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Quasiparticle tunneling in a periodically driven bosonic Josephson junction
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A resonantly driven bosonic Josephson junction supports stable collective excitations, or quasiparticles, which
constitute analogs of the Trojan wave packets previously explored with Rydberg atoms in strong microwave fields.
We predict a quantum beating effect between such symmetry-related many-body Trojan states taking place on time
scales which are long in comparison with the driving period. Within a mean-field approximation, this quantum
beating can be regarded as a manifestation of dynamical tunneling. On the full N -particle level, the beating
phenomenon leads to an experimentally feasible, robust strategy for probing highly entangled mesoscopic states.
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I. INTRODUCTION

The mechanism which effectuates the stability of ion mo-
tion in a Paul trap [1] also underlies the stability of the motion
of the Trojan asteroids, which orbit around the Sun near stable
Lagrange points of the Sun-Jupiter system. This stable celestial
motion has a quantum-mechanical counterpart, discovered
in 1994 by Bialynicki-Birula, Kaliński, and Eberly: If one
exposes Rydberg electrons to strong microwave radiation, such
that the classical Kepler frequency of the orbiting electron
equals the frequency of the external driving electric microwave
field, one finds stable, though nonstationary, quantum states
which are described by nonspreading wave packets centered
around a classical periodic orbit [2,3]. Such Trojan states were
first realized with lithium Rydberg atoms in a linearly polarized
microwave field [4] and still are the subject of ongoing
research in atomic physics [5]. More generally, “Trojan”
single-particle wave packets belong to Floquet states which
are semiclassically attached to a nonlinear resonance island of
the corresponding classical phase space, thus explaining their
nondispersive nature [6,7].

It has been pointed out recently that Trojan states can also
occur in periodically driven many-body systems, where they
correspond to stable collective excitations, or quasiparticles,
moving in phase with the driving force [8]. Here we show
that there exists a genuinely quantum-mechanical beating
effect between similar many-body Trojan states which perform
subharmonic motion with respect to the drive; this beating
can be understood as quasiparticle tunneling. In particular, we
consider a resonantly driven bosonic Josephson junction, as
provided by ultracold atoms in an optically generated double-
well potential [9,10], or by the internal Josephson effect in a
spinor Bose-Einstein condensate [11], and demonstrate that
there is a quantum beating phenomenon between classically
equivalent, Trojan-like collective subharmonic many-particle
motions. Against the background of a mean-field approach this
beating may be interpreted as dynamical tunneling in the sense
of Davis and Heller, i.e., as quantum-mechanical tunneling
between symmetry-related regular regions of classical phase
space in the absence of a potential barrier [12,13]. However,
the very core of this beating effect reveals itself on the
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full N -particle quantum level, taking recourse neither to the
mean-field picture nor to the entailing classical phase space,
and suggests an interesting experimental option for creating
and probing mesoscopic Schrödinger cat-like states. To lay out
our reasoning we first sketch the basic mechanism in a quite
general but approximate form in Sec. II, shifting technical
details of the analysis to the Appendix. We then verify our
deductions with the help of exact numerical model calculations
in Sec. III, whereupon some remarks concerning possible
experimental observations are made in Sec. IV.

II. THE BASIC TUNNELING SCHEME

We start by considering a quantum-mechanical nonlinear
oscillator which may be given by either a single-particle or
a many-particle system, formally described by a Hamiltonian
H0 with discrete energy eigenvalues En and eigenstates |n〉,
so that H0|n〉 = En|n〉. We assume that the eigenvalues are
ordered with respect to magnitude and vary smoothly with n

around some particular state r , so that it is meaningful to take
the formal derivative

ω̃r = 1

�

dEn

dn

∣∣∣∣
n=r

; (1)

the frequency ω̃r defined in this manner is the oscillation
frequency of a wave packet mainly consisting of states in the
vicinity of n = r . We further assume that this oscillator is ex-
posed to an external influence described by some sinusoidally
modulated operator V , such that the full Hamiltonian takes the
form

