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Virial coefficients for trapped Bose and Fermi gases beyond the unitary limit: An S-matrix approach
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We study the virial expansion for three-dimensional Bose and Fermi gases at finite temperature using an
approximation that only considers two-body processes and is valid for high temperatures and low densities. The
first virial coefficients are computed and the second is exact. The results are obtained for the full range of values
of the scattering length, and the unitary limit is recovered as a particular case. A weak coupling expansion is
performed and the free case is also obtained as a proper limit. The influence of an anisotropic harmonic trap is
considered using the local density approximation (LDA), analytical results are obtained, and the special case of
the isotropic trap is discussed in detail.
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I. INTRODUCTION

The advances in experimental results and simulations on
cold atoms [1–12] requires new methods for theorists to
study these systems and explore similar ones. Analytical
methods continue to be a powerful tool to explore these
systems, although they generally provide approximate results,
in comparison with numerical methods [13].

This work uses a formalism for statistical mechanics based
on the S matrix [14]. It provides an expression of the free
energy at finite temperature and density built on an integral
equation of the pseudoenergy with a kernel based on the
logarithm of the two-body S matrix at zero temperature. This
integral equation is quite similar to the Yang-Yang equations
used in the thermodynamical Bethe ansatz (TBA) [15].

The method is a “foam diagram” approximation which is
valid for high temperatures and low densities and considers
only contributions from two-body processes to the free energy.
It is explained in [16] and has been already used to study the
thermodynamical and critical properties of quantum gases in
two and three dimensions in the unitary limit [17,18] and
beyond the unitary limit in three dimensions [19]. In [20]
the method was used to calculate the ratio of the viscosity to
entropy density and the results were in good agreement with
experimental data [21].

In [19] it was shown how this method may be used to obtain
the coefficients of the virial expansion for quantum gases and
the first four virial coefficients were calculated in three dimen-
sions in the unitary limit. The second coefficient provided by
this method is exact and agrees with the result in [22]. The third
one in the unitary limit does not agree with the exact value ob-
tained in [23,24] where three-body processes were considered,
since the three-body processes are neglected in our approxi-
mation. The present work extends this analysis to arbitrary
scattering length; the unitary limit is obtained as the scattering
length goes to infinity. These remarks apply to both bosons
and fermions, and both cases are considered here, whereas the
literature mainly deals with fermions in the unitary limit.

Since Feshbach Resonance experiments allow us to adjust
the scattering length to any finite value, there is no reason
to study only the unitary limit, in which the scattering length
diverges. Here we calculate the first three virial coefficients for

both Bose and Fermi gases in three dimensions for different
values of the dimensionless ratio

α = λT

a
,

where λT =
√

2π
mT

is the de Broglie thermal wave length
and a is the scattering length. The unitary limit results
obtained in [19] are recovered in the proper limit and also
the free case where the scattering length is tuned to zero.
For large positive scattering length, molecules are formed and
this is not considered in this work. However, in the “upper
branch” [25–31] there are no molecules and our formalism may
be applied. This situation is studied here because we consider
the possibility that a Bose gas may stay in a metastable state
before undergoing mechanical collapse [32]. Virial coefficients
on the upper branch have not been considered before, to our
knowledge.

Analytical expressions are obtained for a weak coupling
expansion and they are compared to the previous results. The
second virial coefficient is the only exact one (besides the
first one) for the same reasons as in [19], and this will be
discussed here. Finally the influence of a harmonic trap on
the virial coefficients will be studied using the local density
approximation (LDA), and analytic results will be obtained for
the case of an anisotropic harmonic trap. The particular case
of the isotropic trap will be discussed and some plots will be
shown.

