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Accessing electronic correlations by half-cycle pulses and time-resolved spectroscopy
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Ultrashort nonresonant electromagnetic pulses applied to effective one-electron systems may operate on the
electronic state as a position or momentum translation operator. As derived here, extension to many-body
correlated systems exposes qualitatively new aspects. For instance, to the lowest order in the electric field
intensity the action of the pulse is expressible in terms of the two-body reduced density matrix enabling us to
probe various facets of electronic correlations. As an experimental realization we propose a pump-probe scheme
in which after a weak, swift “kick” by the nonresonant pulse the survival probability for remaining in the initial
state is measured. This probability we correlate to the two-body reduced density matrix. Since the strength of
electronic correlation is bond-length sensitive, measuring the survival probability may allow for a direct insight
into the bond-dependent two-body correlation in the ground state. As an illustration, full numerical calculations
for two molecular systems are provided and different measures of electronic correlations are analyzed.
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I. INTRODUCTION

Recent experiments demonstrated the feasibility of ultra-
short attosecond laser pulses and their use in combination
with other optical pump-probe techniques to access various
facets of the electronic and ionic dynamics [1–5]. Of a
special relevance here are strongly time-asymmetric pulses.
The simplest example is a mono cycle, time asymmetric pulse
for which one half-cycle could be short and strong and the
other half-cycle could be longer but weaker in a way that
the time integral over the electric field amplitude vanishes, as
required for a propagating pulse. When interacting with matter,
the effect of two half-cycles could be quite different [6–9]. For
instance, if the first half-cycle (with duration τ ) is shorter than
the time of relevant transitions taking place in the system, while
the second, weaker half-cycle is much longer, then the effect
of the whole pulse is mainly governed by the first half-cycle
of the pulse (HCP). Henceforth we refer to this situation as the
HCP case. The second half-cycle may act as an off-set dc tail
(if weak or long enough).

In this limit it is convenient and sometime sufficient to
introduce theoretically the notion of HCP kick as a useful
idealization of the action of the whole pulse [6,10–21]:
Namely, in the HCP case, the system is insensitive to the details
of the pulse temporal shape. This allows relating the action of
HCP to that of a kick, i.e., a δ function in time. Substantial
simplifications of the triggered quantum dynamics then follow.
We will demonstrate below that by performing measurements
in an appropriate setup on the system immediately after
such an excitation allows us to infer the strength of the
electronic correlation in the system and its dependency on
the internal structure, and to quantify the entanglement. The
experimental arrangement that we suggest is the following:
We start from the ground state, of say some molecular structure
(another stationary case is also possible), and “shake” the
electronic system by a weak but short HCP. As the system
evolves and possibly dissociates we measure, e.g., via the
time-resolved photoemission [22], the initial-state remaining,
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i.e., what we will call the survival probability. Detecting
only the kinetic energies of the dissociating ions upon the
kick, one may access information on the ionic time evolution
that can be used when measuring the time-resolved survival
probability as a function of the molecular bond (since at this
particular time one has information on the molecular bond
distance). Currently we are not aware of any corresponding
experiment to this proposal, however, the ingredients of the
suggested setup, such as HCP, time-resolved photoemission
were demonstrated [23–25]. From the survival probability
we deduce features akin to the reduced two-particle density
matrix.

Specifically, the envisaged experiment should measure
upon the kick the initial state occupation probability as a
function of the evolving internuclear distance. It is this quantity
which we calculated numerically and will be discussing below.
Knowing (from theory or experiment [26,27]) the molecular
bond distance upon the nonresonant pulse excitation we can
so image the time evolution of the survival probability. We
relate it below to the reduced two-particle density matrix which
vanishes for the single determinantal states and, thus, can be
used as a measure of electronic correlations.