H (t) = H0 + λV cos(ωt); (2)

here λ is a dimensionless coupling strength. The key point now
is that the driving frequency be chosen such that ω̃r = ω/ν,
meaning that one oscillation cycle of the unperturbed system
governed by H0 is as long as ν cycles of the external drive, so
that we have a ν:1 resonance. The case ν = 1 applies to the
usual Trojans [3,7,8]; here we demand instead that ν � 2 be a
small integer larger than unity. It is then natural to search for
solutions to the time-dependent Schrödinger equation of the
form

|�(t)〉 =
∑

n

cn(t)|n〉 exp

[
− i

�

(
Er + (n − r)

�ω

ν

)
t

]
, (3)
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where the sum again extends over states close to the resonant
state n = r . Because of the resonance condition, the expo-
nential exhibits the first-order expansions of the energies En

around n = r . This implies that the remaining time dependence
of the coefficients cn(t), given by the exact system

i�ċn(t) =
(

En − Er − (n − r)
�ω

ν

)
cn(t)

+ λ cos(ωt)
∑
m

ei(n−m)ωt/ν〈n|V |m〉cm(t), (4)

should be relatively weak. Next, we employ three standard
approximations [14,15]: We expand the energy eigenvalues up
to second order according to

En ≈ Er + (n − r)
�ω

ν
+ 1

2
(n − r)2E′′

r , (5)

replace all matrix elements 〈n|V |n ± ν〉 by a representative
constant v, and keep, in the spirit of the rotating-wave
approximation, only the secular terms m = n ± ν, thus being
led to the strongly simplified system

i�ċn = 1

2
(n − r)2E′′

r cn + λv

2
(cn+ν + cn−ν) . (6)

This set of equations contains the essential physics of beating
Trojans. As illustrated in Fig. 1 for the case ν = 2, each
coefficient cn is coupled only to its remote neighbors cn±ν , re-
sulting in ν separate subsets of coefficients. The mathematical
analysis, carried through in detail in the Appendix, shows that

�

�

�

�

�

�

|r + 2

|r

|r − 2

|r − 4

|r + 3

|r + 1
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|r − 3

FIG. 1. (Color online) Principle of Trojan beating for ν = 2: The
unperturbed energy eigenstates |n〉 of a weakly anharmonic oscillator,
with energy levels spaced by about �ω/2 in the vicinity of n = r

as indicated by the horizontal lines, are subjected to an external
monochromatic perturbation with frequency ω. Resonant coupling
then occurs between next-to-nearest neighbors, as expressed by
Eq. (6), giving rise to two almost uncoupled “ladders” of states
indicated by the vertical braces. Each ladder corresponds to a set
of 2π/ω-periodic Floquet states enumerated by a new quantum
number k. Odd and even superpositions of the Floquet states with k =
0 yield two 4π/ω-periodic Trojans, which beat among themselves on
much longer time scales.

this Eq. (6) is the Fourier representation of a Mathieu equation,
which formally equals the stationary Schrödinger equation of
a fictitious quantum particle moving on a one-dimensional
cosine lattice, with periodic Born–von Kármán boundary
conditions imposed after ν potential wells [16]. This yields
Bloch bands of energy eigenstates, labeled by the band index
k = 0,1,2, . . ., each band containing ν states. Transformed
back to the nonlinear oscillator considered here, these Bloch
states provide solutions of the form

∣∣�(j )
k (t)

〉 = e−iη
(j )
k t/�

∑
�

f
(j )
�,k |r + j + �ν〉

× exp

[
− i

�
(Er + j�ω/ν + ��ω)t

]
, (7)

with j = 0,1, . . . ,ν − 1 enumerating the states in the kth
Bloch band, f

(j )
�,k denoting the �th Fourier coefficient of a

Mathieu function specified in the Appendix, and η
(j )
k being

proportional to the energy of the Bloch state labeled by k and
j , thus falling within the kth energy band.