In the next section we present a brief summary of the
formalism (for more details see [16]), the actions of our
physical systems, and the conventions used in this paper. In
Sec. III we derive the expression of the virial coefficients in
terms of the two-body kernel of the theory in the foam diagram
approximation in a different way than in [19]. In Sec. IV we
obtain the first four virial coefficients of a Bose and a Fermi gas
in three dimensions in terms of the ratio α = λT

a
and discuss

these results. In Sec. V we perform a weak coupling expansion
and obtain analytical expressions for the virial coefficients in
this situation, then we compare these results with the previous
ones obtained in Sec. IV. In Sec. VI we study the influence
of a trap on the virial coefficients using the local density
approximation.
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II. FORMALISM AND CONVENTIONS

In this section we review the main result in [16]. The formal-
ism is developed starting with the fundamental formula [14]
for the partition function Z:

Z = Z0 + 1

2π

∫
dE e−βE Tr Im∂E ln Ŝ(E), (1)

where Z0 is the partition function for the free theory, β = 1/T

is the inverse temperature, and Ŝ is the S-matrix operator in
scattering theory. A considerable amount of work is needed to
turn this into a useful expression, such as the cluster expansion
for the S matrix. The result is a diagrammatic expansion for the
free energy, not to be confused with finite temperature Feyn-
man diagrams which are perturbative in the coupling. Rather,
diagrams consist of vertices with 2n legs which correspond to
the logarithm of the n-particle to n-particle S matrix at zero
temperature, up to some kinematical factors. (For nonrelativis-
tic theories there is no particle production.) These vertices are
connected by lines which are the occupation numbers

f0(k) = z

eβωk − s z
, (2)

where s is a statistical parameter (1 for bosons and −1 for
fermions) and z = eβμ is the fugacity, where μ is the chemical
potential. Here we are only considering non-relativistic
theories where ωk = k2/2m, m being the mass of the particles.

For the nonrelativistic theories we will consider, the two
body S matrix, i.e., n = 2, can be calculated exactly, i.e.,
to all orders in the coupling, thus this formalism captures
some nonperturbative aspects. However the vertices for n > 2
are difficult to calculate. Thus we consider the approximation
where we consider only diagrams involving two-body scatter-
ing. These are the diagrams shown in Fig. 1, i.e., the “foam”
diagrams. This infinite class of diagrams can be summed up,
leading to an integral equation we describe below.

In this formalism, the filling fractions, or occupation
numbers, are parametrized in terms of a pseudoenergy ε(k)
which has the same form as the free theory, i.e., the density
has the following expression:

n =
∫

d3k
(2π )3

1

eβε(k) − s
, (3)

FIG. 1. Foam diagrams.

The summation of all foam diagrams leads to an integral
equation satisfied by ε which we now describe. It is convenient
to define

y(k) = e−βε(k−ωk+μ). (4)

It satisfies the integral equation

y(k) = 1 + β

∫
d3k′

(2π )3
G(k − k′)

z

eβωk′ − s z y(k′)
. (5)

The kernel G is the logarithm of the two-body S matrix
multiplied by a kinematical factor which will be specified
below. The pseudoenergy ε may be interpreted as a self-energy
correction in the presence of all the particles of the gas
that takes into account multiple scatterings, however our
formalism is different than others in the literature that can
also be interpreted as self-energies. It is different than the
“self-consistent T -matrix approximation” for instance, since
the latter does not involve our kernel G. The free energy is
given by the following formula:

F = − 1

β

∫
d3k

(2π )3

[
−s ln(1 − se−βε(k)) − 1

2

(
1 − y(k)−1

eβε(k) − s

)]
.

(6)

We will study both Bose and Fermi gases. The Bose gas
will be described by the action

S =
∫

d3x dt

(
iφ†∂tφ − ∇φ2

2m
− g

2
(φ†φ)2

)
(7)

and the fermion gas by

S =
∫

d3x dt

⎛
⎝ ∑

α=↑,↓
iψ†

α∂tψα − ∇ψα
2

2m
− gψ

†
↑ψ↑ψ

†
↓ψ↓

⎞
⎠ .

