t−1−αzαG′[z]

− t−4αG′[z]2 − t−4αG[z]G′′[z]. (56)

The exponent of the time variable in the first term, coming from
the time derivative, has to match the remaining terms with the
slowest decay in time. It is actually possible to match all terms
by setting α = 1/3. This result implies that the expansion is
subdiffusive.

Let us now calculate the scaling function. Setting α = 1/3
in Eq. (56) yields the ordinary differential equation,

G[z] + zG′[z] + 3G′[z]2 + 3G[z]G′′[z] = 0. (57)

A solution to this equation is given by

G[z] = max{C0 − z2/6 , 0}, (58)

where C0 is an arbitrary constant. In order to compare the
scaling solution to our nonlinear diffusion, Eq. (53), we
simulated the latter numerically, starting from a normalized
Gaussian at time 0. In Fig. 6 we compare the rescaled
density profiles t1/3n(x t1/3,t) with the scaling function G[x].
We chose C0 = 31/3/25/3 ≈ 0.4543, which normalizes the
integral of the scaling function to 1. Figure 6 shows that the
rescaled densities assume the shape of G[z] at long times
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upon rescaling. This demonstrates the validity of the scaling
law x ∼ t1/3 and the shape of the scaling function.

Kolovsky et al. [23] also studied a Bloch-oscillating
bosonic cloud and approximated the many-body Schrödinger
equation by a lattice Gross-Pitaevskii equation, whereas we
use the Boltzmann equation. Interestingly, a similar nonlinear
diffusion equation was derived whose diffusion constant scales
as D ∼ n2/F 2 (we derived D ∼ n/F 2 in this paper). This
led to a scaling law of r ∼ t1/4. Both approximations of the
bosonic Schrödinger equation have been used in the literature;
they correspond to different energy domains of the bosonic
system. For more details we refer the reader to the seminal
work by Gardiner et al. [27] and Zaremba et al. [9].

A subdiffusive scaling relation of x ∼ t1/3 was also found
in Ref. [5], which treated the opposite limit of Fτ � 1
(overdamped Bloch oscillations). Note, however, that the
shape of the scaling function was different. The scaling
analysis was carried out for a coupled set of hydrodynamic
equations for the particle end kinetic energy density. Here, we
heuristically derived the same scaling behavior in the regime
of underdamped Bloch oscillations. An expanding cloud in an
optical lattice with initially overdamped Bloch oscillations will
eventually enter the regime of underdamped Bloch oscillations
as densities decrease, and hence scattering rates decrease
over time. Our analysis suggests that both scaling exponents
are the same and that the scaling law will continue even
when the cloud undergoes the transition between those two
regimes.

VII. SUMMARY

We have developed a new variational approach to solve
the Boltzmann equation at high entropies for tight-binding
systems. Our approach holds far beyond linear response;
it is based on the linearization of the Boltzmann equation
around a constant (maximum entropy) solution. It leads to
a minimal set of coupled dynamic equations for momentum
mode occupancies.

First, we have shown that in the limit of high scattering rates,
the conventional hydrodynamic equations can be recovered.
Then we have presented two physical applications. (i) We have
studied the problem of the damping of Bloch oscillations in
the Hubbard model, which we approximated semiclassically
in terms of a Boltzmann equation. We mapped this problem to

the classical damped harmonic oscillator, providing analytic
solutions for the regimes of weakly damped, overdamped,
and marginally damped Bloch oscillations. For a quantitative
comparison of our analytical results with the underlying
theory, we have studied a one-dimensional discrete Boltzmann
equation to explicitly calculate the relevant scattering rates
and to allow for a full numerical simulation. (ii) We have then
studied the problem of a strongly Bloch-oscillating, interacting
cloud of fermions or incoherent bosons in a tilted lattice. While
this problem was found to be too complex to solve without
truncation, we presented an approximate solution in terms of a
stroboscopic diffusion equation describing the dynamics of the
cloud, time averaged over the fast Bloch oscillations. We have
given a scaling solution for this simplified equation, leading to
the subdiffusive scaling relation x ∼ t1/3.