Importantly, these approximate solutions conform to the
Floquet theorem: Because the Hamiltonian (2) is periodic
in time, H (t) = H (t + T ) with T = 2π/ω, it gives rise to
a complete set of Floquet states, that is, of exact solutions to
the time-dependent Schrödinger equation which possess the
particular form [17–19]

|�n(t)〉 = |un(t)〉 exp(−iεnt/�) (8)

with |un(t)〉 = |un(t + T )〉, and thus reproduce themselves
perpetually in time, except for a phase factor determined by
their respective quasienergy εn. Evidently, the above wave
functions (7) are Floquet states with quasienergies

ε
(j )
k = Er + j�ω/ν + η

(j )
k (mod �ω). (9)

Hence, within the regime of validity of the above approx-
imations a ν:1 resonance leads to a characteristic ordering
of the quasienergy spectrum of a driven nonlinear quantum
oscillator, featuring ν sets of Floquet states with quasienergies
displaced against each other by �ω/ν. Is is assumed here that
the depth of the effective cosine lattice, which is proportional
to the driving strength λ, is so large that there are several
“below-barrier” bands. The Floquet states associated with the
ground-state band k = 0 then are of particular interest: For
ν = 1, for which there is j = 0 only, the Floquet ground state
k = 0 provides the archetypal Trojan, that is, the maximally
localized nonspreading wave packet closely following the
stable T -periodic orbit associated with a 1:1 resonance in
classical phase space [7,8,15]; the states with k � 1 constitute
its excitations.

The next link in the chain of reasoning again is suggested
by the solid-state picture of a quasiparticle moving on a
one-dimensional cosine lattice: From the extended Bloch
waves pertaining to the same energy band of such a lattice one
can construct Wannier functions which no longer are stationary
energy eigenstates, but which are localized in the individual
potential wells [16]. Analogously one may construct, for
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instance, the linear combination

|�̃k(t)〉 = 1√
ν

ν−1∑
j=0

∣∣�(j )
k (t)

〉
. (10)

If all the η
(j )
k were identical for j = 0, . . . ,ν − 1 (that is,

if the kth Bloch band had a vanishing width), this state
would correspond precisely to the kth excitation of a usual
Trojan, but now with frequency ω/ν. Hence, it would remain
perpetually localized around one of the ν equivalent classical
νT -periodic orbits generated by a ν:1 resonance according
to the Poincaré-Birkhoff theorem [20], performing coherent
motion which is subharmonic with respect to the driving fre-
quency. However, quantum tunneling between the individual
lattice wells bestows a finite width upon the bands, leading to
slightly different η

(j )
k and thus to a beating effect between ν

Trojan-like wave packets, each following one of these ν orbits.

III. MODEL CALCULATIONS

We now apply these considerations to a specific many-body
system: The unperturbed oscillator is given by the Lipkin-
Meshkov-Glick Hamiltonian [21]

H0 = −�


2
(a1a

†
2 + a

†
1a2) + �κ(a†

1a
†
1a1a1 + a

†
2a

†
2a2a2)

+ �μ0(a†
1a1 − a

†
2a2), (11)

which describes a Bose-Einstein condensate in a tilted double-
well potential [22,23]. Here the operators a

(†)
j annihilate

(create) a Bose particle in well j (j = 1,2), �
 is the single-
particle tunneling splitting, 2�κ denotes the repulsion energy
of a pair of bosons occupying the same well, and 2�μ0 is
the energetic misalignment of the two wells. We subject this
bosonic Josephson junction (11) to an additional time-periodic
tilt with amplitude �μ1, such that the total Hamiltonian
reads [24]

H (t) = H0 + �μ1 sin(ωt)(a†
1a1 − a

†
2a2). (12)

