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Thermally activated local collapse of a flattened dipolar condensate
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We consider the metastable dynamics of a flattened dipolar condensate. We develop an analytic model that
quantifies the energy barrier to the system undergoing local collapse to form a density spike. We also develop
a stochastic Gross-Pitaevskii equation theory for a flattened dipolar condensate, which we use to perform
finite-temperature simulations verifying the local collapse scenario. We predict that local collapses play a
significant role in the regime where rotons are predicted to exist and will be an important consideration for
experiments looking to detect these excitations.

DOI: 10.1103/PhysRevA.90.053605 PACS number(s): 67.85.Bc

I. INTRODUCTION

Tremendous recent progress in trapping and cooling highly
magnetic atoms has enabled the production of dipolar Bose-
Einstein condensates (BECs) [1–4]. In these condensates
the atoms interact via an appreciable magnetic dipole-dipole
interaction (DDI) that is both long-range and anisotropic,
opening up a number of new many-body phenomena for
exploration [5,6].

A flattened dipolar condensate is produced by applying
tight external confinement along one direction and can be
used to stabilize the system against the attractive compo-
nent of the dipolar interaction [7,8]. Novel predictions for
dipolar condensates in this regime include density oscillating
ground states [9–12], rotonlike excitations [9,13–21], modified
collective and superfluid properties [22–24], and stable two-
dimensional (2D) bright solitons [25]. Many of these pre-
dictions require having a condensate in the dipole-dominated
regime, i.e., where the DDI is stronger than the short-range
contact interaction. Theoretical studies of this regime have
mainly focused on the elementary excitation spectrum, which
can be calculated using Bogoliubov theory. However, density
fluctuations in this regime can be large [19,26,27], and recent
work has shown that Bogoliubov theory may be quite limited
in applicability, particularly at finite temperature [28].

To date, experiments in the flattened system have focused
on quantifying the stability boundary [7,8], which can be
explored by reducing the contact interaction (using Feshbach
resonances) until the condensate becomes unstable. Theoreti-
cal work suggests that as the condensate crosses the stability
boundary, it undergoes a local collapse, in which it breaks up
into a set of sharp density peaks [29,30] (also see [31]).

In this paper we show that a dipolar BEC is metastable
against local collapses even far from the stability boundary.
To do this we develop an analytic model in which we consider
sharp density spikes (i.e., a local collapse) forming on top
of a condensate. This enables us to quantify the energy
barrier to collapse. We then introduce a finite-temperature
dynamical model for the system by extending the stochastic
Gross-Pitaevskii equation (SGPE) formalism [32] to include
DDIs. Our simulations with the SGPE demonstrate thermally
activated local collapse events and support our density spike
model. Our results indicate that metastability effects will be
an important consideration for experiments aiming to verify
the array of predictions that have been made for dipolar

condensates in the flattened regime, such as the emergence
of rotonlike excitations.

II. MODEL

A. Uniform ground state

We consider a dipolar BEC that is harmonically confined
along the z direction and unconfined in the radial plane. The
condensate wave function ψ0 satisfies the nonlocal Gross-
Pitaevskii equation (GPE),

μψ0(r) =
[
hsp +

∫
dr′U (r − r′)|ψ0(r′)|2

]
ψ0(r), (1)

where μ is the chemical potential and

hsp = −�
2∇2

2m
+ mω2

zz
2

2
(2)

is the single-particle Hamiltonian, with ωz being the axial trap
frequency and m being the atomic mass.

The atoms we consider are taken to have an appreciable
magnetic dipole moment μm polarized along the z axis
by an external magnetic field. In this case the associated
interaction potential is Udd(r) = 3gd

4π
[1 − 3(ẑ · r̂)2]/r3, where

gd = μ0μ
2
m/3 is the DDI coupling constant and r̂ = r/|r|.

