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Toolkit for semiclassical computations for strongly driven molecules:
Frustrated ionization of H2 driven by elliptical laser fields
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We study the formation of highly excited neutral atoms during the breakup of strongly driven molecules.
Past work on this significant phenomenon has shown that during the formation of highly excited neutral atoms
(H∗) during the breakup of H2 in a linear laser field the electron that escapes does so either very quickly or
after remaining bound for a few periods of the laser field. Here, we address the electron-nuclear dynamics in
H∗ formation in elliptical laser fields, through Coulomb explosion. We show that with increasing ellipticity
two-electron effects are effectively “switched off.” We perform these studies using a toolkit we have developed
for semiclassical computations for strongly driven multicenter molecules. This toolkit includes the formulation
of the probabilities of strong-field phenomena in a transparent way. This allows us to identify the shortcomings
of currently used initial phase-space distributions for the electronic degrees of freedom. In addition, it includes a
three-dimensional method for time propagation that fully accounts for the Coulomb singularity. This technique
has been previously developed in the context of celestial mechanics and we currently adopt it to strongly driven
systems. Moreover, we allow for tunneling during the time propagation. We find that this is necessary in order to
accurately describe the fragmentation of strongly driven molecules.
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I. INTRODUCTION

A wealth of physical phenomena take place during the
fragmentation of strongly driven molecules by intense infrared
laser fields. Such phenomena include bond-softening and
above-threshold dissociation [1,2], molecular nonsequential
double ionization (NSDI) [3–6], and enhanced ionization
(EI) [6–8]. Exploring the interplay of electronic and nuclear
motion during the breakup of strongly driven molecules is a
task of great interest. Understanding breakup dynamics paves
the way for controlling and imaging molecular processes [9]; it
is, however, a highly challenging task due to the many degrees
of freedom involved.

The formation of highly excited neutral fragments in
linearly polarized laser fields has attracted a lot of interest
in the last few years [10–14]. In [15] we reported a theoretical
study of the mechanisms of this “frustrated”—since only one
electron eventually escapes—double-ionization process. The
breakup of H2 into a proton, a Rydberg atom (H∗), and an
escaping electron through Coulomb explosion of the nuclei is
a significant phenomenon. It accounts for roughly 10% of all
possible events during the breakup of H2. Thus, to obtain a
complete picture of the breakup of H2 it is important to also
understand the dynamics leading to H∗ formation. For linear
fields, we have shown that H∗ formation takes place through
two distinctly different routes depending on which one of the
two ionization steps is “frustrated.”

Currently, quantum-mechanical computations in three di-
mensions for H∗ formation during the breakup of strongly
driven H2 are out of reach. In this work, we present a toolkit
for three-dimensional (3D) semiclassical calculations for the
breakup of strongly driven multicenter molecules. Previous
semiclassical 3D models did not account for nuclear motion;
they used fixed centers to elucidate double ionization in
strongly driven diatomic molecules [16–18]. The important
aspects of the toolkit we present are the following: we
formulate the computation of probabilities of strong-field
phenomena in a transparent way. This allows us to identify

the shortcomings of currently used initial phase-space distribu-
tions for the electronic degrees of freedom; these shortcomings
are more evident when transitioning from the tunneling to
the over-the-barrier intensity regime. Moreover, we use a
3D method for time propagation that explicitly accounts for
the Coulomb singularity while treating two-electron effects
as well as nuclear and electronic motion at the same time.
This 3D method involves the global regularization scheme
described in [19] as well as a time-transformed leapfrog
propagation technique [20] in conjunction with the Bulirsch-
Stoer method [21,22]. This technique has been developed
in the context of gravitational few-body systems [20,23,24]
and we currently adopt it to treat strongly driven molecules.
The advantage of this latter propagation technique over the
one we previously used in [15,18] is that it is numerically
more robust with a smaller propagation error. The reason is
that in the current technique the masses do not enter in the
time transformation resulting in a more accurate treatment
of many-body systems with large mass ratios [20]. Another
important element of this toolkit is allowing for tunneling
during the propagation, that is, the time propagation is not fully
classical. We find this to be necessary in order to accurately
describe phenomena related to enhanced ionization during the
fragmentation of strongly driven molecules.

Elucidating the electron dynamics and its interplay with
nuclear motion in H∗ formation during the breakup of H2

by elliptical laser fields is a challenging problem. We do so
for two intensities: one intensity in the tunneling and one
in the over-the-barrier regime. We show how the degree of
ellipticity of the laser field changes the contribution of each
of the pathways leading to H∗ formation. Specifically, we
show that by using an elliptical field we can “switch-off”
the contribution of the pathway where two-electron effects
are important (pathway B). We find that one-electron effects
(pathway A) prevail with increasing ellipticity. Moreover, we
discuss how the observable 2D momentum distribution of the
escaping electron in H∗ formation changes with increasing
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ellipticity. Finally, we identify the tunneling site of the initially
bound electron (electron 2).