In Fig. 2 we plot the exact, numerically computed quasiener-
gies of this system for N = 200 particles, scaled interaction
strength Nκ/
 = 0.95, scaled driving frequency ω/
 =
3.258, and scaled tilt μ0/
 = 0.5 vs the scaled driving
strength 2μ1/ω. Here r = 142 is a resonant level with ν = 2,
leading in accordance with Eq. (9) to two almost identical
sets of quasienergies displaced against each other by �ω/2.
As shown in the Appendix, the Mathieu theory yields a quite
good description of these quasienergies, notwithstanding the
somewhat crude approximations made, so that the analysis
sketched in the previous section provides a sound basis for our
deductions.

Next, we take the numerically computed exact superposi-
tions

|�̃(±)
0 (0)〉 = (∣∣�(0)

0 (0)
〉 ± ∣∣�(1)

0 (0)
〉)/√

2 (13)

and follow their time evolution by solving the time-dependent
N -particle Schrödinger equation: These states correspond to
stable, Trojan-like collective many-particle excitations which
have been termed “floton” quasiparticles in Ref. [8]; they
should beat among themselves on a time scale determined

FIG. 2. Quasienergy spectrum of the tilted, driven bosonic
Josephson junction (12) for N = 200 particles, Nκ/
 = 0.95,
ω/
 = 3.258, and μ0/
 = 0.5. Under these conditions r = 142 is
a resonant level with ν = 2, leading to two almost identical sets of
quasienergies displaced against each other by �ω/2, as predicted by
the Mathieu theory. The Trojan doublet with k = 0 is indicated by
the arrows.

by the tiny difference between the energies η
(0)
0 and η

(1)
0 .

Figure 3 shows results of such calculations, for both short
and long times. Here we plot the experimentally measurable
population difference 2〈Jz〉/N between both wells, with
Jz = (a†

1a1 − a
†
2a2)/2. We first take N = 100 particles and

fix the driving amplitude at the small value 2μ1/ω = 0.025,
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FIG. 3. Scaled population imbalance 2〈Jz〉/N evolving from the
Trojan initial states |�̃ (+)

0 〉 (solid lines) and |�̃ (−)
0 〉 (dashed lines).

While the short-time evolution is monitored continuously, the long-
time evolution is recorded stroboscopically at each multiple of 2T .
(a, c) N = 100, 2μ1/ω = 0.025; the other parameters are as in Fig. 2.
(b, d) N = 50, 2μ1/ω = 1.0, Nκ/
 = 0.95, ω/
 = 1.6, and
μ0/
 = 0.8.
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leaving the other parameters as in Fig. 2. Over short intervals
we then merely observe the coherent 2T -periodic population
exchange, as depicted in Fig. 3(a), while the expected Trojan
beating manifests itself if we plot the population difference
stroboscopically at multiples of 2T only, but for much longer
durations, as done in Fig. 3(c). Here the observed Trojan
tunneling time T

(tun)
0 , i.e., the duration of half a beating

cycle, is 3865T . For comparison, the Mathieu estimate (A32)
derived in the Appendix gives T

(tun)
0 ≈ 1.9 × 103T and thus

already provides the correct order of magnitude. We stress
that the beating effect found here should not be attributed
to the tunneling of individual Bose particles in the physical
double-well potential constituting the Josephson junction,
but rather to the tunneling of a single quasiparticle in the
effective double cosine well in Fourier space. Quite similar
observations are also made for significantly stronger driving:
The tunneling signatures recorded in Figs. 3(b) and 3(d)
emerge for 2μ1/ω = 1.0.