The particles can also interact by a short-range contact
interaction with coupling constant gs = 4πas�

2/m, where
as is the scattering length, so that the full interaction is
U (r) = gsδ(r) + Udd(r) (e.g., see [6,33,34]).

The condensate solution to Eq. (1) takes the form ψ0(r) =√
n0χσ (z), where n0 is the areal density and χσ is a normalized

axial mode. Here we approximate χσ as a Gaussian of the form

χσ (z) = 1

π1/4
√

σ lz
e−z2/2σ 2l2

z , (3)

with length scale lz = √
�/mωz. We treat σ as a variational

parameter to be determined by minimizing the energy func-
tional

E[ψ] =
∫

dr ψ∗(r)

[
hsp + 1

2

∫
dr′U (r − r′)|ψ(r′)|2

]
ψ(r),

(4)
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FIG. 1. (Color online) Visualization of the density-spike ansatz
[see Eq. (7)] illustrating the parameters used, with cw =
(π 3/4σρ

√
σzlz)−1.

which, upon substituting the Gaussian ansatz, gives

Eσ = n0A�ωz

[
1

4σ 2
+ σ 2

4
+ νs + 2νd

2
√

2πσ

]
. (5)

Here A is the area of the system, and we have introduced νs =
n0gs/�ωzlz and νd = n0gd/�ωzlz as the dimensionless contact
and DDI parameters, respectively.1 In the weak-interaction
limit |νs + 2νd | � 1, the value of σ that minimizes Eq. (5)
approaches 1, which has been taken as the definition of the
quasi-2D regime [36]. In general the variational Gaussian
approach we use here has been shown to provide an accurate
description even for large interaction parameter values [37].
Using the value of σ that minimizes Eq. (5), the condensate
chemical potential [see Eq. (1)] is given by

μσ = �ωz

[
1

4σ 2
+ σ 2

4
+ νs + 2νd√

2πσ

]
. (6)

B. Density-spike model

We want to consider the energetics of the system forming
density spikes on top of the flat condensate ground state. To
do this we propose a variational ansatz for a condensate with
a Gaussian density spike of the form

ψs(r) = √
n0χσ (z) + √

n0β
exp

[− 1
2

(
z2

σ 2
z l2

z
+ ρ2

σ 2
ρ l2

z

)]
π3/4σρ

√
σzlz

, (7)

where ρ = (x,y) is the in-plane coordinate and the last term
describes the spike in terms of dimensionless height β and
width parameters {σρ,σz} (see Fig. 1).

We consider a large system, so that a single spike has
negligible effect on the condensate itself. Consequently, we
take the condensate variational parameter σ to be determined

1Negative values of νd can be obtained by rapidly rotating the
dipoles [35], although this has not been realized in experiments to
date.

by minimizing Eq. (5) irrespective of the peak (and hence σ is
a function of only νs + 2νd ).

The energy associated with forming a peak on top of a
condensate background is then evaluated by substituting (7) in
Eq. (4), which yields

Es ≡ E[ψs] − E[ψ0] − μσNs,

= n0l
2
z �ωz

{
2
√

2πβσρ

(
σσz

σ 2 + σ 2
z

)3/2(
σσz + 1

σσz

)

+ β2

2

(
σ 2

z

2
+ 1

2σ 2
z

+ 1

σ 2
ρ

)

−μσ

(
4
√

2πβσρ

√
σσz

σ 2 + σ 2
z

+ β2

)

+ 4βσρ(νs + 2νd )√
3
2σσz + 1

2σ 3/σz

+ 3β2√
π

(
σ 2 + σ 2

z

)
×

{
νs + 2

3
νd

[
1 + f

(√
σ 2 + σ 2

z

σ

σρ

σz

)]}

+ 4β3

3πσρ

√
3
2σσz + 1

2σ 3
z /σ

×
[
νs + νdf

(√
σ 2 + σ 2

z

σ 2 + 1
3σ 2

z

σρ

σz

)]