II. MODEL

We consider an elliptically polarized laser field with its
ẑ axis parallel to the molecular axis. We consider a laser field
�E(t) = E0(t)[cos(ωt)ẑ + ε sin(ωt)x̂] at 800 nm corresponding
to ω = 0.057 a.u. (a.u.: atomic units), with ε the ellipticity
of the laser field. In the current work, we consider a pulse
envelope E0(t) of the form E0(t) = E0 for 0 < t < 10T and
E0(t) = E0 cos2(ω(t − 10T )/8) for 10T < t < 12T , with T

the period of the field. In what follows for all our calculations
the laser field intensities considered refer to E2

0 . We start the
propagation at ωt0 = φ0, where the initial phase of the laser
field φ0 is chosen in the interval [−π/2,3π/2]. φ0 can be
selected randomly. For computational efficiency, in the current
work, we select equally spaced φ0. For each φ0 we set up the
initial phase-space distribution and compute the probability for
the process under consideration P

proc
φ0

; in the current work this
process is the formation of highly excited neutral fragments.
We then compute the total probability for the process of interest
by averaging over all φ0 as follows:

P proc =
∑

φ0
P

proc
φ0

�(φ0)∑
φ0

�(φ0)
, (1)

where �(φ0) is the ionization rate for field strength |Ē(t0)|;
see Appendix. We are justified in computing P

proc
φ0

for each
φ0 separately, since, for any process under consideration, the
probabilities at different φ0 are independent of each other. Note
that computing the total probability using Eq. (1) is different
than the method presented in [17], which is equivalent to

P proc =
∑

φ
proc
0

�
(
φ

proc
0

)
∑

φ0
�(φ0)

. (2)

In Eq. (2) each initial condition is created at a different
randomly selected φ0 in [−π/2,3π/2]; φ

proc
0 denotes the φ0

of a trajectory labeled as proc, for instance, a “frustrated”
ionization trajectory. For an intensity in the over-the-barrier
regime, care must be taken when using Eq. (2) to correctly
account for the different normalization constants of the
electronic initial phase-space distributions in the below- and
the over-the-barrier intensity regime. Note that this is not an
issue when using Eq. (1), since P

proc
φ0

is computed for each φ0

separately. We have checked that both Eq. (1) and Eq. (2) give
the same results, when the different normalization constants
are properly accounted for in Eq. (2).

A. Initial phase space distribution of the electrons

We next discuss how to set up the initial phase-space
distribution for the below- and the over-the-barrier intensity
regimes for the electronic degrees of freedom. If the instan-
taneous field strength at φ0 is smaller than the threshold
field strength for over-the-barrier ionization, we assume that
one electron (electron 1) tunnel ionizes, i.e., tunnels through
the field-lowered Coulomb potential to the continuum with
an initial velocity distribution that is perpendicular to the
direction of the field [25]. It is interesting to note that this first

TABLE I. The total probabilities for double ionization and
“frustrated” ionization of strongly driven H2 for an intensity in the
below-the-barrier regime, 2.03 × 1014 W/cm2, and for an intensity
in the over-the-barrier regime, 2.14 × 1014 W/cm2. For this latter
intensity the probabilities were obtained using method 1 (third
column), and method 2 (fourth column).

2.14 × 1014 2.14 × 1014

I (W/cm2) 2.03 × 1014 (method 1) (method 2)

Double ion. 49% 34% 45%
Frustrated ion. 6.3% 4.7% 5.6%

assumption has been very recently verified experimentally for
the case of strongly driven Ar [26]. We take the electron’s
initial position to be the classical exit point; see Sec. II A 1. To
describe the initially bound electron (electron 2), we use a one-
electron microcanonical distribution [27]. For the ionization
rate, �(φ0), we use the semiclassical formula derived in [28];
see Appendix.

If the instantaneous field strength at φ0 corresponds to the
over-the-barrier intensity regime, then we employ two different
methods to set up the initial phase-space distribution for the
electrons. In method 1, a double microcanonical distribution
is used [27] for the two electrons, which has already been
used in [16,17] and in previous work of ours [15,18]. An
alternative method (method 2) is described in what follows:
for electron 1 we assume that it tunnel ionizes at the maximum
of the field-lowered Coulomb potential; its kinetic energy is
equal to the difference between the first ionization energy
and the maximum of the field-lowered Coulomb potential; for
details see Sec. II A 2. For electron 2 we employ the same
one-electron microcanonical distribution as for the below-the-
barrier intensity regime.

We use both methods and compare the results for the
probabilities for double ionization and frustrated ionization
for an intensity just below (2.03 × 1014 W/cm2) and just
above (2.14 × 1014 W/cm2) the threshold intensity for over-
the-barrier ionization. One expects that, for each process, the
probabilities at these two similar intensities should be very
close to each other. In Table I, we show that this condition
is satisfied best when using method 2. Moreover, for the
above two intensities, in Fig. 1(a) we plot the distribution
of the initial phase of the laser field φ0, that is we plot
P

proc
φ0

× �(φ0)/
∑

φ0
�(φ0) for double-ionization events. We

find that the distributions for 2.03 × 1014 W/cm2 and 2.14 ×
1014 W/cm2 are more similar when using method 2 rather
than method 1 for the over-the-barrier intensity regime. That
method 2 is better than method 1 can also be seen in Fig. 1(b)
by plotting the probability P

proc
φ0

as a function of φ0. It can
be clearly seen that when using method 1 P

proc
φ0

drops sharply
in magnitude for φ0 corresponding to field strengths in the
over-the-barrier-intensity regime. We, therefore, adapt method
2 in our calculations for the over-the-barrier intensity regime.