(8)
The renormalized coupling constant is given by

1

gR

= 1

g
+ m�

2π2
, (9)

where � is the momentum cutoff introduced to regularize loop
integrals. The scattering length is related to the renormalized
coupling constant by

a = mgR

4π
. (10)

In the unitary limit, the scattering length a → ±∞ and the
theory is scale invariant, i.e., at the renormalization group
fixed point.

The two-body S matrix is

Smatrix(|k − k′|) = 8π/mgR − i|k − k′|
8π/mgR + i|k − k′| (11)

and in the unitary limit it simply equals −1. The kernel that
follows from this S matrix is

G(k,k′) = − 16πσ

m|k − k′| arctan

(
mgR|k − k′|

8π

)
, (12)
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where the factor σ that appears in (12) is σ = 1/2 for fermions
and σ = 1 for bosons. Note that in the unitary limit the kernel
remains a nonconstant but much simpler function, namely as
a → ∓∞ one has

G(k) = ±8π2σ

m|k| . (13)

In the present work, the first virial coefficients will be obtained
for any value of the scattering length and the unitary limit will
be recovered as α → 0.

III. EXPRESSIONS FOR THE VIRIAL COEFFICIENTS IN
THE FOAM DIAGRAM APPROXIMATION

The virial coefficients bi may be defined by the following
expression:

F = − 1

βλ3
T

∞∑
n=1

bnz
n. (14)

It is convenient to define a dimensionless scaling function q

for the density of particles which is only a function of μ/T

and α = λT /a, as follows:

q = nλ3
T . (15)

Recalling that n = − ∂F
∂μ

one obtains

q =
∞∑

n=1

n bnz
n. (16)

Substituting (3) in (15) and using (4), it is possible to expand
q as follows:

q =
(

1

2πmT

)3/2 ∫
d3k z y(k)

× e−βωk [1 + szy(k)e−βωk + z2y2(k)e−2βωk + · · · ].

(17)

Using (4) and (5) it is possible to expand y(k):

y(k) = 1 + β

(2π )3

∫
d3k′G(k,k′) z

× e−βωk′ [1 + s z y(k′) e−βωk′ + z2y2e−βωk′ + · · · ].

(18)

Now, using (17) and (18) we can express the scaling function
q in terms of the fugacity. Comparing to (16) one can then
obtain expressions for the virial coefficients. The first three
are

(2πmT )3/2 b1 =
∫

d3k e−βωk , (19)

2(2πmT )3/2 b2 = s

∫
d3k e−2βωk

+ β

(2π )3

∫
d3 kd3k′ e−βωke−βωk′ G(k,k′),

(20)

3(2πmT )3/2 b3

=
∫

d3k e−3βωk + s
2β

(2π )3

∫
d3k d3k′ e−2βωke−βωk′ G(k,k′)

+ βs

(2π )3

∫
d3k d3k′ e−βωke−2βωk′ G(k,k′), (21)

Evaluating the integrals that do not depend on the kernel,
we obtain the simpler expressions

b1 = 1, (22)

2b2 = s

23/2
+ β

(2π )3(2πmT )3/2

×
∫

d3k d3k′ e−βωke−βωk′ G(k,k′), (23)

3b3 = 1

33/2
+ 3βs

(2πmT )3/2(2π )3

×
∫

d3k d3k′ e−2βωk e−βωk′ G(k,k′). (24)

The above derivation of these expressions is slightly
different than the one in [19], since it is not necessary to
consider each diagram and find its contributions to the virial
coefficients. The method presented in this paper automatically
considers the foam diagram approximation because of the use
of the integral equation (5); the fact that the results here are in
agreement with [19] shows the consistency of the formalism
presented in [16].