+ β4

2(2π )3/2σzσ 2
ρ

[νs + νdf (σρ/σz)]

}
, (8)

where

f (κ) ≡ 2κ2 + 1

κ2 − 1
− 3κ2 arctan(

√
κ2 − 1)

(κ2 − 1)3/2
(9)

is a monotonically increasing function of κ with f (0) = −1
and f (∞) = 2 [38]. The term μσNs accounts for the energy
liberated by removing atoms from the condensate to form the
spike, where the number of atoms in the spike is

Ns ≡
∫

dr(|ψs |2 − |ψ0|2)

= n0l
2
z β

⎛
⎝4

√
2π

√
σσzσ 2

ρ

σ 2 + σ 2
z

+ β

⎞
⎠. (10)

Some examples of the spike energy Es(β,σρ,σz) are presented
in Fig. 2. For νs > νd [Fig. 2(a)] the dipolar condensate is
stable in that the energy cost of forming a density spike is
positive and increases with increasing β. In contrast, for the
dipole-dominant regime νd > νs [Fig. 2(b)] the condensate
is metastable: the energy can be lowered by the formation
of a dense, narrow spike. For dense spikes (i.e., large β) the
energy is dominated by the last (∝β4) term in Eq. (8), and
we find that Es → −∞ as σρ → 0; that is, the spike tends
to a narrow prolate shape. However, spikes of intermediate
β values cost energy relative to the planar condensate, thus
presenting a barrier to the formation of a high-density spike.
Our aim here is to quantify the properties of the energy barrier
and the system’s passage over it. We do not concern ourselves
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FIG. 2. (Color online) Spike-formation energy surface
Es(β,σρ,σz). Results are shown as a function of {σρ,β} for
(a) the stable regime νd < νs , with νd = 0.75, νs = 1, and (b) the
metastable regime νd > νs , with νd = 1.4, νs = −0.3. In (a) we set
σz = σ = 1.22 for simplicity. In (b), we choose σz = 1.35, which
minimizes the activation energy EA. (c) Spike energy crossing
the saddle of the energy surface along the path shown in (b). The
activation energy EA and the value of β at the activation point (βA)
are indicated.

here with the details of the spikes after they form, noting that
three-body loss would be important to include in this regime
(e.g., see [39]).

In Fig. 2(b) we indicate a path along which a high-density
peak might form. This path crosses the energy barrier at its
lowest point, with the value of the energy along this path
shown in Fig. 2(c). We define the minimum height of the
energy barrier [at the saddle point of the function Es(β,σρ,σz)]
as the activation energy EA and label the associated value
of β at this point as βA, corresponding to a peak areal
density of

nA = n0

(
1 + 2βA

π1/2σρ

√
2σσz

σ 2 + σ 2
z

+ β2
A

πσ 2
ρ

)
. (11)

The activation energy varies as a function of the dimension-
less interaction parameters νs and νd , and contours of this are
shown in Fig. 3. For reference we have placed these contours on
top of a stability diagram for the system, obtained by examin-
ing the behavior of the condensate quasiparticles as a function
of their in-plane wave vector kρ (see [13,16,37] for additional
discussion of these regimes). Notably, a number of stable
and unstable regions can be identified by the quasiparticle
spectrum: In the phonon-instability region a long-wavelength
(kρ → 0) quasiparticle becomes dynamically unstable (i.e., its
energy becomes imaginary). In the roton-instability region a
short-wavelength quasiparticle (i.e., kρ ∼ 1/lz) is dynamically
unstable. The metastable region occurs when interactions are
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FIG. 3. (Color online) Phase diagram and metastable energy
barrier. The stable and metastable regimes (which includes the roton
regime) and regions of instability are indicated. Contours indicate
values of the energy barrier EA in units of n0l

2
z �ωz.

dipole dominated (νd > νs) and all the quasiparticles have
real positive energies. It is denoted as metastable because,
as quantified by our model, the condensate is nevertheless
able to lower its energy by forming density spikes, even
though this is not revealed in the quasiparticle spectrum. The
roton region is part of the metastable region and occurs when
the dispersion relation has a rotonlike feature, i.e., a local
minimum at nonzero kρ .