1. Exit point of tunneling electron for the
below-the-barrier intensity regime

Assuming electron 1 tunnel ionizes with zero momentum
along the field direction, we compute the position where
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FIG. 1. Double-ionization events of strongly driven H2 for an in-
tensity in the below-the-barrier intensity regime, 2.03 × 1014 W/cm2

(grey solid line with full triangles), and for an intensity in the over-the-
barrier intensity regime, 2.14 × 1014 W/cm2, using method 1 (black
solid line with full circles) and method 2 (black dashed line with full
squares): the distribution for the initial phase φ0 (a) and P

proc
φ0

as a
function of φ0 (b).

electron 1 exits from the field-lowered Coulomb potential
using the following equation:

V (r1,‖,t) = − Z1

|r̄1 − R̄1| − Z2

|r̄1 − R̄2| +
∫ |�(r̄2)|2

|r̄1 − r̄2|dr̄2

+ r̄1 · Ē(t)

= −Ip1, (3)

computed at t = t0. We solve Eq. (3) for r1,‖, the component
of r̄1 along the direction of the field, while setting equal to zero
the component of r̄1 perpendicular to the field; Ip1 is the first
ionization potential, which for H2 is equal to 0.57 a.u. The
integral in Eq. (3) accounts for the screening effect from
the bound electron 2. Expressing the wave function �(r̄2)
of the bound electron 2 in terms of Gaussians we obtain an
analytic expression for this integral. �(r̄2) is the 1σg wave
function of H2

+ at the equilibrium distance of H2, which we
obtain using MOLPRO—a quantum chemistry package [29]. To
obtain a relatively simple analytic expression for the integral
in Eq. (3) we expand the wave function in terms of s-symmetry
Gaussian functions:

�(r̄2) =
∑

j

∑
n

cj,nφj,n(r̄2 − R̄j ), (4)

with φj,n(r̄) the contracted s-type functions,

φj,n(r̄) =
∑

i

dj,n,i

(
2αj,n,i

π

)3/4

e−αj,n,i r̄
2
, (5)

and R̄j the position vectors of the nuclei. Expanding in s-
symmetry Gaussian functions is a very good approximation
for the wave function currently under consideration. The final
expression for the screening potential due to electron 2 is

∫ |�(r̄2)|2
|r̄1 − r̄2|dr̄2 =

∑
j,j ′

∑
n,n′

∑
i,i ′

cj,ncj ′,n′dj,n,idj ′,n′,i ′

× I(r̄1,R̄j ,R̄j ′ ,αj,n,i ,αj ′,n′,i ′ ), (6)

where the function I (r̄1,R̄j ,R̄j ′ ,α,β) is given by

I (r̄1,R̄j ,R̄j ′ ,α,β) = (4αβ)3/4

(α + β)3/2

erf(
√

α + β|r̄1 − R̄|)
|r̄1 − R̄|

× exp

[
−αβ(R̄j − R̄j ′ )2

α + β

]
, (7)

with R̄ = (αR̄j + βR̄j ′ )/(α + β) and erf(x) the error func-
tion [30]. For the current calculation the coefficients cj,n,
dj,n,i , and αj,n,i are obtained from a Hartree-Fock calculation
with MOLPRO using the aug-cc-pV5Z basis set. The calculated
Hartree-Fock energy for H2

+ at the equilibrium distance of
H2, is −0.57 a.u. which is in full agreement with the exact
value derived in [31].

At this point a brief discussion regarding the exit point is
in place. For some simple strongly driven atoms the exact
exit point can be computed using parabolic coordinates [32].
Such computations in terms of parabolic coordinates have been
employed in a series of papers, such as [33–35] to mention just
a few. Recently, it was demonstrated that using the exact exit
point is necessary to accurately account for the observable
momentum of the tunneling electron in attoclock experiments
involving single ionization in atoms [36]. For most atoms and
molecules, however, it is not possible to compute the exact
exit point using parabolic coordinates. Thus, approximations
are employed such as the one in the current work. Namely,
Eq. (3) is effectively a 1D equation where only the potential
along the direction of the field is accounted for. That is, we
assume that electron 1 tunnels along the direction of the field
and, using Eq. (3), we compute approximately the exit point.
For the strong-field phenomena under consideration in our
studies, which are double ionization and “frustrated” double
ionization, this approximation has proven to be a very good
one; our results on “frustrated” double ionization in linearly
polarized laser fields [15] are in very good agreement with
experimental ones [10].

2. Exit point of tunneling electron for the
over-the-barrier intensity regime

If the instantaneous field strength at the initial phase
φ0 is larger than the threshold intensity for over-the-barrier
ionization, then we assume that electron 1 exits in a direction
opposite to the field at a distance rmax [37]; rmax is the coor-
dinate along the laser field direction where the field-lowered
Coulomb potential V (r1,‖,t0) is maximum. In addition, we set
the magnitude of the momentum of electron 1, p̄1, equal to

|p̄1| =
√

2[ε1 − V (rmax,t0)] = √−2[Ip1 + V (rmax,t0)]. (8)

The direction of p̄1 is uniformly distributed in space with the
only restriction being that p̄1 · Ē(t0) � 0.

B. Initial phase space distribution of the nuclei

We take the initial vibrational state of the nuclei to be the
ground state of the Morse potential

VM (R) = D(1 − e−β(R−R0))2, (9)

with R the internuclear distance, D = 0.174 a.u., β =
1.029 a.u., and R0 = 1.4 a.u. (equilibrium distance of H2).
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FIG. 2. The final energy distribution of the H+ or H∗ fragments
for a laser field intensity of 1.5 × 1014 W/cm2 for different initial
momentum distributions of the nuclei: Wigner distribution (black
solid line with full circles), 4.3 a.u. relative momentum of the nuclei
(black dashed line with full squares), and nuclei initially at rest (grey
solid line with full triangles).

