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Cooling and trapping of atoms and molecules by counterpropagating pulse trains
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We discuss a possible one-dimensional trapping and cooling of atoms and molecules due to their nonresonant
interaction with counterpropagating light pulse trains. The counterpropagating pulses form a one-dimensional
trap for atoms and molecules and a properly chosen carrier frequency detuning from the transition frequency of
the atoms or molecules keeps the temperature of the atomic or molecular ensemble close to the Doppler cooling
limit. The calculation by the Monte Carlo wave-function method is carried out for the two-level and three-level
schemes of the atom’s and the molecule’s interaction with the field, respectively. The models discussed are
applicable to atoms and molecules with almost diagonal Frank-Condon factor arrays. Illustrative calculations are
carried out for ensemble-averaged characteristics for sodium atoms and SrF molecules in the trap. The potential
for the nanoparticle light pulses’s trap formed by counterpropagating light pulse trains is also discussed.
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I. INTRODUCTION

Optical cooling and trapping [1–3] are key stages in
experiments with cold atoms. Initially, continuous laser ra-
diation was used for this purpose, but now pulsed laser
applications for cooling [4–11] and trapping [12–16] of atoms
and molecules are also discussed. In [4] the deceleration of a
Na beam by a counterpropagating beam of a mode-locked
laser and the appearance of negative velocity atoms were
observed for the first time. The next step to produce cool
atoms by pulsed laser radiation was made in [5], where a
two-mode laser beam, copropagating with the atomic beam and
counterpropagating to the mode-locked laser beam, was used
to stop the deceleration process at a defined atomic velocity. In
[6] an Yb atomic beam was decelerated with the use of a light
beam of a mode-locked Ti:sapphire laser. The first theoretical
study of laser cooling of atoms by counterpropagating laser
pulses was carried out in [7], where the interaction of atoms
with weak laser pulses was analyzed. It was shown that in the
case γ � �k2/m, where γ is the spontaneous emission rate,
k is the wave number of laser radiation, m is atomic mass, the
atoms’ temperature is close to cw case. For a very narrow
transition, when γ � �k2/m, the minimum of the kinetic
energy falls behind its cw counterpart. Laser cooling of atoms
by an optical frequency comb (FC) was discussed in [8–11]. In
particular, laser cooling by the FC on two-photon transitions
was proposed in [8]. The theory of light pressure force on
two-level and three-level atoms for very short laser pulses
(δ-function approximation) and laser cooling was developed in
[9–11]. Simultaneous laser cooling of multiple atomic species
was discussed in [10].

The authors of [12] showed that the force resulting from
the interaction of an atom with a sequence of short coun-
terpropagating laser π pulses can propel atoms towards the
small region where the pulses overlap, thus counterpropagating
sequences of laser pulses may form an optical trap for atoms.
In [13] stimulated focusing and deflection of an atomic Cs
beam using counterpropagating picosecond laser pulses were

*vr@iop.kiev.ua

observed that can be treated as experimental justification of
the trap idea proposed in [12]. The authors of [14] obtained
analytical expressions for the coordinate-dependent force
exerted on the atom and the atom’s potential energy in the
trap based on the trains of counterpropagating laser pulses.
References [15,16] consider the semiclassical theory of the
atomic dynamics in a pulsed optical dipole trap formed by
superimposed trains of very short (a few femtoseconds) laser
pulses. The large detuning of the pulse carrier frequency
from the transition frequency practically excludes sponta-
neous emission events. The computer simulation proves that
such a trap may effectively confine very cold (∼100 nK)
atoms.

Works investigating cooling [4–11] and trapping [12–16]
of atoms by sequences of counterpropagating laser pulses are
based on the light pressure on atoms. The expected direct
consequence of these works is possible simultaneous cooling
and trapping of atoms by such laser fields. The authors
of [17] analyzed the light pulse interaction with atoms for
different detunings and found that simultaneous cooling and
trapping of atoms is possible provided the carrier frequency
detuning from the resonant atom-light interaction is properly
chosen. Further investigation of the cooling trap, based on the
interaction of atoms with counterpropagating laser pulses, is
described in [18], where numerical calculations for examples
of the time evolution of a sodium atom in a trap were
demonstrated.

The illustrative simulation of an atom motion in the trap,
presented in [17,18], can give only a very rough estimation
of the atomic or molecular ensemble temperature and the
spatial capture range of the trap. Both these parameters, the
temperature and capture range, are main characteristics of any
trap. In this paper we find them from the calculation of the
statistical characteristics of atomic and molecular ensembles
in the trap using the Monte Carlo method. Besides the
calculations of the statistical characteristics of the ensembles,
we use, as in [17,18], the Monte Carlo wave-function method
[19] for simulation of an atom- or a molecule-state evolution.
The atomic motion is described in the framework of classical
mechanics, which corresponds to a narrow atomic wave packet
in comparison with the wavelength. The light pressure force
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FIG. 1. (Color online) Counterpropagating laser pulses form a
trap for atoms near point C, where the pulses collide.

on the atom or the molecule is calculated in the usual way
[20,21]. The atomic or molecular momentum is also changed
due to spontaneous emission, which is a stochastic process. In
comparison to earlier works [17,18], here we take into account
the stochastic nature of absorption, proceeding from the fact
that every spontaneous emission of a photon precedes the act
of a photon absorption. This approach gives rise to the twofold
correction of the ensemble temperature in comparison with the
method used in [17,18].