The results in Fig. 3 indicate that in the regime where rotons
occur the activation energy EA/n0l

2
z is typically comparable

to or smaller than the z confinement energy �ωz. It is useful to
put these results into the context of experiments with flattened
condensates (albeit with contact-interaction condensates). In
experiments performed by Rath et al. with 87Rb [40], the
temperatures obtained were in the range kBT /�ωz = 0.5–0.9,
with a peak density of n0l

2
z ∼ 1.8. In experiments performed

by Hung et al. with 133Cs [41], the temperatures obtained
were in the range kBT /�ωz = 0.2–0.5, with a peak density
of n0l

2
z ∼ 0.6. Thus, assuming that similar parameter regimes

can be obtained with flattened dipolar condensates, we would
expect the formation of density spikes via thermal activation to
be a relevant consideration. The results in Fig. 3 also show that
in the roton regime and for larger values of νs , the activation
energy increases.

We note that for νd = − 1
2νs (i.e., the upper boundary of

the phonon-instability region) the effective long-wavelength
interaction [see the last term in Eq. (5)] is zero, and EA

approaches zero. For the case with νd < − 1
2νs the effective

long-wavelength interaction is attractive, and the condensate
is unstable to a long-wavelength phonon collapse. It is worth
noting that within this regime it has been predicted that stable
bright solitons should exist (e.g., see [25]).
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III. SGPE SIMULATIONS

To verify and explore the local instability predicted by
our Gaussian ansatz, we now proceed to consider a finite-
temperature dynamical description of a planar dipolar con-
densate based on the SGPE formalism.

A. SGPE theory for planar dipolar BEC

The SGPE formalism treats the thermal dynamics of
the low-energy modes of a partially condensed Bose field.
Essentially, the formalism provides a classical field (i.e.,
Gross-Pitaevskii-like evolution) for the low-energy modes,
with additional damping and noise terms to describe the
coupling to high-energy (nonclassical) modes of the system
(e.g., see [32,42–45]).

The SGPE evolution of this system is given by

d� = P
{
− (i + γ )

�
(L − μ)� dt +

√
2γ kBT /� dW (ρ)

}
,

(12)

where � = �(ρ) is the quasi-2D classical field for the system,
with ρ = (x,y),

L� = −�
2∇2

ρ

2m
� + F−1

ρ {Ũ2D(kρ)Fρ{|�(ρ)|2}}� (13)

is the effective 2D Gross-Pitaevskii operator, and Fρ is the in-
plane Fourier transform. To obtain this form we have integrated
out the z dimension, resulting in the effective 2D interaction
potential in kρ space,

Ũ2D(kρ) ≡
∫

dkzŨ (k)Fz{|χσ (z)|2} (14)

= 1√
2πlz

[
gs + gd

(
2 − 3

√
πQeQ2

erfc Q
)]

, (15)

where Q = kρlz/
√

2. The stochastic term dW is a com-
plex Gaussian noise satisfying 〈dW 〉 = 〈dW 2〉 = 0 and
〈dW (ρ)dW ∗(ρ ′)〉 = δ(ρ − ρ ′)dt . In Eq. (12) a projector P
appears which is used to restrict the evolution to the low-
energy appreciably occupied modes of the field. Because we
consider a uniform planar system, this is implemented as a
radially symmetric cutoff kcut in wave-vector space; that is,
the low-energy region evolved is restricted to parts of � with
|kρ | < kcut.