The relative momentum of the nuclei satisfies

p2
rel

2μ
+ VM (R) = E0, (10)

where E0 ≈ 0.01 a.u is the vibrational ground state and

μ = mn1mn2

mn1 + mn2

, (11)

where mn1 and mn2 are the masses of the nuclei. We choose
the Wigner distribution of the ground state of the Morse
potential [38] to describe the initial phase-space distribution
of the nuclei. The intensity we consider is high enough
to justify restricting the initial distance of the nuclei to
R0 [39]. Concerning the relative momentum of the nuclei,
prel, we assign to it a random number uniformly distributed
in the interval [0, 10]; for values greater than 10 the Wigner
distribution of the state under consideration is essentially zero.
After determining the relative momentum, we determine the
momenta of the two nuclei [40].

Instead of the Wigner distribution we can use the classical
value of the relative momentum, which we find to be equal
to 4.3 a.u. from Eq. (10). In addition, we also consider a
phase-space distribution with the nuclei initially at rest. We
find that the Wigner and the two classical distributions yield
the same results for the processes under consideration in this
work; see Fig. 2.

C. Propagation technique

Next, we describe the technique we follow to propagate
the full four-body Hamiltonian in time, i.e., including both
electronic and nuclear motion. We present the technique in the
context of N Coulomb interacting particles that are driven
by a laser field. Previously, in [15,18], we formulated the
equations of motion using the global regularization scheme
described in [19]. In this latter work, the resulting equations
of motion were propagated using the fifth-order Runge-Kutta
method [21]. In the current work, we use a time-transformed
leapfrog propagation technique [20] in conjunction with
the Bulirsch-Stoer method [21,22]. Combining these two

techniques has been used successfully to describe gravitational
few-body systems [20,23,24]. The advantage of the current
propagation technique over the one we previously used
in [15,18] is that it is numerically more robust with a smaller
propagation error. One reason is that, unlike the technique
we previously used, in the current technique the masses do
not enter in the time transformation resulting in a more
accurate treatment of many-body systems with large mass
ratios [20]. Note that the current technique as well as the
technique we previously used in [15,18] explicitly account
for the accurate treatment of the Coulomb singularity during
time propagation. This is an essential ingredient of an accurate
classical treatment, since classically an electron is allowed to
come infinitely close to a nucleus.

1. Transforming to a new coordinate system

The Hamiltonian for N Coulomb interacting particles in
the presence of a laser field is given by

H =
N∑

i=1

p2
i

2mi

+
N−1∑
i=1

N∑
j=i+1

QiQj

|r̄i − r̄j | −
N∑

i=1

Qir̄i · Ē(t), (12)

where Qi is the charge, mi is the mass, p̄i is the mo-
mentum vector, and r̄i is the position vector of particle i

and Ē(t) = (E1(t),E2(t),E3(t)) is the laser-field vector. Next,
we transform to a new coordinate system that involves the
relative coordinate vectors q̄ and the corresponding conjugate
momenta ρ̄, which are given by [19]

q̄ij = r̄i − r̄j , (13)

ρ̄ij = 1

N

(
p̄i − p̄j − mi − mj

M
〈ρ̄〉

)
, (14)

where 〈ρ̄〉 = ∑N
i=1 p̄i and M = ∑N

i=1 mi . Expressing r̄ and p̄

in terms of q̄ and ρ̄ we obtain

r̄i = 1

M

N∑
j=i+1

mj q̄ij − 1

M

i−1∑
j=1

mj q̄ji + 〈q̄〉, (15)

and

p̄i =
N∑

j=i+1

ρ̄ij −
i−1∑
j=1

ρ̄j i + mi

M
〈ρ̄〉 (16)

where 〈q̄〉 = 1
M

∑N
i=1 mir̄i . Next, we define a fictitious particle

for each ij pair replacing the ij with the k index as follows:

k(i,j ) = (i − 1)N − i(i + 1)/2 + j, (17)

for i < j with a total of K = N(N−1)
2 fictitious particles. Using

this notation Eq. (16) takes the form

p̄i =
[

K∑
k=1

aikρ̄k

]
+ mi

M
〈ρ̄〉, (18)

with aik = 1 and ajk = −1 when k = k(i,j ), otherwise aij =
0. Expressing the Hamiltonian in Eq. (12) in terms of the
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relative coordinates and conjugate momenta we obtain

H =
K∑

k,k′=1

Tkk′ ρ̄kρ̄k′ + 1

2M
〈ρ̄〉2 +

K∑
k=1

Uk

qk

−
(

K∑
k=1

Lkq̄k +
N∑

i=1

Qi〈q̄〉
)

· Ē(t) (19)

with

Tkk′ =
N∑

i=1

aikaik′

2mi

, (20)

Uk = QiQj , (21)

Lk = Qimj − Qjmi

M
. (22)

The equations of motion are, then, given by

dq̄k

dt
= 2

K∑
k′=1

Tkk′ ρ̄k′
d〈q̄〉
dt

= 1

M
〈ρ̄〉, (23)

dρ̄k

dt
= Ukq̄k

q3
k

+ LkĒ(t)
d〈ρ̄〉
dt

=
N∑

i=1

QiĒ(t). (24)

2. Time-transformed leapfrog

For close encounters between two particles the Hamiltonian
in Eq. (19) is singular. Previously, in [15,18], this issue was
addressed by transforming to regularized coordinates [19].
In the current work, to address the singularity, we use the
time-transformed leapfrog method that is described in [20];
we can do so, since in Eq. (24) the derivative expressions
are independent of the quantities themselves. In the leapfrog
method two sets of first-order differential equations are
identified. In our case, these two sets correspond to the relative
coordinates q̄ and the corresponding conjugate momenta ρ̄. In
addition, we consider the time transform ds = �(q̄)dt [20];
�(q̄) is an arbitrary positive function of the relative position
vectors. Introducing a new auxiliary variable W = � the
equations of motion take the form q̄ ′ = ˙̄q(ρ̄)/W , t ′ = 1/W ,
and ρ̄ ′ = ˙̄ρ(q̄)/�; a prime denotes the derivative with respect
to the new time variable s. Instead of using the relation
W = � directly, we obtain the value of W from the differential
equation:

dW

dt
= ˙̄q(ρ̄) · ∂�(q̄)