Within a mean-field ansatz, involving the introduction of a
macroscopic wave function and the uncontrolled factorization
of expectation values of operator products into products of
expectation values [25], the dynamics of N Bose particles in
the driven Josephson junction (12) are reduced to those of
merely two amplitudes describing the population of the two
wells. In terms of the population difference z and the relative
phase φ which adopt the roles of momentum and its conjugate
position coordinate, respectively, the mean-field dynamics
coincides exactly with those of the driven, nonrigid classical
pendulum governed by the Hamiltonian function [26,27]

Hmf(z,φ,t) = Nκz2 − 

√

1 − z2 cos(φ)

+ 2z(μ0 + μ1 sin(ωt)). (14)

In Fig. 4 we show Poincaré sections for this classical nonlinear
pendulum [20], obtained by recording typical trajectories
T -stroboscopically in the φ-z plane. For the parameters chosen
in Figs. 3(a) and 3(c) for illustrating Trojan tunneling, the
2:1 resonance manifests itself as two banana-shaped zones
surrounding the central elliptic fixed point within a practically
regular phase space, whereas the resonant islands are separated
by a chaotic sea for the strong-driving scenario considered in

−1 0 1
−1

0

1

φ/π

z

(a)

−1 0 1
−1

0

1

φ/π

z

(b)

FIG. 4. Poincaré surfaces of section generated by the classical
driven pendulum (14). (a) For the parameters underlying Figs. 3(a)
and 3(c), the 2:1 resonance leads to two banana-shaped zones
surrounding the central elliptic fixed point. (b) For the parameters
of Figs. 3(b) and 3(d), the two resonant islands are separated by a
chaotic sea; an additional regular island is visible in the lower left
corner.

Figs. 3(b) and 3(d). In both cases the Trojan states k = 0
are semiclassically associated with the innermost “quantized”
closed contours γk encircling the resonant stable 2T -periodic
orbits which are selected by the Einstein-Brillouin-Keller
conditions [8]

1

2π

∮
γk

zdφ = 2

N

(
k + 1

2

)
; (15)

observe that 2/N = �eff here plays the role of an effective
Planck constant. In the classical case, as corresponding to the
mean-field approximation to the full N -particle dynamics, a
trajectory starting in one of the two equivalent resonant islands
inevitably ends up in the other one after one period T , and
returns to the first island after 2T . The quasiparticle tunneling
discussed in this work is a beyond-mean-field effect which
can be regarded as a form of dynamical tunneling between
symmetry-related regular regions of phase space [12,13]:
After the Trojan tunneling time T

(tun)
0 the N -particle state is

semiclassically associated with the “wrong” island.

IV. DISCUSSION

Since single-particle Trojan states with ν = 1 could be ob-
served over about 15 000 cycles in microwave-driven Rydberg
atoms [4], it seems feasible to detect Trojan beating for ν � 2
with highly excited atoms in suitably tuned microwave fields.
This already would constitute a spectacular demonstration of
a genuine quantum effect. The search for Trojan many-body
beating in driven bosonic Josephson junctions might break
even further ground. Experimentally, one could generate
Trojans in a robust manner by means of adiabatic switching
[8], starting from the ground state. Because the population
imbalance is a well-accessible observable, Trojan states with
ν = 2 can be identified through their subharmonic motion.
The signature of Trojan quasiparticle tunneling then would
be striking: After the tunneling time, the sloshing condensate
is out of phase with the drive, being found in the “wrong”
well. Since the Trojan quasiparticles (13), or those with even
higher ν, correspond to highly entangled states, measurements
of Trojan beating for different particle numbers could enable
one to gain valuable information on the persistence (or
nonpersistence) of entanglement with increasing N after long
driving times.

This many-body aspect distinguishes our proposal from re-
lated recent works which have addressed dynamical tunneling
with Bose-Einstein condensates in magnetic microtraps [28],
or in a kicked-rotor experiment [29]: In such configurations
one probes essentially single-particle physics, so that the
effective Planck constant is determined by the parameters of
the respective setup [28,29]. In contrast, Eq. (15) has shown
that �eff = 2/N in our case, so that here the “degree of
quantumness” can be tuned by varying the particle number.
This might be of interest for exploring quasiparticle tunneling
in quasiregular situations exemplified by Fig. 4(a), or in chaotic
situations as corresponding to Fig. 4(b), and for testing modern
concepts of chaos-assisted tunneling [30] within a many-body
setting.