The idea of the trap based on the atom’s interaction with
the counterpropagating light pulse trains can be most easy
explained for the case of two-level atoms in the field of π

pulses. We let light pulses propagate along the z axis (see
Fig. 1) and point C is the point where the counterpropagating
pulses collide. We assume that an atom at point A is in the
ground state before the recent interaction with pulse R (this
is true in most cases because of the short time between the
interaction of the atom with R and L pulses in comparison
with the time between the interaction with R and R′ pulses
[22]). As a result of the interaction with this pulse, the atom
absorbs a photon and becomes excited. Its momentum is
changed by the photon momentum �k in the positive-z-axis
direction. After being subjected to the action of pulse L, the
atom emits a photon, becomes unexcited, and its momentum
changes by another �k in the same direction. The interaction
of the atom with the laser pulses repeats with period T , so the
atom is subjected to the action of the average force 2�k/T

directed towards point C. Similar reasoning for an atom at
point B allow us to find that the atomic momentum changes
by −2�k, so the average force acting on it is −2�k/T , i.e.,
directed towards point C. From symmetry considerations we
readily conclude that the light pressure force on the atom
at point C equals zero. Hence, counterpropagating light π

pulses can form a trap for an atom with the center at point C,
where the counterpropagating pulses collide. As pointed out
in [12,13], pulses with areas different from π can also form a
trap.

Recently, great progress in the manipulation of molecules
by laser radiation was reported [23]. The authors of [23]
demonstrated deceleration of a beam of neutral strontium
monofluoride molecules using radiative forces. The spectro-
scopic constants of this molecule satisfy the main conditions
required for successful laser cooling, which are [24] (i) a band
system with strong one-photon transitions (i.e., large oscillator
strength) to ensure the high photon-scattering rates needed for
rapid laser cooling, (ii) a highly diagonal Franck-Condon array
for the band system, and (iii) no intervening electronic states to
which the upper state could radiate and terminate the cycling
transition. We note that violation of the second criterion leads
to very high (about 97%) losses of the ground working state

of Na2 in the first observation of the light pressure force on
molecules [25].

We illustrate the phenomenon of simultaneous cooling and
trapping of atoms and molecules by counterpropagating light
pulse trains using examples of sodium atoms and strontium
monofluoride molecules, which have a level structure suitable
for light pressure force experiments [20,23]. We use the
two-level model for an atom, as it adequately describes the
cycling cooling transition [20], and the three-level � model
for a molecule, as 0.9996 of the excited molecules radiatively
decay to the two lower levels [23]. The potential for trapping
of nanoparticles is briefly discussed in Sec. VII C.

This paper is organized as follows. In Sec. II we present
the models for atoms and molecules used in the paper.
Section III describes the trains of the counterpropagating
pulses that act on the atoms and the molecules. The solution of
the Schrödinger equation by the Monte Carlo wave-function
method is described in Sec. IV, closely following [19].
Section V contains the calculation of light pressure force and
equations for mechanical motion of atoms and molecules. In
Sec. VI we describe the numerical calculation routine used
in the investigation. Results and a discussion are presented in
Sec. VII. A summary is given in Sec. VIII.

II. MODELS FOR ATOMS AND MOLECULES

We use the two-level model for the description of the atom-
field interaction. The transitions in atoms, which ensure the
cycling interaction with the field within the two-level system,
are listed, for example, in [20]. We denote the ground state
by g and the excited state by e [see Fig. 2(a)]. The detuning
of the carrier frequency ω from the transition frequency ω0 is
δ = ω0 − ω and the rate of the atom’s spontaneous emission
from the excited state is γ .

We describe the molecule’s interaction with the field by the
three-level � model, as depicted in Fig. 2(b). This model is
composed of the excited state e and the ground states g1 and
g2 separated by ��. The transition frequencies between the
excited state and each of the ground states are �1 and �2,
respectively. These frequencies differ for the SrF molecule,
whose interaction with the laser pulses is simulated in this pa-
per, by �/2π = 14.9 THz [23]. As long as 2π/� is very small
in comparison with the pulse duration τ , we need two pairs
of pulse trains, one of which is the counterpropagating pulses
close to the resonance with the e ↔ g1 transition and the other
is the counterpropagating pulses close to the resonance with
the e ↔ g2 transition. The carrier frequencies of these pulses
ω1 and ω2 are detuned from the resonances by δ1 = �1 −
ω1 and δ2 = �2 − ω2, respectively. We also introduce the
spontaneous decay rates γ1 and γ2 from the upper state to the
two lower states, which form the total decay rate γ = γ1 + γ2.

III. LASER PULSES

We suppose that the pairs of pulses traveling in the same
direction (and resonant to the different transitions) coincide
in time. The spectrum of the laser field is a frequency comb
with the difference between the teeth 2π/T , where T is the
repetition period of the laser pulses.
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FIG. 2. (Color online) (a) Two-level scheme of the atom-field
interaction and (b) three-level scheme of the molecule interaction
with the field of laser radiation.