The parameter γ describes the coupling to high-energy
modes (treated as a reservoir at temperature T and chemical
potential μ) that have been eliminated from � by the projector.
For the case of contact interactions γ ∼ (as/λdB)2, where
λdB = h/

√
2πmkBT [46]. A detailed microscopic derivation

of the SGPE theory along the lines of [43] has not been
performed for the case of a planar dipolar gas; however, the
theory is phenomenologically justified for our purposes of
studying dynamics near equilibrium: the SGPE theory is a
Langevin equation that provides a grand-canonical classical
field description of the low-energy modes of the field, with the
damping [the term in (12) proportional to γ ] and noise (the

term proportional to
√

γ ) being related through the fluctuation
dissipation theorem.2

In formulating the SGPE theory for the planar system we
have made the quasi-2D approximation, so that all motion in
the z direction is frozen in the harmonic oscillator ground state.

B. Simulations

1. Uniform simulation scheme

We perform our simulations of Eq. (12) on a square domain
of area A = L × L, where L is the side length and is subject to
periodic boundary conditions. The classical field can therefore
be represented effectively in a plane-wave basis,

�(ρ,t) =
∑
kρ

ckρ
(t)

eikρ ·ρ
√

A
, (16)

where the in-plane wave vectors are kρ = 2π (nx,ny)/L,
nx,ny ∈ Z, and ckρ

are complex time-dependent amplitudes.
The numerical scheme used to simulate the SGPE is the 2D ver-
sion of the fast-Fourier-transform-based algorithm discussed
in Sec. III of Ref. [48], with an additional step introduced to
evaluate the convolution involving the k-dependent interaction
[see Eq. (13)].

2. Initial condition

For our initial condition we sample a randomized state
constructed from a condensate and Bogoliubov quasiparticles
according to

�(ρ,0) = √
n0 +

∑
kρ

(
ukρ

αkρ
− v−kρ

α∗
−kρ

)eikρ ·ρ
√

A
, (17)

where αkρ
=

√
kBT
2εkρ

(ur + iui), with ur and ui being normally

distributed random numbers generated for every kρ . In the
above expression we have introduced the Bogoliubov quasi-
particle energy εkρ

and amplitudes {ukρ
,vkρ

}, which are

εk =
√

�2k2
ρ

2m

[
�2k2

ρ

2m
+ 2n0Ũ2D(kρ)

]
, (18)

ukρ
=

√√√√1

2

( �2kρ
2

2m
+ n0Ũ2D(kρ)

εkρ

+ 1

)
, (19)

vkρ
=

√√√√1

2

( �2kρ
2

2m
+ n0Ũ2D(kρ)

εkρ

− 1

)
sgn[Ũ2D(kρ)]. (20)

This choice of initial state ensures that every quasiparticle
mode is occupied according to the classical limit of the Bose-
Einstein distribution, and we find that it changes little when
allowed to equilibrate via the SGPE.

2It is worth noting that equilibrium properties of a stationary process
are independent of γ for any γ > 0 (e.g., see [47] and discussion
in [46]).
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3. Simulation parameters

For the simulations we present we take L = 80 lz and use
a cutoff momentum of kcut = √

10/lz. For this choice 5097
plane-wave modes are retained in the classical region for
which the dynamics are simulated. We focus on the case of a
condensate of density n0 = 4/l2

z , with interaction parameters
νs = −0.301 and νd = 1.404, which is in the metastable
regime, with EA = 3.28 �ωz and βA = 1.54. The SGPE
simulations are performed using reservoir parameters μ = �ωz

and temperatures in the range 0.2�ωz/kB to 0.45�ωz/kB . We
find that the condensate fraction of the field � varies from
about 0.95 at T = 0.2�ωz/kB to 0.88 at T = 0.45�ωz/kB .
The results we present are for the case with γ = 0.1.