The experimental exploitation of Trojan quasiparticles pre-
supposes that the periodically driven Bose-Einstein condensate
system possesses a well-preserved order parameter, in order
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to render the existence of Floquet condensates possible. This
requirement puts an upper limit on the sizes of the systems one
could work with, since Floquet condensates tend to become
unstable upon increasing N [8,31]. It is an open question
whether one could detect signs of the onset of this instability
in Trojan quasiparticle tunneling.
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APPENDIX: MATHIEU ANALYSIS OF BEATING TROJANS

The starting point is the approximate system (6): Because
each coefficient cn is coupled to cn±ν only, there are ν separate
“ladders” of states (see Fig. 1 for ν = 2) which we label by
j = 0,1, . . . ,ν − 1. Accordingly, we relabel the coefficients
such that

cr+j+�ν ≡ b
(j )
� , (A1)

so that the index � enumerates the members of the particular
subset of coefficients specified by j . Since this implies

(n − r)2 = ν2(� + j/ν)2, (A2)

we have ν uncoupled systems

i�ḃ
(j )
� = 1

2
ν2E′′

r

(
� + j

ν

)2

b
(j )
� + λv

2

(
b

(j )
�+1 + b

(j )
�−1

)
. (A3)

Let us first reconsider the standard case ν = 1 [14,15],
meaning that there is only one ladder, j = 0. Then the above
Eq. (A3) is a Fourier representation of the well-known Mathieu
equation [32], which plays a central role in both the stability
analysis of the Paul trap [1] and, closely related, in the analysis
of the original Trojan wave packets [3]: Setting

b
(0)
� (t) = e−iηt/�

1

2π

∫ 2π

0
dϑ f (ϑ)e−i�ϑ , (A4)

we immediately have

i�ḃ
(0)
� = ηb

(0)
� (A5)

and

b
(0)
�+1 + b

(0)
�−1 = e−iηt/�

1

2π

∫ 2π

0
dϑ f (ϑ)e−i�ϑ2 cos ϑ. (A6)

Moreover,

�2b
(0)
� = e−iηt/�

1

2π

∫ 2π

0
dϑ f (ϑ)

(
− d2

dϑ2

)
e−i�ϑ

= e−iηt/�
1

2π

∫ 2π

0
dϑ [−f ′′(ϑ)]e−i�ϑ , (A7)

provided that f (ϑ) = f (ϑ + 2π ), so that the partial integra-
tions carried out here do not produce boundary terms. Thus,

for ν = 1 Eq. (A3) transforms into

ηf (ϑ) = − 1
2E′′

r f ′′(ϑ) + λv cos ϑf (ϑ), (A8)

which is a Mathieu equation; substituting ϑ = 2z and writing
f (2z) ≡ χ (z) produces its standard form [32][

d2

dz2
+ α − 2q cos(2z)

]
χ (z) = 0 (A9)

with parameters

α = 8η

E′′
r

, (A10)

q = 4λv

E′′
r

. (A11)

Because of the periodic boundary condition f (ϑ) = f (ϑ +
2π ) imposed on f in order to guarantee the validity of Eq. (A7)
we require π -periodic Mathieu functions χ (z) = χ (z + π ),
which exist only if the parameter α adopts, for given q, one
of the so-called characteristic values. Employing the widely
accepted symbols an (giving even Mathieu functions) and bn

(giving odd ones) as defined in Ref. [32] for these quantities,
the allowed values of α are

αk =
{
ak, k = 0,2,4, . . .

bk+1, k = 1,3,5, . . . ,
(A12)

thus introducing a new quantum number k. This specifies the
desired coefficients (A4) as

b
(0)
� (t) = e−iηk t/�f�,k, (A13)

writing

ηk = 1
8αkE

′′
r (A14)

in accordance with Eq. (A10), and denoting by f�,k the �th
Fourier coefficient of the Mathieu function associated with
αk . In this way we have found approximate solutions to the
time-dependent Schrödinger equation of the driven nonlinear
oscillator which conform to the ansatz (3) made in Sec. II:

|�k(t)〉 = e−iηk t/�
∑

�

f�,k|r + �〉 exp

[
− i

�
(Er + ��ω)t

]
.