∂q̄
. (25)

Applying the leapfrog method we now propagate q̄, t , ρ̄, and
W over a time step h as follows: (i) we propagate q̄ and t over
half a time step, h/2; (ii) we propagate ρ̄ and W over a time
step h using the values of q̄ and t at half the time step h/2.
For each pair of a relative coordinate q̄ and the corresponding
conjugate momentum ρ̄ the time-transformed leapfrog set of

equations take the form

q̄1/2 = q̄0 + h

2

˙̄q(ρ̄0)

W0
,

t1/2 = t0 + h

2

1

W0
,

ρ̄1 = ρ̄0 + h
˙̄ρ(q̄1/2)

�(q̄1/2)
,

(26)

W1 = W0 + h
˙̄q(ρ̄0) + ˙̄q(ρ̄1)

2�(q̄1/2)
· ∂�(q̄)

∂q̄

∣∣∣∣
q̄=q̄1/2

,

q̄1 = q̄1/2 + h

2

˙̄q(ρ̄1)

W1
,

t1 = t1/2 + h

2

1

W1
,

where the subscripts 0, 1/2, 1 denote the values of the variables
at the initial time, at half a time step, and at the end of a time
step. Note that we have K such sets of equations, as many
as the number of fictitious particles. We choose � so that if
any of the relative coordinates becomes small (two-body close
encounter) then the time step reduces accordingly:

� =
K∑

k=1

1

|q̄k| . (27)

3. Bulirsch-Stoer method

The final step in the integration of the equations of motion
involves incorporating the leapfrog method into the Bulirsch-
Stoer method [21,22]. In this latter method, the propagation
over a time step H takes place by splitting it into n substeps
of size h = H/n. For the propagation over each one of these
substeps, we use the time-transformed leapfrog technique. The
algorithm we follow to propagate is given by [23,24]

q̄1/2 = q̄0 + h

2

˙̄q(ρ̄0)

W0
,

t1/2 = t0 + h

2

1

W0
,

ρ̄1 = ρ̄0 + h
˙̄ρ(q̄1/2)

�(q̄1/2)
,

W1 = W0 + h
˙̄q(ρ̄0) + ˙̄q(ρ̄1)

2�(q̄1/2)
· ∂�(q̄)

∂q̄

∣∣∣∣
q̄=q̄1/2

,

q̄m−1/2 = q̄m−3/2 + h
˙̄q(ρ̄m−1)

Wm−1
,

tm−1/2 = tm−3/2 + h
1

Wm−1
,

...

ρ̄m = ρ̄m−1 + h
˙̄ρ(q̄m−1/2)

�(q̄m−1/2)
,

Wm = Wm−1 + h
˙̄q(ρ̄m−1) + ˙̄q(ρ̄m)

2�(q̄m−1/2)
· ∂�(q̄)

∂q̄

∣∣∣∣
q̄=q̄m−1/2

,

...
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q̄n = q̄n−1/2 + h

2

˙̄q(ρ̄n)

Wn

,

tn = tn−1/2 + h

2

1

Wn

, (28)

where m = 2, . . . ,n. This process of integrating from q̄0,
ρ̄0 to q̄n, ρ̄n is repeated with increasing values of n until
extrapolation to zero time step, i.e., q̄n and ρ̄n for n → ∞,
is achieved with satisfactory error. Using the techniques
described above we obtain results similar to those in [15] for
H2 when driven by a linearly polarized laser field. The current
technique is numerically more robust than the one used in [15]
and we, thus, adopt it in what follows.

D. Tunneling during propagation

During time propagation, we allow each electron to tunnel
at the classical turning points along the field axis using the
Wentzel-Kramers-Brillouin (WKB) approximation; for details
see [41]. For the transmission probability we use the WKB
formula for transmission through a potential barrier [42],

T ≈ exp

(
−2

∫ rb

ra

[2(Vtun(r,ttun) − εn)]1/2dr

)
, (29)

with Vtun(r,ttun) the potential along the field direction of each
electron in the presence of the nuclei and the laser field, which
is of the same form as the potential in Eq. (3) except for the
integral term; εn is the energy of an electron at the time of
tunneling, ttun, and ra and rb are the classical turning points.
We find that accounting for tunneling during time propagation
is necessary in order to accurately describe phenomena related
to enhanced ionization during the fragmentation of strongly
driven molecules.

E. Identifying Rydberg states in neutral atoms

In what follows, we adopt a classical trajectory Monte Carlo
(CTMC) method that involves all the techniques discussed
in the previous subsections. We use this CTMC method to
describe the formation of highly excited neutral atoms, through
Coulomb explosion, in strongly driven H2. After propagat-
ing the trajectories to the asymptotic limit we select trajec-
tories that produce H+, a free electron, and H∗ (where ∗ denotes
that the electron is in a n > 1 quantum state). To identify the
trajectories when the electron is captured in an excited state,
we first find the classical principal number nc = 1/

√
2|εn|,

where εn is the total energy of the trapped electron. We, next,
assign a quantum number so that the following criterion, which
is derived in [43], is satisfied:

[(n − 1)(n − 1/2)n]1/3 � nc � [n(n + 1/2)(n + 1)]1/3.