In the future, it will be intriguing to explore the class of
dynamical problems that can be described in terms of the set
of coupled equations that we derived. As an example, our
variational ansatz might be used to model the crossover from
ballistic to diffusive dynamics of an expanding atomic cloud
in an optical lattice, which cannot be described in terms of a
naive hydrodynamic approach alone.
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APPENDIX A: DERIVATION OF EQ. (15)

We now derive Eq. (15) line by line from Eq. (14). We use
ansatz (11) for f in combination with the integral identities
in Eq. (13) and the orthogonality of the modes 1, εk, vk, and
εkvk under the scalar product, (10). This involves the fact
that the momentum modes εk, vk, and εkvk vanish under the
momentum integral. We also use partial integration (P.I.); note
that there are no boundary terms due to the periodicity of
the Brillouin zone. This allows us to derive the following
identities:

〈1| (∂t + vk∇r + F∇k) fk〉 =
∫

dk
(2π )d

(∂t + vk∇r + F∇k)

[
n(r,t) + e(r,t)

2J 2d
εk + j(r,t)

2J 2
vk + h(r,t)

6J 4
εkvk

]

= ṅ + 1

2J 2

∫
dk

(2π )d
(vk∇r)(j(r,t)vk)

= ṅ + ∇rj. (A1)

〈εk| (∂t + vk∇r + F∇k) fk〉 =
∫

dk
(2π )d

εk(∂t + vk∇r + F∇k)

[
n(r,t) + e(r,t)

2J 2d
εk + j(r,t)

2J 2
vk + h(r,t)

6J 4
εkvk

]

= ė
1

2J 2d

∫
dk

(2π )d
ε2

k + 1

6J 4

∫
dk

(2π )d
εk(vk∇r)(εkvkh) + 1

2J 2

∫
dk

(2π )d
εk(F∇k)(vkj)

P.I.= ė + ∇rh − Fj. (A2)
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〈vk| (∂t + vk∇r + F∇k) fk〉 =
∫

dk
(2π )d

vk(∂t + vk∇r + F∇k)

[
n(r,t) + e(r,t)

2J 2d
εk + j(r,t)

2J 2
vk + h(r,t)

6J 4
εkvk

]

= 1

2J 2

∫
dk

(2π )d
vk(vkj̇) +

∫
dk

(2π )d
vk(vk∇r)n + 1

2J 2d

∫
dk

(2π )d
vk(F∇k)(εke)

= j̇ + 2J 2∇rn + Fe. (A3)

〈εkvk| (∂t + vk∇r + F∇k) fk〉 =
∫

dk
(2π )d

εkvk(∂t + vk∇r + F∇k)

[
n(r,t) + e(r,t)

2J 2d
εk + j(r,t)

2J 2
vk + h(r,t)

6J 4
εkvk

]

= 1

6J 4

∫
dk

(2π )d
εkvk(εkvkḣ) + 1

2J 2d

∫
dk

(2π )d
εkvk(vk∇r)(εke)

= ḣ + 3J 2

d
∇re. (A4)

APPENDIX B: SCATTERING RATES FOR THE DISCRETE
ONE-DIMENSIONAL BOLTZMANN EQUATION

We now calculate the current-current matrix element of
the linearized discrete one-dimensional Boltzmann equa-
tions, (38) and (39) Trivially, scattering processes that simply
exchange the incoming and outgoing momenta satisfy the
energy and momentum constraint, k0,k1 → k1,k0. Obviously,
this process does not lead to a damping of the particle current.
However, as momentum is only defined modulo reciprocal
lattice vectors, Umklapp scattering processes are possible that
relax the currents.