The electric field of the trains of the counterpropagating
pulses can be written as

E(t) = E1e1

∑
m

cos(ω1t − k1z + ϕ11,m)f (η1,m)

+E1e1

∑
m

cos(ω1t + k1z + ϕ12,m)f (η2,m)

+E2e2

∑
m

cos(ω2t − k2z + ϕ21,m)f (η1,m)

+E2e2

∑
m

cos(ω2t + k2z + ϕ22,m)f (η2,m). (1)

Here k1 = ω1/c and k2 = ω2/c are the values of the wave
vectors for carrier frequencies ω1 and ω2, respectively; e1 and
e2 are polarization vectors; and ϕ11,m,ϕ12,m and ϕ21,m,ϕ22,m

are the phases of the counterpropagating m pulses for
t = 0 and z = 0, respectively. The function f (η) with a
maximum value f (0) = 1 describes the shape of the pulse’s
envelope,

η1,m = 1

τ

(
t − mT − z

c

)
, (2)

η2,m = 1

τ

(
t − mT + z

c

)
, (3)

where z is the atom’s or molecule’s coordinate and τ is the
pulse duration. The beginning of the coordinate axis and
the order of the pulses numbering are chosen so that the
counterpropagating pulses’ number m meet each other at time
instants t = mT in point z = 0, where m is an arbitrary integer.

The pulse areas are defined by the integrals

ϑj = 
j

∫ ∞

−∞
f (t/τ )dt, j = 1,2, (4)

where the Rabi frequencies are


j = −dgj eejEj/�, j = 1,2. (5)

The matrix elements dgj e = 〈gj |d|e〉 of the dipole moments
are assumed to be the real-value quantities without loss of
generality [26]. The case of the two-level model [Fig. 2(a)] is
described by the equations of this section with γ1 = γ , γ2 = 0,
ϑ1 = ϑ , ϑ2 = 0, ω1 = ω, δ1 = δ, and �1 = ω0.

Usually the Gaussian-like pulses are used in simulations of
the atom-field interactions [27,28]. These pulses are artificially
cut off beyond certain limits in the numerical calculation. We
use cos4-like pulses that are close to Gaussian but restricted in
time as real laser pulses,

f (η) =
{

cos4(πη), |η| < 1/2
0, |η| > 1/2.

(6)

The function f (η) is close to the Gaussian distribution fG(η) =
exp(−2π2η2) in the interval where fG(η) is not very small. The
area of the pulse with the envelope described by the function
(6) equals 3

8
0τ , which is approximately 0.94 times the area
of the corresponding Gaussian pulse. The characteristic width
of the latter is τG ≈ 0.225τ . A closer adjustment of the
cosn-like pulse to the Gaussian pulse is possible: The function
cosn(πt/τ ) tends to exp(−t2/τ 2

G) with τG = τ
√

2(π
√

n)−1 for
large even n within the interval |t | < τ/2 [29].

IV. WAVE-FUNCTION CALCULATION

We describe the atomic state by the wave function that
is constructed by the Monte Carlo wave-function (MCWF)
method [19]. After averaging over the ensemble of atoms or
molecules, this approach becomes equivalent to the solution
of the density-matrix equation. At the same time, in contrast
to the latter, it allows one to give an illustrative interpretation
for the separate atom’s or molecule’s motion.

The wave function obeys the Schrödinger equation

i�
d

dt
|ψ〉 = H |ψ〉, (7)

where the Hamiltonian

H = ��1|e〉〈e| + ��|g2〉〈g2| − dg1e|g1〉〈e|E(t)

− deg1 |e〉〈g1|E(t) − dg2e|g2〉〈e|E(t)

− deg2 |e〉〈g2|E(t) − i�

2
(γ1 + γ2)|e〉〈e|, (8)
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which is used for the construction of the wave function by
the MCWF method, differs in the relaxation term from the
Hamiltonian that is used in the density-matrix equation. The
Hamiltonian (8) is non-Hermitian, hence the absolute value of
the wave function determined from the Schrödinger equation
(7) changes with time. In the MCWF method, normalization
of the wave function should be carried out after every small
time step. In addition, the condition of a quantum jump within
each time interval has to be checked [19].

We use the first-order method for calculation of the Monte
Carlo wave function [19]. The second- and the fourth-order
methods are described in [30].

We let the wave function |ψ(t)〉 be normalized to unity
at the time moment t . After a small time step �t the wave
function |ψ(t)〉 is transformed into

|ψ (1)(t + �t)〉 =
(

1 − i�t

�
H

)
|ψ(t)〉 (9)

according to the Schrödinger equation (7). The squared norm
of the wave function equals

〈ψ (1)(t + �t)|ψ (1)(t + �t)〉 = 1 − �P, (10)

where

�P = i�t

�
〈ψ(t)|H − H †|ψ(t)〉

= (γ1 + γ2)〈ψ(t)|e〉〈e|ψ(t)〉�t. (11)

Now we take into account the possibility of a quantum
jump. If the value of the random variable ε, which is uniformly
distributed between zero and unity, is larger than �P (which
is true in the most cases, as long as �P � 1), there is no
jump. Then the wave function at the time moment t + �t

equals

|ψ(t + �t)〉 = |ψ (1)(t + �t)〉/√1 − �P, �P < ε. (12)

In the opposite case ε < �P , the jump occurs and the wave
functions becomes

|ψ(t + �t)〉 = |g1〉 (13)

with probability p1 = γ1/(γ1 + γ2) or

|ψ(t + �t)〉 = |g2〉 (14)

with probability p2 = γ2/(γ1 + γ2). If the value of the random
variable ε, uniformly distributed between 0 and 1, is less than
p1, the wave function is (13); otherwise it is (14).