(A15)
Obviously these solutions are Floquet states with quasienergies

εk = Er + ηk (mod �ω); (A16)

the “ground state” with k = 0 then corresponds to the non-
spreading Trojan wave packet most strongly localized around
the classical periodic orbit which is locked to the periodic drive
in a 1:1 resonance [15].

The task now is to generalize this procedure, which so
far applies to ν = 1 only, to the case ν � 2 which is a
precondition for Trojan tunneling. If we started again from
a representation (A4) for b

(j )
� (t), with f (ϑ) appropriately

replaced by f (j )(ϑ), the analogs of Eqs. (A5) and (A6) would
go through unchanged, but Eq. (A7) is of no use when j �= 0.
Instead, with a view towards Eq. (A3) we write

b
(j )
� (t) = e−iηt/�

1

ν2π

∫ ν2π

0
dϑ g(j )(ϑ) e−i(�+j/ν)ϑ , (A17)
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where

g(j )(ϑ) = f (j )(ϑ) ei(j/ν)ϑ (A18)

now obeys the crucial boundary condition

g(j )(ϑ) = g(j )(ϑ + ν2π ), (A19)

which is required for establishing the identity(
� + j

ν

)2

b
(j )
� = e−iηt/�

1

ν2π

∫ ν2π

0
dϑ

× [−g(j )′′(ϑ)]e−i(�+j/ν)ϑ . (A20)

This then leads to the Mathieu equation

ηg(j )(ϑ) = −ν2

2
E′′

r g(j )′′(ϑ) + λv cos ϑg(j )(ϑ), (A21)

which again can be brought into the standard form (A9) by
setting g(j )(2z) ≡ χ (z), implying

α = 8η

ν2E′′
r

, (A22)

q = 4λv

ν2E′′
r

. (A23)

The key point now is the boundary condition (A19), which
forces us to select νπ -periodic Mathieu functions χ (z) =
χ (z + νπ ). Because Eq. (A21) can be interpreted as the
stationary Schrödinger equation for a quantum particle moving
on a one-dimensional cosine lattice, the associated desired
solutions (A18) then correspond to Bloch waves of this lattice,
with periodic Born–von Kármán boundary conditions imposed
after ν potential wells [16]. We denote the discrete Bloch band
index labeling these solutions by k = 0,1,2, . . . , in accordance
with the notation employed in Eq. (A12) for ν = 1. Thus, for
each k we find the ν different approximate solutions to the
time-dependent Schrödinger equation of the driven nonlinear
oscillator which have been heralded by Eq. (7), each one
corresponding to a “ladder” of the type depicted in Fig. 1:∣∣�(j )

k (t)
〉 = e−iη

(j )
k t/�

∑
�

f
(j )
�,k |r + j + �ν〉

× exp

[
− i

�
(Er + j�ω/ν + ��ω)t

]
. (A24)

Once again these solutions are Floquet states, now with
quasienergies

ε
(j )
k = Er + j�ω/ν + η

(j )
k (mod �ω). (A25)

In classical mechanics a ν:1 resonance gives rise to ν

equivalent stable ν × 2π/ω-periodic orbits [20]. The above
2π/ω-periodic Floquet states, corresponding to extended
Bloch waves in a lattice with ν wells, yield wave packets
localized around each of these orbits, the sharpest localization
being obtained for k = 0. In order to construct wave packets
which follow only one orbit in a Trojan fashion, one has to take
those linear combinations of the Bloch waves which produce
a Wannier-like state localized in an individual well [16]. In
contrast to single Floquet states such linear combinations are
not stationary states, which is the reason for Trojan beating.