The second virial coefficient is exact, as was shown
previously in the unitary limit [19]. Higher coefficients have
contributions from two-body scattering, but since we do not
take into account primitive higher body processes they give less
precise results. For completeness, we give the contribution to
b4 from two-body interactions:

4b4 = s

43/2

+ 4β

(2πmT )3/2(2π )3

∫
e−3βωke−βωk′ G(k,k′) d3k d3k′

+ 2β

(2π )3(2πmT )3/2

∫
e−2βωke−2βωk′ G(k,k′) d3k d3k′

+ 2β2s

(2πmT )3/2(2π )6

∫
e−βωke−2βωk′ e−βωk′′ G(k,k′)

×G(k′,k′′) d3k d3k′d3k′′. (25)

IV. THE RESULTS FOR THE FIRST
VIRIAL COEFFICIENTS

Substituting the kernel (12) in Eqs. (22), (23), (24) and
performing the angular parts of the integrals, it is possible to
write the first virial coefficients in terms of the ratio α = λT /a.
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The results are the following:

b1 = 1 (26)

b2 = s
√

2

8
− 2

√
2σ

π2

∫ ∞

0
v e− v2

2π arctan

(
v

α

)
dv, (27)

b3 =
√

3

27
− 16

√
3σs

9π2

∫ ∞

0
v e− 2v2

3π arctan

(
v

α

)
dv. (28)

For the sake of completeness we also give the expression
of the fourth coefficient,

b4 = s

32
− 2σ

π2

∫ ∞

0
ve− 3v2

4π arctan

(
v

α

)
dv

− σ

π2

∫ ∞

0
ve− v2

π arctan

(
v

α

)
dv

+ 128σ 2s

π5/2

∫ ∞

0

∫ ∞

0

∫ ∞

0
e−(u2+v2+4w2)

× sinh(uw) sinh(vw) arctan

(
u
√

π

α

)

× arctan

(
v
√

π

α

)
uv du dv dw. (29)

In the unitary limit, the above integrals can be evaluated
analytically [19]. For a finite scattering length a, the integrals
can only be done numerically.

The second virial coefficient as a function of α is plotted in
Fig. 2 for bosons and in Fig. 3 for fermions, Figs. 4 and 5 show
the third virial coefficient for bosons and fermions respectively.
The values of these coefficients in the free case and in the
unitary limit are also indicated in these figures with dotted and
dashed lines respectively, and one sees they are recovered in
the proper limits a → 0 and a → ∞. Note that both b2 and
b3 flip sign as one passes through the unitary limit and the
scattering length changes from +∞ to −∞. This is due to the

15 10 5 5 10 15
α

1.0

0.5

0.5

1.0

1.5

b2

FIG. 2. (Color online) Second virial coefficient against the ratio
between the thermal wavelength and the scattering length: b2 × α =
λT

a
for bosons (black). The values of the unitary limit (α → 0±)

obtained in [19] are represented by the dashed (blue) lines and the
value of the free case (g = 0 ⇒ α → ±∞) is represented by the
dotted (red) line.

15 10 5 5 10 15
α

0.8

0.6

0.4

0.2

0.2

0.4

b2

FIG. 3. (Color online) Second virial coefficient against the ratio
between the thermal wavelength and the scattering length: b2 × α =
λT

a
for fermions (black). The values of the unitary limit (α → 0±)

obtained in [19] are represented by the dashed (blue) lines and the
value of the free case (g = 0 ⇒ α → ±∞) is represented by the
dotted (red) line.

exclusion of the bound state for both b2 and b3 since our b3 is
still only based on two-body physics.

Figures 2, 3, 4, and 5 show that the second and third
virial coefficients are bounded by the values of the unitary
limit case (when α → 0, the dashed lines) in the foam
diagram approximation. When g → 0± ⇒ α → ±∞ (the
dotted lines), the free case is always recovered as expected.
The exact results for the values of the second coefficient in
the unitary limit are also properly recovered for Bose and
Fermi gases [19,22–24,33]. The expression (27) for fermions
(s = −1, σ = 1

2 ) is the same as the exact one obtained in [24],
up to an integration by parts, thus our results for the second
virial coefficient are exact for the whole range of α, as expected
from our formalism.