(30)

III. RESULTS

In what follows we consider two laser field intensities,
specifically, 1.5 × 1014 W/cm2 in the tunneling regime and
2.5 × 1014 W/cm2 in the over-the-barrier regime. In Fig. 3 we
compute the distribution of the quantum number n for ε = 0
and ε = 0.45 for the two field intensities. We find that the
n quantum number peaks around 8 in all cases considered.

(b)(a)

FIG. 3. The distribution of the quantum number n for a field
intensity 1.5 × 1014 W/cm2 (a), and 2.5 × 1014 W/cm2 (b). The
black solid line with full circles corresponds to ε = 0, and the grey
dashed line with full squares corresponds to ε = 0.45.

In Fig. 4 we show the energy distribution of the H+ and
H∗ fragments for the same two intensities and ellipticities
of the laser field. The energy distribution of the H+ and H∗
fragments remains roughly the same as a function of ellipticity
while it peaks at a slightly higher value for 2.5 × 1014 W/cm2

compared to 1.5 × 1014 W/cm2.
Next, we investigate the dependence of the two pathways

of H∗ formation on the degree of ellipticity of the laser field.
These pathways can be separated as to which one of the two
ionization steps, i.e., the earlier tunnel ionization of electron 1
or the later tunnel ionization of electron 2, is “frustrated” [15].
In Fig. 5(a) we show pathway A where electron 1 tunnel
ionizes, subsequently escaping very quickly. Electron 2, later,
tunnel ionizes and quivers in the laser field; however, when the
field is turned off, electron 2 does not have enough drift energy
to escape and occupies a Rydberg state of the H atom instead.
Hence, in pathway A the later ionization step is frustrated. In
Fig. 5(b) we show pathway B where electron 1 tunnel ionizes
very quickly, quivering in the field, while electron 2 tunnel
ionizes and escapes after a few periods of the laser field. When
the laser field is turned off, electron 1 does not have enough
energy to escape and remains in a Rydberg state of the H atom
instead, i.e., the earlier ionization step is frustrated.

In Fig. 6 we show how the probability of pathway A and B
(out of all trajectories) changes with the degree of ellipticity of
the laser field. For the smaller intensity of 1.5 × 1014 W/cm2,

(a) (b)

FIG. 4. The final energy distribution of the H+ or H∗ fragments
for a field intensity 1.5 × 1014 W/cm2 (a), and 2.5 × 1014 W/cm2

(b). The black solid line with full circles corresponds to ε = 0, and
the grey dashed line with full squares corresponds to ε = 0.45.
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FIG. 5. Schematic illustration of the two routes leading to
formation of H∗ for ε = 0: (a) pathway A, (b) pathway B. Shown is
the time-dependent position along the laser field for electrons (black
lines) and ions (gray broken lines). This figure appears in [15]; we
also include it here for completeness.

we find that as ε increases the probability of pathway B drops
more sharply than that of A. For instance, for ε = 0 pathway
B is 1.6 times more probable than pathway A, while for ε =
0.45 pathway B is roughly six times less probable than A.
Thus, for the smaller intensity in the tunneling regime, for
ε > 0.4 pathway B is practically “switched off” with pathway
A prevailing. For the higher intensity of 2.5 × 1014 W/cm2, we
find that as ε increases the probability of pathway B drops even
more sharply compared to the smaller intensity. For instance,
for ε = 0 pathway B is roughly as probable as pathway A,
while for ε = 0.45 pathway B is roughly 25 times less probable
than A. Thus, for the higher intensity in the over-the-barrier
regime, for ε > 0.3 pathway B is practically switched off.

The question that naturally arises is why pathway B is more
sensitive to the ellipticity of the laser field. Double-ionization
events where recollisions prevail are very sensitive to ε. The
reason is that a slight ellipticity of the laser field offsets
the electron from the ion roughly by 5εE0/ω

2 making a
recollision less probable [44]. The sensitivity to ellipticity of
our frustrated double-ionization events for pathway B strongly
suggests that two-electron effects in the form of recollisions
underlie pathway B and not pathway A. This explanation
is also consistent with pathway B being switched-off faster
for 2.5 × 1014 W/cm2 than for 1.5 × 1014 W/cm2: the offset
of the recolliding electron from the ion core increases with
increasing intensity of the laser field.

(a) (b)

FIG. 6. Probabilities for the two pathways for an intensity 1.5 ×
1014 W/cm2 (a), and 2.5 × 1014 W/cm2 (b). The black solid line with
full circles is for pathway A, and the grey dashed line with full squares
is for pathway B.

Indeed, in [15] we have provided evidence that one-electron
effects prevail in pathway A, while two-electron effects prevail
in pathway B. That is, we have shown that in pathway A
electron 2 transitions from the ground state of the H2 molecule
to a high Rydberg state of the H atom by gaining energy
through a strong interaction with the laser field. This gain
of energy resembles enhanced ionization in H2

+ [7]. We
have also provided evidence that in pathway B electron 2
gains energy to ionize mainly through two-electron effects
resembling delayed NSDI (nonsequential double ionization)
which is a major pathway of double electron escape (also
referred to as recollision-induced excitation with subsequent
field ionization, RESI [45]). In delayed NSDI (weak recol-
lision) the recolliding electron returns to the core close to
a zero of the field, transfers energy to the second electron
and one electron escapes with a delay after recollision. For
pathway B the electron-electron correlation is in the form of
frustrated delayed NSDI since one electron eventually does
not escape. From the above, it follows that the dependence of
the probability of pathways A and B on ε (Fig. 6) provides
strong support that recollisions underlie pathway B.