C. SGPE results

1. Observed dynamics

An example of the density profile during a typical SGPE
evolution is shown in Fig. 4(a). The noisy density pattern
reveals the fluctuating thermal modes in the low-energy region
and is similar to the typical results of SGPE evolution in the
case of contact interactions (e.g., see Fig. 2 of [49]). However,
for this dipolar simulation in the metastable regime, we even-
tually find that a density spike emerges [see Fig. 4(b)], which
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FIG. 4. (Color online) Field density and a typical spike-
formation event. The field density |�|2 is shown (a) at t = 15/ωz

(prior to spike formation) and (b) at t = 44/ωz (during spike
formation). The red circle indicates the spike location. (c) The peak
density in the system during the simulations, revealing the sudden
formation of a spike at t ≈ 45/ωz. The red crosses indicate the
two times corresponding to the fields plotted in (a) and (b). (d) The
distribution of densities across the simulation cell prior to collapse.
The red arrow indicates nA = 22.3/l2

z . The simulation parameters
were T = 0.2 �ωz/kB , νs = −0.301, and νd = 1.404.

persists in the field. It is useful to define the instantaneous peak
density of the field

npeak(t) = max
ρ

{|�(ρ,t)|2}, (21)

i.e., the maximum density occurring at any grid point. In
Fig. 4(c) we quantify the behavior of npeak in the evolution
leading up to the density spike forming: this formation is
clearly revealed by the sudden onset of rapid growth of npeak

at t ≈ 45/ωz. To put these values of peak density into context,
in Fig. 4(d) we show the probability density function for
values of density occurring in the field. This is obtained by
making a histogram of the density values occurring at every
grid point using the field sampled at a discrete set of times
prior to the collapse. This density distribution revels that the
most likely density is ∼4/l2

z = n0. The thermal fluctuations
in the field give rise to the spread in the distribution function
around the most likely value, and we emphasize that the spike
formation proceeds through values that are out in the tails of
this distribution [as indicated in Fig. 4(d)].

The time it takes for a spike to form is stochastic and
can vary significantly between different SGPE simulations for
identical parameters. Spike-formation times tend to get shorter
the closer the system is to the roton-instability boundary
and as the temperature increases. Once formed, the spikes
grow rapidly, as shown in Fig. 4(c). Overall, these qualitative
observations are consistent with the spikes occurring as a
thermally activated crossing of the energy barrier consistent
with our simple model of Sec. II.

2. Characterizing spike formation

It is evident, particularly from Figs. 4(c) and 4(d), that spike
formation is due to fluctuations in density to large values. We
aim to measure the correlations between a peak density of
some value occurring in the field and a spike forming. To do
this we calculate the probability that a spike forms within a
time interval of δt = 5/ωz after a value of npeak occurs in
the field. We take |�|2 > 30/l2

z as an unambiguous measure
of a spike having formed in the system, as this density was
observed to occur only after a spike had formed and was
growing rapidly. The probability that a spike forms was then
calculated using 36 trajectories of the SGPE for the parameters
of Fig. 4 with the results shown in Fig. 5. These indicate that if
a density fluctuates to a value exceeding ∼16, then a spike is
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FIG. 5. (Color online) The probability that a density spike forms
within a time interval of δt = 5/ωz after a particular peak density
npeak occurs in the simulation. Calculations are for T = 0.2 �ωz/kB .
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FIG. 6. (Color online) Temperature dependence of the mean
peak formation time t̄s , plotted here for two different sets of interaction
parameters: νs = −0.301, νd = 1.404 (as in earlier results; circles),
and νs = −0.201, νd = 1.354 (triangles). The linear fits have slopes
of 1.25 ± 0.09 and 4.1 ± 0.4.

likely to form. This value is lower than but comparable to the
density at the activation point (nA = 22.3/l2

z ) as predicted by
our Gaussian model.3 We also note that the typical widths of
the observed spikes in the SGPE simulations are in quantitative
agreement with the value of σρ predicted by the model at the
activation point.