The results in the unitary limit for the third coefficient
obtained in [19] are recovered as expected. As discussed

15 10 5 5 10 15
α

1.0

0.5

0.5

1.0

b3

FIG. 4. (Color online) Third virial coefficient against the ratio
between the thermal wavelength and the scattering length: b3 × α =
λT

a
for bosons (black). The values of the unitary limit (α → 0±)

obtained in [19] are represented by the dashed (blue) lines and the
value of the free case (g = 0 ⇒ α → ±∞) is represented by the
dotted (red) line.
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15 10 5 5 10 15
α

0.4

0.2

0.2

0.4

0.6

b3

FIG. 5. (Color online) Third virial coefficient against the ratio
between the thermal wavelength and the scattering length: b3 × α =
λT

a
for fermions (black). The values of the unitary limit (α → 0±)

obtained in [19] are represented by the dashed (blue) lines and the
value of the free case (g = 0 ⇒ α → ±∞) is represented by the
dotted (red) line. The exact result for the untarity limit with infinite
negative scattering length obtained in [24] is represented by a thick
dashed (green) line.

previously, they differ from the exact ones from [24,33,34]
since the three-body processes are not considered in our
approximation. As the ratio α increases, the interaction effects
decrease and our results should become closer to the correct
ones. Figure 5 indeed shows that for α sufficiently large the
results obtained in [24] are nearly recovered; the exact value
for this coefficient obtained in [24] for the unitary limit with
large negative scattering length is also shown in this figure
with a thick dashed line.

V. WEAK COUPLING EXPANSION

Expressions (27) and (28) give the virial coefficients in
terms of the ratio α = λT

a
. In this section we perform an

expansion for large values of α, which means that
√

T gR � 1.

4 2 2 4
α

3

2

1

1

2

3

b2

FIG. 6. (Color online) Second virial coefficient against the ratio
between the thermal wavelength and the scattering length: b2 × α =
λT

a
for bosons (black). The dashed (red) line shows the same result

obtained with the expression of the weak coupling expansion.

4 2 2 4
α

2.0

1.5

1.0

0.5

0.5

1.0

1.5

b2

FIG. 7. (Color online) Second virial coefficient against the ratio
between the thermal wavelength and the scattering length: b2 × α =
λT

a
for fermions (black). The dashed (red) line shows the same result

obtained with the expression of the weak coupling expansion.

Since the temperature cannot be too small because we are
under the foam diagram approximation, the coupling constant
gR should be very small in order for this expansion be valid.

One can simply expand the arctangent function in ex-
pressions (27) and (28) in a Taylor series, truncate it to the
first degree term of 1

α
, and evaluate the integrals analytically.

Performing this expansion, one obtains

b2 = s
√

2

8
− 2σ

α
(30)

and

b3 =
√

3

27
−

√
2σs

α
. (31)

Figure 6 shows the second virial coefficient for bosons
against α in the weak coupling approximation and the
numerical result obtained in the latest section; Fig. 7 does the
same for the fermionic situation and Figs. 8 and 9 do the same
for the third coefficient of bosons and fermions respectively.

4 2 2 4
α

2

1

1

2

b3

FIG. 8. (Color online) Third virial coefficient against the ratio
between the thermal wavelength and the scattering length: b2 × α =
λT

a
for bosons (black). The dashed (red) line shows the same result

obtained with the expression of the weak coupling expansion.
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4 2 2 4
α

1.0

0.5

0.5

1.0

b3

FIG. 9. (Color online) Third virial coefficient against the ratio
between the thermal wavelength and the scattering length: b2 × α =
λT

a
for fermions (black). The dashed (red) line shows the same result

obtained with the expression of the weak coupling expansion.