It is convenient to separate the rapid component, varying
with the frequency �1, in the wave function. For this purpose
we seek the solution of (7) in the form

|ψ〉 = Cg1 |g1〉 + C2e
−i�t |g2〉 + Cee

−i�1t |e〉. (15)

After applying the rotating-wave approximation [26] to the
Schrödinger equation we find, assuming � � �1, the equa-
tions for probability amplitudes

d

dt
Cg1 = − i

2

1e

−ikz−iδ1t
∑
m

eiϕ11,mf (η1,m)Ce

− i

2

1e

ikz−iδ1t
∑
m

eiϕ12,mf (η2,m)Ce, (16)

d

dt
Cg2 = − i

2

2e

−ikz−iδ2t
∑
m

eiϕ21,mf (η1,m)Ce

− i

2

2e

ikz−iδ2t
∑
m

eiϕ22,mf (η2,m)Ce, (17)

d

dt
Ce = − i

2

1e

ikz+iδ1t
∑
m

e−iϕ11,mf (η1,m)Cg1

− i

2

1e

−ikz+iδ1t
∑
m

e−iϕ12,mf (η2,m)Cg1

− i

2

2e

ikz+iδ2t
∑
m

e−iϕ21,mf (η1,m)Cg2

− i

2

2e

−ikz+iδ2t
∑
m

e−iϕ22,mf (η2,m)Cg2 − γ1+γ2

2
Ce,

(18)

which are to be numerically solved simultaneously with the
quantum jump testing.

Most of the time (during the time interval between the light
pulses) the field does not influence the atom or the molecule.
In this case an analytical solution of Eqs. (16)–(18) is possible.
The initial atom or molecule state is

|ψ(0)〉 = Cg1 (0)|g1〉 + Cg2 (0)|g2〉 + Ce(0)|e〉. (19)

If no quantum jump occurs within the time interval [0,t], we
find from Eqs. (16)–(18) the normalized wave function

|ψ(t)〉 = Cg1 (t)|g1〉 + Cg2 (t)e−i�t |g2〉
+Ce(t)e−i�1t |e〉, (20)

where

Cg1 (t) = Cg1 (0)/D, (21)

Cg2 (t) = Cg2 (0)/D, (22)

Ce(t) = Ce(0)e−(γ1+γ2)t/2/D, (23)

and

D =
√

|Cg1 (0)|2 + |Cg2 (0)|2 + |Ce(0)|2e−(γ1+γ2)t . (24)

The probability of the absence of a quantum jump within
the time interval [0,t] is [19]

P (t) = |C1(0)|2 + |C2(0)|2 + |Ce(0)|2e−(γ1+γ2)t . (25)

The expression (25) is consistent with the probability
|C1(0)|2 + |C2(0)|2 of no quantum jump for t → ∞ and the
exponential decay of the excited state in the ensemble of atoms
or molecules.

So, in summary, in the absence of laser radiation within
the time interval [0,t], the atom or molecule is described by
the state (20) at the time instant t with the probability (25).
The other possible states are

|ψ(t)〉 = |g1〉 (26)

with the probability γ1[1 − P (t)]/(γ1 + γ2) and

|ψ(t)〉 = |g2〉 (27)

with the probability γ2[1 − P (t)]/(γ1 + γ2).
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V. MOTION OF THE ATOM AND THE MOLECULE

Cooling of atoms in one-dimensional molasses was suc-
cessfully simulated by the MCWF method in [19]. In this
case only the atomic momentum distribution function matters.
Analyzing possible simultaneous cooling and trapping of
atoms or molecules in the considered trap, we need both
the spatial and momentum distribution functions. Quantum-
mechanical calculation of the atomic motion in the trap should
start from the wave package with spatial width much less
than the laser radiation wavelength. As a consequence, many
momentum states of the atom in both the ground and excited
states are involved in the calculation.

The computation time can be substantially reduced for the
case of weak laser fields, when the momentum diffusion of
the atoms could be treated as caused by counterpropagating
laser pulses independently. In this case we consider the atom’s
motion in the framework of classical mechanics and we need
to know the light pressure force that the atoms undergo. This
force can be calculated from the density matrix and the electric
field of the pulses [20,21],

F =
2∑

j=1

(�gj edegj
+ �egj

dgj e)
∂E
∂z

, (28)

where the density-matrix elements are expressed in terms of
Cg1 , Cg2 , and Ce as follows:

�gj gj
= |Cj |2, j = 1,2, (29)

�ee = |Ce|2, (30)

�eg1 = C∗
1Cee

−i�1t , (31)

�g1e = C1C
∗
e e

i�1t , (32)

�eg2 = C∗
2Cee

−i�2t , (33)

�g2e = C2C
∗
e ei�2t . (34)

We assume that the pulse duration considerably exceeds the
inverse carrier frequencies ω1τ � 1 and ω2τ � 1, therefore
we neglect the derivative of the pulse’s envelope in the
calculation of the time derivative of the field strength, as long
as | ∂f (ηj,m)

∂z
| � kjf (ηj,m) (j = 1,2).