Pathway A also decreases with ellipticity, even though
pathway A is less sensitive to ellipticity compared to path-
way B. To understand this decrease we consider the change
in momentum, due to the laser field, of the electron that
tunnel ionizes in pathway A, i.e., of electron 2. This change
is roughly 2

√
Up[sin(ωttun)ẑ − ε cos(ωttun)x̂], where ttun is the

time of tunnel ionization and Up = E2
0/4ω2. Moreover, since

tunnel ionization takes place mostly around a maximum of the
laser field, the change in momentum of electron 2 reduces to
2ε

√
Upx̂. Thus, with increasing ellipticity the momentum of

electron 2 increases. As a result frustrated double-ionization
events are converted to double-ionization events, accounting
for the decrease with ellipticity of the probability of pathway A.

Figure 6 shows that two-electron effects are essentially
switched off in H∗ formation for ε > 0.4 for an intensity
1.5 × 1014 W/cm2 and for ε > 0.3 for an intensity 2.5 ×
1014 W/cm2 with pathway A prevailing. This prevalence of
one-electron effects with increasing ε is also evident in the
observable momentum space of the escaping electron. In
Fig. 7 we plot the total x-z momentum distribution of the
escaping electron for ellipticities 0 and 0.45 for the two laser
field intensities currently under consideration. The total 2D
distributions account for both pathways and all initial tunneling
directions of electron 1. For ε = 0 [Figs. 7(a) and 7(c)] the
traces of both pathways A and B (Fig. 6) are present in the 2D
momentum distributions. The trace of pathway B is the large
spread in momentum [15] which is mostly due to the strong
interaction of electron 2 with the Coulomb potential [46].
However, for larger values of ε this large spread disappears
[see Figs. 7(b) and 7(d)]; this is a clear signature of the
prevalence of pathway A. Note that with increasing ellipticity
the highest momentum along the x axis increases. This is
expected since the maximum change in momentum along the
x axis, due to the laser field, is approximately given by 2ε

√
Up.

We note that the 2D momentum distributions for the higher
intensity reach higher values of momentum in

√
Up than for

the lower intensity. The reason, most probably, is that while
in the tunneling regime electron 1 tunnel ionizes at time zero
with zero velocity along the direction of the laser field, in
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FIG. 7. (Color online) The 2D electron momentum distribution
for an intensity 1.5 × 1014 W/cm2 (a) and (b), and for 2.5 ×
1014 W/cm2 (c) and (d). Figures on the left are for ε = 0, and those
on the right are for ε = 0.45. The momentum is expressed in

√
Up .

the over-the-barrier regime electron 1 tunnels with nonzero
velocity.

Moreover, for larger values of ε, see Figs. 7(b) and 7(d),
we obtain an asymmetric two-lobe momentum distribution.
This asymmetry, first observed in [47], has sparked a lot of
studies in single ionization of atoms in elliptical fields. It
has been, mainly, attributed to the effect of the Coulomb
potential [48]. Since our 3D semiclassical model fully accounts
for the Coulomb potential the asymmetry in the momentum
distribution is also evident in our results in Figs. 7(b) and 7(c).
Besides the current study, studies of this asymmetry for
molecular systems are few; they include a theoretical one of
strongly driven H2

+ [37] and an experimental one on double
ionization of H2 [49]. Our results for H∗ formation in Figs. 7(b)
and 7(d) show that with increasing ε the two-lobe structure
tends to align closer to the minor axis of the field (the x axis
in our case) [37,49].

Finally, we briefly discuss the sites electron 2 tunnel ionizes
from. Specifically, we consider the combined potential of
electron 2 in the presence of the two nuclei and the laser
field along the direction of the laser field (tunneling direction).
Our results indicate that when electron 2 tunnel ionizes the
internuclear distances range from intermediate to large. For
these distances and at times close to extrema of the field we
find that the potential of electron 2 along the direction of the
field has either a double or a single well. For the double well
an inner barrier is present such that the potential of electron 2
is higher in one well (up-field) compared to the other well
(low-field) (as is the case for enhanced ionization [6–8]). The
tunnel ionization sites are thus an up-field, low-field, and a
single well; see Fig. 8. We consider ellipticities up to 0.45.
For 1.5 × 1014 W/cm2 we find that, out of all H∗ formation

(a)

(b)

(c)

FIG. 8. (Color online) Schematic illustration of the sites an elec-
tron can tunnel from: (a) up-field well, (b) low-field well, and
(c) single well.

events, electron 2 tunnel ionizes from an up-field well in 85%
of the cases while from a low- field or a single well in 10% of
the cases. For 2.5 × 1014 W/cm2, we find that electron 2 again
mostly tunnel ionizes from an up-field well, however, there is
an increased probability to tunnel ionize from a low-field or a
single well compared to the lower intensity.