It is easy to see that the curves corresponding to Eqs. (30)
and (31) and the ones obtained numerically integrating the
expressions (27) and (28), shown in Figs 6, 7, 8, and 9, are
almost indistinguishable for |α| > 4.

VI. VIRIAL COEFFICIENTS FOR TRAPPED GASES

In order to study the influence of a harmonic trap for
quantum gases it is possible to use the local density ap-
proximation (LDA). The LDA may be used if one ignores
the variation of thermodynamic quantities due to density
gradients [35,36]. In our formalism this means that one can
replace the chemical potential by μ → μ − V (r), giving a
free energy F (r) that depends on r. The final free energy will
be given by F = ∫

F (r)d3r.
We know that the virial cofficients are related to the free

energy by Eq. (16). Therefore, in the LDA approximation,
expression (16) becomes

F = − 1

βλ3

∞∑
n=1

(
bn

∫
e−βnV (r)d3r

)
zn. (32)

Comparing (32) to (16) one sees that the presence of the trap
changes the virial coefficients in the following way under the
LDA approximation:

bn → bn

∫
e−βnV (r)d3r. (33)

Considering an anisotropic harmonic trap

V (r) =
3∑

i=1

[
wix

2
i

2

]

we obtain

bn → bn

(
2π

βn

) 3
2

[
3∏

i=1

wi

]− 1
2

. (34)

2 4 6 8 10
w

0.5

1.0

1.5

2.0

2.5

3.0

3.5

bn

bn

FIG. 10. (Color online) Ratio between the second, third, and
fourth virial coefficients in the presence and in the absence of an
harmonic isotropic trap against the frequency of the trap for T = 1
in the three-dimensional case (d = 3), b′

n

bn
× w. n = 2 is the dashed

(blue) line, n = 3 is the thin (red) line, and n = 4 is the thick (green)
line.

In particular, if the trap is isotropic, w1 = w2 = w3 = w, we
arrive at the following result:

bn → bn

(
2π

βwn

) 3
2

. (35)

One sees that for w given by the fundamental Matsubara
frequency 2π

β
, the first virial coefficient b1 does not change

in the presence of the harmonic isotropic trap. In the following
figures we plot the ratios b′

n/bn for n = 2,3,4, where ′ means
the presence of the harmonic isotropic trap, as a function of w

for T = 1, and also as a function of T for w = 1.

2 4 6 8 10
T

50

100

150

bn

bn

FIG. 11. (Color online) Ratio between the second, third, and
fourth virial coefficients in the presence and in the absence of an
harmonic isotropic trap against the temperature for w = 1 in the
three-dimensional case (d = 3), b′

n

bn
× T . n = 2 is the dashed (blue)

line, n = 3 is the thin (red) line, and n = 4 is the thick (green) line.
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Expressions (34) and (35) show that the virial coefficients
decrease monotonically with the frequencies of the trap and
increase monotonically with the temperature as a power law
as Figs. 10 and 11 show for the isotropic case.

VII. CONCLUSIONS

The first virial coefficients of a bosonic and a fermionic
gas were obtained as functions of the ratio of the thermal
wavelength to the scattering length α = λT

a
in the foam

diagram approximation. The results obtained in [19] are
recovered when α → 0± as expected and one also recovers
the free case when α → ±∞.

The second virial coefficients are exact and the unitary limit
values for the fermionic case agree with the results of [22] as
is explained in [19]. The third coefficient is not exact since the
foam diagram approximation neglects three-body interactions,

however it becomes very close to the correct value when the
absolute value of the ratio α is large.

A weak coupling expansion was performed and analytical
expressions for the virial coefficients were obtained for large
values of |α|. The weak coupling expansion is in close
agreement with the results we obtained for any α when |α| > 4.

The influence of an anisotropic harmonic trap was also con-
sidered under the local density approximation and analytical
expressions were obtained, and also specialized to an isotropic
trap.
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