After averaging over the period of oscillations with the
frequency ω1, the expression (28) in the field (1) gives

F =
[
�k1
1 Im C1C

∗
e e

iδ1t+ik1z
∑
m

e−iϕ11,mf (η1,m)

+ �k2
2 Im C2C
∗
e e

iδ2t+ik2z
∑
m

e−iϕ21,mf (η1,m)

− �k1
1 Im C1C
∗
e e

iδ1t−ik1z
∑
m

e−iϕ12,mf (η2,m)

− �k2
2 Im C2C
∗
e e

iδ2t−ik2z
∑
m

e−iϕ22,mf (η2,m)

]

× [|C1|2 + |C2|2 + |Ce|2]−1. (35)

We find the dependence of the atom’s coordinate z on time
from Newton’s equation

z̈ = F/M, (36)

where M is the atom’s mass. We consider the case |�1 −
�2| � �1 and assume that k1 = k2 in (35).

Equation (36) does not take into account the momentum
change due to spontaneous emission of photons. Every event
of spontaneous emission of a photon change the atom’s or
the molecule’s velocity by �k/M in the random direction
with the probability 1 − P (t), where P is determined by (25).
In addition, the velocity also changes due to fluctuations of
absorption and stimulated emission of photons.

VI. NUMERICAL CALCULATION ROUTINE

To simulate the atom’s or molecule’s motion, we simul-
taneously solve Eqs. (16)–(18) and (36), where the light
pressure force we find from (35). In addition, we take into
account both the atomic momentum’s change due to the
spontaneous emission of photons and fluctuation of stimulated
(absorption and emission) processes. In our model calculations
we postulate that spontaneous emission occurs with equal
probability in two directions along the light beam, so the atom’s
or molecule’s momentum changes by ±�k. This assumption in
analyses of Doppler cooling leads to the minimum temperature
[31]

Tmin = �γ /2kB, (37)

where kB is the Boltzmann constant and γ is the rate of the
spontaneous emission of radiation by the excited atom.

The expression (28) for the light pressure force gives
the correct value for the ensemble-average force, but the
momentum diffusion phenomenon is not correctly taken into
account. To analyze the motion of atoms or molecules in the
trap we need to add the stochastic change of the momentum,
zero on average, which gives the correct momentum diffusion
coefficient. We analyze the low-intensity case, when the pop-
ulation of the excited state is small and the light pressure force
and the momentum diffusion approximately equal the sum of
the corresponding values for each of the counterpropagating
traveling waves. Here we describe the momentum diffusion of
atoms in the field of one traveling wave following [21].

We let the momentum of an atom at the time instant t be
p0. Then at the time instant t + �t the momentum is

p = p0 + �k(N+ − N−) −
∑

s

�ks . (38)

Here the second term gives the change of momentum due to
absorption and stimulated emission, when the photons with
the wave vector k (directed along the z axis) are absorbed
and emitted. The quantities N+ and N− are the numbers
of absorbed and emitted photons. The third term in (38) is
responsible for the momentum change due to the spontaneous
emission of the photons with the wave vector ks .

The ensemble average of the momentum (38) is

〈p〉 = 〈p0〉 + �k(〈N+〉 − 〈N−〉), (39)

where 〈p0〉 is the initial average momentum, 〈N+〉 is the
average number of absorbed photons, and 〈N−〉 is the average
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number of photons emitted by atoms in the process of
stimulated emission. The photons emitted in the process of
spontaneous emission do not change the average momentum〈 ∑

s

ks

〉
= 0. (40)

The difference between (38) and (39) gives the momentum
fluctuation

�p = p − 〈p〉 = (p0 − 〈p0〉) + �k�Ni −
∑

s

�ks , (41)

where �Ni = Ni − 〈Ni〉 is the variation of the difference Ni =
N+ − N− from the corresponding ensemble-average value.

The average square of the momentum fluctuations along
the z axis is〈

�p2
z

〉 = 〈
�p2

0z

〉 + �
2k2〈(�Ni)

2〉 + �
2k2〈cos2 θ〉〈Ns〉. (42)

Here θ is the angle between the direction of the photon’s
spontaneous emission and the z axis and 〈Ns〉 is the average
number of spontaneously emitted photons. The first term on the
right-hand side of (42) gives the initial momentum spreading,
the second term is due to stimulated processes (absorption and
emission), and the third term is due to spontaneous emission.

Let us find 〈(�Ni)2〉 by assuming the Poisson photons
statistics. In this case

〈(�Ni)
2〉 = 〈Ni〉. (43)

Noting that 〈Ni〉 = 〈Ns〉, we finally find〈
�p2

z

〉 = 〈
�p2

0z

〉 + �
2k2〈Ns〉 + �

2k2〈cos2 θ〉〈Ns〉. (44)

This equation shows the way for numerical modeling of
the momentum diffusion process in the field of a traveling
wave. Each random momentum change due to spontaneous
emission is accompanied by the stimulated process, in which
the momentum of the atom is changed by ±�k.

Now we consider the case of counterpropagating laser
pulses. When counterpropagating laser pulses are weak,
spontaneous emission follows each absorbed photon, so the
fluctuation events of the atomic or molecular velocity change
due to light-induced processes occur as frequently as events
of spontaneous emission. This point is the background of our
computer simulation of atom and molecule movement in the
field of laser radiation.