IV. CONCLUSIONS

We have presented a toolkit for semiclassical computa-
tions of strongly driven molecules. This toolkit includes the
formulation of the probabilities of strong-field phenomena in
a transparent way. This formulation allowed us to identify
an electronic initial phase space distribution for the over-the-
barrier intensity regime that works better than previous ones.
However, more work is needed to formulate more accurate
initial phase-space distributions for the electronic degrees
of freedom in the over-the-barrier regime. This toolkit also
includes a three-dimensional method for time propagation
that fully accounts for the Coulomb singularity. This 3D
method combines the time-transformed leapfrog propagation
technique and the Bulirsch-Stoer method and has been pre-
viously developed in the context of celestial mechanics. In
the current work, we adopt this technique to strongly driven
systems. Another important element of this toolkit is allowing
for tunneling during propagation, that is, the time propagation
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is not classical. We find that the latter is necessary in order
to accurately describe phenomena associated with enhanced
ionization in the fragmentation of strongly driven molecules. In
the current work, using this toolkit, we elucidated the interplay
of the electronic and nuclear dynamics in H∗ formation
during the break up of strongly driven H2 by elliptical laser
fields. We find that with increasing ellipticity we “switch off”
two-electron effects. That is, we find that pathway A, which
is similar to a frustrated enhanced ionization process, prevails.
Moreover, we have shown that the observable momentum
space of the escaping electron clearly bears the imprints of
one-electron effects with increasing ellipticity.
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APPENDIX: IONIZATION RATE

For both the below- and the over-the-barrier intensity
regimes we use a semiclassical formula for the tunneling rate
that was derived in [28],

� = 2πκ2C2
κ

(
2κ3

|Ē(t0)|
)2Q/κ−1

exp

(
− 2κ3

3|Ē(t0)|
)

R(θL),

(A1)

where |Ē(t0)| is the instantaneous field strength, θL is the
angle between the laser field and the z axis in the molecular
frame, κ = √

2Ip1, and Q is the asymptotic charge. For H2 the
asymptotic charge is equal to 1. The coefficient Cκ is obtained
by fitting the Dyson orbital to the following asymptotic form
of the wave function,

�(r̄) ≈ Cκκ
3/2(rκ)Q/κ−1e−κrF (cos θ, sin θ cos φ). (A2)

The Dyson orbital [50] is the overlap integral of the two-
electron wave function of the molecule with the one-electron
wave function of the molecular ion; for the current work the
overlap integral is that of the ground state of H2 with the 1σg

state of H2
+ computed at the equilibrium distance of H2. We

derive both wave functions with the Hartree-Fock method,
using MOLPRO [29]. For H2 the Hartree-Fock energy obtained
is −1.134 a.u., which has a 3.5% relative difference from the
experimental value of −1.175 a.u. [51].

The function F (cos θ, sin θ cos φ) depends on the molec-
ular orbital the electron occupies before tunneling. For H2

the electron occupies a 1σg orbital [52], which we can
approximately express as a linear combination of atomic
orbitals of two 1s orbitals

�1σg
(r̄) ∝ e−κ|r̄−R̄1| + e−κ|r̄−R̄2|. (A3)

Taking the asymptotic expansion for r  R0, we derive an
expression for F (cos θ, sin θ cos φ),

F (cos θ ) = cosh

(
κR0

2
cos θ

)
, (A4)

FIG. 9. (a) The ionization rate of H2 vs the field strength for a laser
field parallel to the molecular axis, calculated with Eq. (A1) (black
solid), obtained from [54] (grey dashed), and obtained from [55] (full
circle).

with R0 the distance between the nuclei. An alternative
expression is provided in [53]

F (cos θ ) = cosh

(
κR0

2
cos θ

)
[1 + α cos2 θ ]. (A5)

We find that both expressions give similar results for the
tunneling rate. After fitting the Dyson orbital in the interval
3 � r � 6 a.u. and 0 � θ � π we find Cκ = 0.51 and α =
5.4 × 10−3 for H2. The interval was chosen so that for
r > 3 a.u., the Coulomb potential corresponding to the H2

+
molecular ion has effectively the form of a one-center Coulomb
potential, i.e., −Q/r; the upper limit was chosen so that for
r > 6 a.u. the Dyson orbital is practically zero.

As discussed in [28] (shown also here for completeness),
the function R(θL) is given by

R(θL) =
[
F0(θL) − 4|Ē(t0)|

3κ3
F2(θL) + 2|Ē(t0)|

3κ3
F3(θL)

]2

+ 2|Ē(t0)|
9κ3

F 2
1 (θL), (A6)

where

F0(θL) = F (cos θL, sin θL),

F1(θL) = Fv cos θL − Fu sin θL,
(A7)

F2(θL) = Fu cos θL + Fv sin θL,

F3(θL) = Fvv cos2 θL + Fuu sin2 θL − Fuv sin 2θL,

with Fu, Fv , Fuu, Fvv , and Fuv the first- and second-order
partial derivatives of F (u,v) with respect to u and v, calculated
at u = cos θL and v = sin θL. The ionization rate we obtain
using Eq. (A1) is in very good agreement with the ones
obtained in [54,55]; see Fig. 9.
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Phys. Rev. A 88, 033411 (2013).

[38] A. Frank, A. L. Rivera, and K. B. Wolf, Phys. Rev. A 61, 054102
(2000).

[39] A. Saenz, Phys. Rev. A 61, 051402(R) (2000).
[40] H. Goldstein, Classical Mechaniss (Addison-Wesley, Reading,

MA, 1980).
[41] J. S. Cohen, Phys. Rev. A 64, 043412 (2001).
[42] E. Merzbacher, Quantum Mechanics, 3rd ed. (Wiley, New York,

1998).
[43] R. L. Becker and A. D. MacKellar, J. Phys. B 17, 3923

(1984).
[44] P. Dietrich, N. H. Burnett, M. Ivanov, and P. B. Corkum, Phys.

Rev. A 50, R3585(R) (1994).
[45] R. Kopold, W. Becker, H. Rottke, and W. Sandner, Phys.

Rev. Lett. 85, 3781 (2000); B. Feuerstein, R. Moshammer, D.
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