All essentials are made visible already by the case ν = 2,
which leads to a lattice with periodic boundary conditions
imposed after two wells: Then one encounters the tunneling
effect of a quasiparticle in a symmetric double-well potential,
involving the superpositions

∣∣�̃(±)
k

〉 = 1√
2

(∣∣�(0)
k (t = 0)

〉 ± ∣∣�(1)
k (t = 0)

〉)
, (A26)

which correspond to states initially localized in the “left” or
“right” well, respectively. Here the “ground-state doublet”
k = 0 yields two strongly localized wave packets, each
following closely, on short time scales, one of the two stable
periodic orbits associated with the 2:1 resonance. While the
quasienergies for j = 0 take the form

ε
(0)
k = Er + 1

2α
(0)
k E′′

r (mod �ω), (A27)

with α
(0)
k being given by Eq. (A12), one obtains

ε
(1)
k = Er + 1

2 �ω + 1
2α

(1)
k E′′

r (mod �ω) (A28)

for j = 1, now requiring the Mathieu characteristic values
associated with 2π -periodic Mathieu functions χ (z) [32]:

α
(1)
k =

{
bk+1, k = 0,2,4, . . .

ak, k = 1,3,5, . . . .
(A29)

Evidently, the Trojan tunneling time—the time to evolve from
|�̃(+)

k 〉 to |�̃(−)
k 〉, or to tunnel from one of the two 4π/ω-

periodic orbits to the other—is given by

T
(tun)
k = 2π�

E′′
r (bk+1 − ak)

, (A30)

0 0.1 0.2
−0.5

0

0.5

2μ1/ω

ε/
h̄
ω

FIG. 5. Grey lines: Exact quasienergy spectrum of the tilted,
driven bosonic Josephson junction for N = 200 particles, as also
shown in Fig. 2 (Nκ/
 = 0.95, ω/
 = 3.258, μ0/
 = 0.5). Black
lines: Quasienergies provided for ν = 2 by the Mathieu approxima-
tions (A27) and (A28), with r = 142. The Mathieu parameter (A33)
is given by qω/(2μ1) = −498.26.
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which can be evaluated for large q by employing the asymp-
totic expression [32,33]

bk+1 − ak ∼ 24k+5

k!

√
2

π
qk/2+3/4e−4

√
q . (A31)

In particular, for the archetypal Trojan doublet with k = 0 one
obtains the estimate

T
(tun)

0 ∼ π3/2
�

16
√

2E′′
r

q−3/4e4
√

q . (A32)

As is evident from the standard form (A9), the Mathieu
parameter q determines the depth of the cosine lattice. In
the case of the resonantly driven bosonic Josephson junction

defined by Eqs. (11) and (12) in Sec. III, it is calculated
from

q = 2

ν2E′′
r /(�ω)

2μ1

ω
〈r|a†

1a1 − a
†
2a2|r − ν〉. (A33)

Figure 5 provides a comparison of the exact quasienergies
for the 2:1 resonance already considered in Fig. 2 to the
corresponding approximations (A27) and (A28) provided by
the Mathieu analysis. In view of the substantial simplifications
which have led to its starting point (A3), the agreement is quite
satisfactory, confirming that the essential features have been
kept.
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[30] S. Löck, A. Bäcker, R. Ketzmerick, and P. Schlagheck, Phys.
Rev. Lett. 104, 114101 (2010).

[31] B. Gertjerenken and M. Holthaus, Phys. Rev. A 90, 053614
(2014).

[32] Handbook of Mathematical Functions, edited by
M. Abramowitz and I. A. Stegun (Dover, New York,
1972).
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