In our calculation we assume the model of ±�k change
of momentum due to spontaneous emission (θ equals 0 or π

with equal probability). We use different approaches to solving
Eqs. (16)–(18), (36), and (35) during the atom’s interaction
with the pulses and free evolution of the atom. In the first case
the solution to this set of equations is found by using the Runge-
Kutta fourth-order method with a fixed step size. After every
step we check if a quantum jump occurs and normalize the
wave function. If a jump occurs, the atom’s velocity changes
by

�v = �k(ε1 − 0.5)|/(M|ε1 − 0.5|)
+ �k(ε2 − 0.5)|/(M|ε2 − 0.5|),

where ε1,2 are random numbers with a uniform distribution
in the interval [0,1]. In the second case, when the field does
not act on the atom, we do not need to divide the considered

time interval by small subintervals and check if the quantum
jump occurs in every subinterval. Knowing the probability
(25) of the absence of a quantum jump within the time interval
[0,t], we simulate the time moment of the quantum jump. The
scheme of calculation is the following. We compare the value
of the random variable ε uniformly distributed in the interval
[0,1] with |C1(0)|2 + |C2(0)|2 at the beginning of the time
interval. A jump occurs if ε > |C1(0)|2 + |C2(0)|2 and does not
otherwise. In the latter case the wave function is described by
Eqs. (15) and (21)–(23). If a jump occurs, we simulate the time
moment of the quantum jump. We take a random ε, which is
uniformly distributed in the interval [0,1]. For the exponential
distribution of probability Pe = e−(γ1+γ2)t , the quantity tjump =
−(ln ε)(γ1 + γ2)−1 simulates the time moment when the jump
occurs [32]. If tjump exceeds the time interval between the laser
pulses, we calculate the probability amplitudes (21)–(23) at
the beginning of the next pulse; otherwise we calculate the
atom’s velocity change

�v = �k(ε1 − 0.5)|/(M|ε1 − 0.5|)
+ �k(ε2 − 0.5)|/(M|ε2 − 0.5|)

at tjump using random numbers ε1,2 with a uniform distribution
in the interval [0,1]. The atom’s or molecule’s state is (26),
with the probability γ1[1 − P (t)]/(γ1 + γ2), or (27), with the
probability γ2[1 − P (t)]/(γ1 + γ2). To choose between these
states, we compare γ1/(γ1 + γ2) with a new random value ε.
When ε < γ1/(γ1 + γ2), the state of the atom or the molecule
is described by (26); otherwise it is described by the wave
function (27).

The described approach substantially reduces the calcula-
tion time in comparison with the Runge-Kutta method during
the whole time of the atom’s or the molecule’s motion. To
estimate the temperature of the captured atoms or molecules,
we average the velocity and the squared velocity over the
ensemble of particles.

VII. RESULTS AND DISCUSSION

In this section we describe the results of the numerical
simulation of the atoms’ and molecules’ motion in the trap
formed by the trains of counterpropagating light pulses. In
contrast to the results of [17,18], where the evolution of two-
level atoms was investigated, here we also study statistical
characteristics of the atomic and molecular ensembles.

We analyze the simplest models of the atom-field and the
molecule-field interaction. It is well known that the cycling
atom-field interaction can be realized between two states of
some atoms [20]. As an example of such an interaction,
we chose the 3 2S1/2–3 2P3/2 transition in the sodium atom.
The simplest molecule-field interaction model include three
levels. The transitions coupling the state A 2�1/2(v′ = 0,J ′ =
1/2) with the states X 2�+

1/2(v = 0,N = 1) and X 2�+
1/2(v =

1,N = 1) of SrF form the almost close three-level � scheme
[23]. The spontaneous emission from the upper state leads
the molecule to the lower states with the probability 0.9996.
Including the state X 2�+

1/2(v = 2,N = 1) in the considered
model gives a probability of the spontaneous transition to the
three lower states more than 0.9999, but we do not add this
state, possibly sacrificing the simulation accuracy for the sake
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of greater physical clarity. Anyway, an additional light field
can return the molecules that are lost from the scheme due to
spontaneous emission, as realized in experiment [23].

A. Two-level model

The investigation of simultaneous trapping and cooling of
atoms by the counterpropagating laser pulses is presented in
Refs. [17,18] for the two-level model of the atom-field inter-
action. In [17] the momentum diffusion of the two-level atoms
in an optical trap formed by sequences of counterpropagating
light pulse trains was studied and it was discovered that proper
detuning of the carrier frequency of laser pulses from the
resonance with the atom’s transition frequency leads to cooling
of the atomic ensemble. The other sign of detuning, as well as
the resonant interaction of the field with atoms, leads to heating
of the atomic ensemble. The conclusions of [17] are based on
the computer simulation of the motion of an atom in the trap
for hypothetical atomic and atom-field interaction parameters.
In [18] the motion of the 23Na atom in the trap was analyzed.
Here we take the next step in the pulse trap investigation, which
includes the simulation of the atomic ensemble characteristics.

The possible cooling of atoms in the trap can be easily
explained for weak pulses ϑ � γ T , where ϑ ≡ ϑ1 is the pulse
area γ ≡ γ1. In this case the atom mostly interacts with the
spectral component of the pulses trains that is closest to the
transition frequency. We let the carrier frequency of the pulses
be tuned below the transition frequency in the atom. Then the
atoms, due to the Doppler effect, always absorb more photons
from the laser beam opposite to their direction of motion. As
a result, a friction force arises and cools the atoms down to
the Doppler cooling limit (37). This limit is caused by the
competition between the cooling due to the friction force and
heating due to the momentum diffusion. For large pulse areas
the detuning of the carrier frequency from the resonance with
the transition frequency in the atom, needed for atoms cooling,
changes sign [18].