Finally, we consider the influence of temperature on the
rate at which spikes form. We define the mean spike-formation
time t̄s as the average evolution time until a spike forms and
calculate it by averaging the individual spike-formation times
obtained from 10–20 SGPE simulations for each parameter set.
We present results for the dependence of t̄s in Fig. 6 for two
sets of interaction parameters and for a range of temperatures.
Both sets of parameters sit within the metastable regime,
approaching (but not within) the rotonic regime. These results
demonstrate that the mean spike-formation time scales as t̄s ∼
exp(c�ωz/kBT ), which corresponds to Arrhenius’s scaling
with temperature (e.g., see [50]), where we take c to be a fit
parameter. The fits to the SGPE results give c = 1.25 ± 0.09
and 4.1 ± 0.4. For comparison, the Gaussian model predicts
activation energies of EA = 3.28�ωz and EA = 5.51�ωz,
respectively. Thus we see that as the metastable energy barrier
increases, the rate of spike formation decreases, verifying the
qualitative applicability of the analytic model. We expect the
quantitative differences to the SPGE results arise from factors
such as the role of background density fluctuations on the
spike (compare to the smooth planar condensate assumed in
the analytic model) and the fact that the spikes forming do not
need to take a precisely Gaussian shape.

We have not systematically studied the effect of changing
γ , but in simulations where we reduced γ by two orders of
magnitude we found that the mean peak formation time was
changed by about a factor of 2.4

3This is the model discussed in Sec. II, but with σ = σz = 1,
consistent with the quasi-2D restriction of the SGPE model.

4In this small γ limit the theory reduces to the so-called projected-
GPE theory, or classical field method (see [51]), providing a
microcanonical description of the low-energy system modes.

IV. CONCLUSION AND OUTLOOK

In this paper we have considered the energetics and finite-
temperature dynamics of a flattened dipolar condensate. By
developing an analytic model we show that it is energet-
ically favorable for density spikes to form in this system
in the metastable dipole-dominated regime, and we have
characterized the energy barrier to formation as a function
of the interaction parameters. Notably, our results predict
that the role of local-density spikes will be important in the
regime where rotons are predicted to exist in the elementary
excitation spectrum. Developing the SGPE theory for this
system, we have shown that thermal fluctuations can nucleate
density spikes and that their properties are consistent with our
analytic model. The density spikes we discuss here realize a
local-collapse scenario [29], whereby atoms far away from
the spike remain unaffected (compare to global collapse for
condensates with attractive contact interactions [52]). Our
theory here has only considered the formation dynamics of
the spike and does not provide a consistent model of the
spike after it forms (and passes beyond the energy barrier).
It is likely that the atoms within the spike will be lost by
three-body recombination (increased significantly due to the
high density in the spike) and will lead to heating in the
system. Because the number of atoms in a given spike is
a small fraction of the system, the development of a single
spike will not necessarily be detrimental to the condensate,
and many such local collapses may be required to heat
the condensate. Qualitatively, such a scenario seems to be
consistent with the experiments of Koch et al. [7]. For example,
in Fig. 2 of [7] a continuous decrease in the condensate number
was observed as the stability boundary was approached.
Indeed, this suggests that condensate lifetime measurements
would be a possible avenue for experiments to investigate
the energy barrier to local collapse in the dipole-dominated
regime.

It is useful to put the parameters of our calculations
into context of current experiments. The case considered in
Fig. 4 corresponds to the central region of a 55 × 103 atom
164Dy condensate in a 3D harmonic trap with frequencies
of (fρ,fz) = (15,103) Hz and scattering length as = −28 a0,
where a0 is the Bohr radius. Translating the results of Fig. 6
for this case (i.e., the results shown by circles) indicates that
at temperatures of 10 nK the mean spike-formation times
t̄s will be ∼6 ms, decreasing to 0.2 ms at 25 nK. That
said, we emphasize that a precise model of the experimental
regime will require accounting for the effects of radial
trapping.

An important extension of the work in this paper will be
to develop a more detailed analytic theory of the collapse
dynamics. For example, the stochastic Lagrangian approach
used in Ref. [53] could be extended to the dipolar case.
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