The discrete Boltzmann equation under consideration al-
lows for several scattering processes that conserve the energy
and quasimomentum modulo π and relax the currents. These
kinds of processes apply for very special ingoing and outgoing
states; they are shown in Fig. 7. Consider two particles with
momenta positioned symmetrically around the momentum
π/2 or, alternatively, −π/2. These momentum states, indicated
by open (blue) circles in Fig. 7, have total kinetic energy 0 and

FIG. 7. (Color online) Energy and momentum preserving scat-
tering processes in one dimension. The solid (red) curve shows the
kinetic energy as a function of the momentum. Nontrivial scattering
processes are possible for pairs of momenta that are symmetrically
centered around momentum ±π/2 [open (blue) circles]. They can
scatter in any pair of final momentum states with the same property
(pairs of filled black circles are two examples of a continuum of
possibilities).

total quasimomentum ±π :

k0 + k1 = ±π,
(B1)

εk0 + εk1 = 0.

This class of momentum states can now scatter in any other pair
of momentum states with the same properties (zero energy and
total momentum ±π ). These pairs of momenta are indicated as
filled black circles in Fig. 7. It is important to realize that these
are the only processes that can contribute to the relaxation
of the current. Note that these scattering states are a set of
measure 0 in the continuum theory (which is integrable), but
they deliver a finite contribution to the scattering rates in our
discrete model.

As the first step, we have to calculate the current-current
matrix element of the linearized collision functional, given
in Eq. (25). As we are considering the discrete Boltzmann
equation, we need to compute also the discrete version of this
integral, which is given by

〈vk|M|vk〉 = C0

∑
k0,k1,k2

(
vk0 + vk1 − vk2 − vk0+k1−k2

)2

× δ
(
εk0 + εk1 − εk2 − εk0+k1−k2

)
, (B2)

where C0 = n(1 ± n)U 2/(4 J N2) and δ(ε) = δε,0 is the dis-
crete (Kronecker) δ. The different signs correspond to the
cases of bosons (+) and fermions (−). We already got rid of
one summation by using the Kronecker δ for conservation
of the quasimomentum. Let us further simplify this sum.
Equation (B1) helps eliminate the energy constraint, and it
also implies that vk0+k1−k2 = v±π−k2 = vk2 , which leads to

〈vk|M|vk〉 = C0

∑
k0,k2

(
2vk0 − 2vk2

)2

N1−→ n(1 ± n)
U 2

4 J

1

4π2

∫
dk0 dk2

(
2vk0 − 2vk2

)2

= 4 n(1 ± n)U 2 J. (B3)

Above, we have approximated the discrete sum in the absence
of the δ constraint by a continuous integral. This approximation
works very well, as we have also calculated the discrete matrix
element 〈vk|M|vk〉 numerically using Eq. (B2) and found
excellent agreement with (B3) already for N = 20.

053624-11



STEPHAN MANDT PHYSICAL REVIEW A 90, 053624 (2014)

[1] J. M. Ziman, Electrons and Phonons: The Theory of
Transport Phenomena in Solids (Clarendon Press, Oxford,
1996).

[2] A. Griffin, T. Nikuni, and E. Zaremba, Bose-Condensed Gases at
Finite Temperatures (Cambridge University Press, Cambridge,
2009).

[3] U. Schneider et al., Nature Phys. 8, 213 (2012).
[4] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885

(2008).
[5] S. Mandt, A. Rapp, and A. Rosch, Phys. Rev. Lett. 106, 250602

(2011).
[6] J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).
[7] A. Kamenev, Field Theory of Non-equilibrium Systems

(Cambridge University Press, Cambridge, 2011).
[8] Gerald D. Mahan, Many-Particle Physics (Springer, Berlin,

2000).
[9] E. Zaremba, T. Nikuni, and A. Griffin, J. Low Temp. Phys. 116,

277 (1999).
[10] B. P. Anderson and M. A. Kasevich, Science 282, 1686

(1998).
[11] M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon,

Phys. Rev. Lett. 76, 4508 (1996).
[12] F. Bloch, Z. Phys. 52, 555 (1929).
[13] C. Waschke et al., Phys. Rev. Lett. 70, 3319 (1993).
[14] T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer,
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