We consider an optical trap that extends from z = −100
to 100 mm relative to the point where counterpropagating
light pulses collide and trace the motion of an atom until it
moves inside the trap. Level g2 is not taken into account in the
simulation of 23Na motion in the trap. In addition, we suppose
ϕ11,m = ϕ12,m = 0 in (16) and (18). Figure 3 shows an example
of the atom’s motion in the field of the counterpropagating
sequences of 1-ps light pulses with a repetition frequency of
100 MHz. Very quickly (0.14 ms after the beginning of the
interaction with the field) the atom slows down to zero velocity
and then its velocity fluctuates in the region ±1 m/s. The atom
returns to the center of the trap approximately after 4.7 ms and
then fluctuates in the region ±0.25 mm. The velocity capture
range of the trap for the parameters specified in Fig. 3 extends
at least from v = −20 to 20 m/s (the temperature of the atoms
is about 1 K).

To estimate the measure of cooling in the trap, we introduce
the temperature of the atomic ensemble by the expression

Ta = m〈v2〉
kB

, (45)

where kB is the Boltzmann constant. The value of Ta coincides
with the real temperature of the ensemble in the case of the
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FIG. 3. Example of the sodium atom’s motion in the field of the
counterpropagating sequences of light pulses: (a) v(t) and (b) z(t).
The parameters are τ = 1 ps, T = 10 ns, ϑ = 0.05π , γ = 2π ×
10 MHz, δ = 2π × 5 MHz, λ = 589 nm, and M = 23 Da. The atom
starts at the center of the trap with initial velocity v0 = 5 m/s.

Maxwell velocity distribution. We expect the cooling process
in the trap to be close to the Doppler cooling [20,31], at least
for the case of a weak field. This expectation is confirmed by a
comparison of the solid curve and the dots in Fig. 4, where the
dots were calculated from Eq. (45) with averaging over 1000
sodium atoms and the solid curve represents the dependence
of the atoms’ temperature on the detuning of the frequency
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FIG. 4. (Color online) Dependence of the temperature of 1000
sodium atoms in the trap formed by the counterpropagating sequences
of light pulses on the pulse’s carrier frequency detuning on the atomic
transition frequency. The parameters are τ = 1 ps, T = 10 ns, ϑ =
0.05π , γ = 2π × 10 MHz, λ = 589 nm, and M = 23 Da.
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FIG. 5. (Color online) Dependence of the spatial capture range
of the trap �z = √〈z2〉 − 〈z〉2 on the frequency detuning δ. The
parameters are the same as in Fig. 4.

of the weak monochromatic standing wave from the atomic
transition frequency [31]

TSW = 1

2
Tmin

(
2δ

γ
+ γ

2δ

)
. (46)

For sodium atoms Tmin = 240 μK [20]. The temperature is
minimal, as in the case of the standing wave, for δ = γ /2. The
difference between the curve and the dots, according to our
calculations, becomes smaller for smaller pulse areas.

The spatial capture range of the trap depends on δ and ϑ .
The first dependence is depicted in Fig. 5. The value of δ

for the minimal capture range does not coincide with δ for
the minimal temperature; it is reached at δ = 0.3γ . For the
parameters used in modeling this dependence, the atoms are
localized in the region of the pulses’ overlapping. This region
becomes narrower when pulse area increases (see Fig. 6).

B. Three-level model

We simulate the dynamics of the three-level system for the
parameters that are close to the interaction of SrF with cw
laser radiation [23]. Our consideration neglects the probability
0.0004 of the molecule to leave the � scheme in the process
of spontaneous emission from the excited level (see Fig. 2).
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FIG. 6. (Color online) Dependence of the spatial capture range
of the trap �z = √〈z2〉 − 〈z〉2 on the pulse area for δ = 0.5γ . The
other parameters are the same as in Fig. 4.

The spontaneous emission rate from the excited state is γ =
γ1 + γ2 = 2π × 7 MHz and the branching ratio γ2/γ1 = 0.02.
Considering the equal energy of the pulses, we arrive at
the conclusion that ϑ2/ϑ1 = deg2/deg1 = √

γ2/γ1 = 0.14. The
wavelengths of the transitions are λ1 = 663.3 nm (e ⇔ g1)
and λ2 = 686.0 nm (e ⇔ g2). In the calculation of the photon
momentum for each transition we neglect the difference
between λ1 and λ2. The repetition period of the pulses is chosen
to be T = 23.8 ns. It corresponds to the period of the frequency
modulation of laser radiation in the experiment [23], which
provides the excitation of all superfine sublevels of the ground
states. The detunings δ1 and δ2 should not correspond to the
two-photon resonance condition δ2 − δ1 = 2πn/T , where n

is integer, to avoid the coherent population trapping; otherwise
the population of the excited state becomes zero and the light
pressure force vanishes [11,33]. As in the case of the two-level
model, the pulse duration is τ = 1 ps.

Figure 7 shows an example of the molecule’s motion in the
field of the counterpropagating sequences of 1-ps light pulses.
Very quickly (0.34 ms after the beginning of the interaction
with the field) the molecule slows down to zero velocity
and then its velocity fluctuates in the region ±0.4 m/s. The
molecule returns to the center of the trap approximately after
5.6 ms and then fluctuates in the region ±0.25 mm.

Sometimes, in 2% of cases, the excited molecule relax to the
g2 state. As a result, we see in Fig. 7 several almost horizontal
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FIG. 7. Example of the SrF molecule motion in the field of the
counterpropagating sequences of light pulses: (a) v(t) and (b) z(t).
The parameters are τ = 1 ps, T = 23.8 ns, ϑ1 = 0.1π , ϑ2 = 0.014π ,
γ = 2π × 7 MHz, δ1 = 2π × 3.5 MHz, δ2 = 2π × 7 MHz, λ =
663.3 nm, and M = 107 Da. The molecule starts at the center of
the trap with initial velocity v0 = 1 m/s.
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FIG. 8. (Color online) Time dependences of (a) average velocity
v̄ = 〈v〉 (thin line) and �v =

√
〈v2〉 − 〈v〉2 (thick line) and (b)

average coordinate z̄ = 〈z〉 (thin line) and �z (thick line) for an
ensemble of 400 molecules. The parameters are the same as in Fig. 7.

pieces. These pieces correspond to keeping the molecule in
the state g2, where the interaction of the molecule with the
field is much weaker than in the state g1. Between these pieces
the velocity time dependence resembles one of the two-level
atoms in the field of the counterpropagating pulse trains, shown
in Fig. 3(a). The capture range of the trap for the parameters
specified in Fig. 7 extends at least from v = −12 to 12 m/s.

The time dependences of the average coordinate z̄ =
〈z〉, average velocity v̄ = 〈v〉, �v =

√
〈v2〉 − 〈v〉2, and �z

for an ensemble of 400 molecules are depicted in Fig. 8.
Approximately after 10 μs the ensemble of molecules with
equal initial velocity becomes localized in the vicinity of the
coordinate origin with �z = 112 μm and �v = 12.2 cm/s,
which is slightly larger than 11.4 cm/s, corresponding to
Tmin = 168 μK.

C. Potential for the nanoparticle light pulse trap

Let us suppose that a nanoparticle includes active atoms
whose energetic levels almost are not perturbed by the
interaction with neighboring atoms (for example, rare-earth
atoms). We can estimate the behavior of the nanoparticle in
the field of the counterpropagating pulses by analyzing the
motion of the hypothetical two-level atom with mass equal to
M = Mnp/Na , where Mnp is the mass of the nanoparticle and
Na is the number of active atoms. Figure 9 shows an example of
a nanoparticle’s motion in the field of the counterpropagating
sequences of light pulses. The pulse’s propagation direction is
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FIG. 9. (Color online) Example of a nanoparticle’s motion in the
field of the counterpropagating sequences of light pulses: (a) v(t)
and (b) z(t). It is supposed that the mass of nanoparticle per every
active atom is 30 000 Da. The parameters are τ = 1 ps, T = 10 ns,
ϑ = 0.1π , γ = 2π × 10 MHz, δ = 2π × 5 MHz, and λ = 600 nm.
The nanoparticle starts at the center of the trap with initial velocity
v0 = 10 cm/s.

normal to the gravity acceleration. As in the case of a sodium
atom, the nanoparticle oscillates around the coordinate origin,
where the counterpropagating pulses collide. The amplitude
of the oscillations decays in the case δ > 0. Sometimes the
nanoparticle oscillates in the vicinity of the field’s nodes, which
can be seen in Fig. 9 (for example, at −30.6, −30.9, −31.5,
and −31.8 μm) jumping from one node to another neighboring
node. The period of such an oscillation is ∼160 μs. The results
of calculations show the strong potential for experimental
realization of the trap for nanoparticles with included active
atoms.

VIII. CONCLUSION

We simulated atomic and molecular motion (one particle
and an ensemble of particles) in the field of weak counter-
propagating light pulses and showed that these pulses form
a light trap that, in addition to trapping the particles, cools
them down to the Doppler temperature limit. We used the
two-level model of the atom-field interaction to analyze atoms.
The molecules in the trap were analyzed in the approximation
of the three-level �-type model, which can be applicable
for the molecules with almost diagonal Frank-Condon factor
arrays. The parameter of the molecule-field interaction must
eliminate the two-photon resonance condition. The velocity
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capture range for atoms and molecules exceeds 10 m/s and
the spatial capture range is about 100 μm.

We also discussed the applicability of the trap to confine-
ment of nanoparticles, assuming that the nanoparticles include
active atoms, i.e., atoms with transitions close to the carrier
frequency of the pulses. The simulation result shows the strong
potential for the realization of such a trap.

Recently, the frequency-comb-induced radiative force on
cold rubidium atoms was investigated for single-pulse-train
excitation and two-counterpropagating-pulse-train excitation
[34]. The delay between counterpropagating pulses was close
to 1 ns, which moves the point where the counterpropagating
pulses collide far off the center of the trap. The experimental
setup in [34] is suitable for the test of the trap based on
counterpropagating laser pulses provided the parameters of
the atom-field interaction (the time delay between pulses, the
pulse area, and the frequency detuning) are properly chosen.
As long as the atomic sample was a cloud of 87Rb atoms

trapped and cooled in the magneto-optical trap (MOT), the
double trap, consisting of the MOT and the pulse trap, could
be formed. Varying the pulse carrier frequency detuning from
the transition frequency, one can see the change of the trapped
cloud size in comparison with the no-pulse case and check if
the trap based on the counterpropagating pulses is realized.
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