So the key point of this study is how to measure and quantify
electronic correlations. In Sec. II we give an explicit expression
for the probability of the system to remain in its ground state
after the application of a δ-like pulse. While for one-electron
systems the quantum dynamics was discussed by many authors
the nontrivial part tackled here is the many-body nature of the
problem. In Sec. III we put the discussed probability in the
context of other proposed measures of electronic correlations:
the Frobenius norm of the second cumulant matrix and the
von Neumann entropy. Stretching molecular bonds incur
in general a change in the amount of correlations in the
electronic subsystem. The proposed experiment is illustrated
by numerical simulations which show what a possible outcome
might be expected (Sec. IV). The dependence of different cor-
relation measures on the interatomic distances is studied, and
analytical expressions in the asymptotic regime are obtained.
Additionally, our calculations allow us to test numerically for
important inequalities for the entropy measures.
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II. THEORY

Consider an N -electron system in its ground state. Its
electronic properties are completely described by the many-
body wave function ψ0(1,2, . . . ,N ). Although the choice
of the gauge is irrelevant for the present discussion we
will assume here the light-matter interaction to be given
in the length gauge by the dipole operators d̂α , where α

denotes a projection (determined by the pulse polarization).
The coupling operators are of one-particle type, Hermitian
[d̂α = (d̂α)†] and of vector character. By choosing a suitable
one-particle basis we can cast the light-matter interaction in
the second-quantized form δH (t) = −∑

α

∑
i,j dα

ijE
α(t)ĉ†i ĉj ,

where Eα are the components of the electric field vector.
Acting on the system with a pulse that has the time-dependence
Eα(t) = Eα

0 δε(t) with a peak amplitude at t = 0, we can write
the state of the system at t = ε shortly after the pulse as

ψ+ = ei
∑

i,j Sij ĉ
†
i ĉj ψ0 = eiŜψ0. (1)

δε is a regularized version of the mathematical δ distribution
on [0,ε] interval and Sij = − ∫ ε

0 dt
∑

α dα
ijE

α
0 δε(t) has a

dimension of an action (we use atomic units throughout the
text). Mapping the pulse generated state on the ground (initial)
state ψ0, i.e., taking the overlap 〈ψ0|ψ+〉 of (1), we obtain the
survival (recurrence) probability to be in ψ0 after the pulse.
This quantity is central to the following discussion.

The quantum-mechanical average of the operator Ŝ =∑
i,j Sij ĉ

†
i ĉj can be treated like any statistical average using

the cumulant expansion:

〈ψ0|ψ+〉 = exp

{
i

1!
S1 + i2

2!
S2 + i3

3!
S3 + · · ·

}
. (2)

The correlation functions are well known:

S1 = 〈Ŝ〉, S2 = 〈Ŝ2〉 − 〈Ŝ〉2, (3a)

S3 = 〈Ŝ3〉 − 3〈Ŝ2〉〈Ŝ〉 + 2〈Ŝ〉3. (3b)

These averages can be computed in terms of reduced density
matrices (RDM)

1Di
j = 〈ψ0|ĉ†i ĉj |ψ0〉, (4a)

2Dik
jl = 〈ψ0|ĉ†i ĉ†kĉl ĉj |ψ0〉, (4b)

3Dikm
jln = 〈ψ0|ĉ†i ĉ†kĉ†mĉnĉl ĉj |ψ0〉. (4c)

In order to do so we need some additional notations for
operators. Ŝn is a n-body operator, i.e., it is given by an
expression containing n creation and n annihilation operators.
Let [Ŝn] denote a one-particle operator which is given by the
nth power of Ŝ operator in the first quantization, i.e.,

[Ŝn] =
∑
ij

(Sn)ij ĉ
†
i ĉj .

In these notations:

S2 = −〈Ŝ ⊗ Ŝ〉 + 〈[Ŝ2]〉 − 〈[Ŝ]〉2,

S3 = −〈Ŝ ⊗ Ŝ ⊗ Ŝ〉 − 3〈[Ŝ2] ⊗ Ŝ〉 + 〈[Ŝ3]〉
+ 3〈Ŝ ⊗ Ŝ〉〈Ŝ〉 − 3〈[Ŝ2]〉〈[Ŝ]〉 + 5〈[Ŝ]〉3,

where the pÂ ⊗ qB̂ denotes the normal form of the product pÂ

and qB̂, the p- and q-body operators, respectively. It is defined
as follows:

pÂ =
∑

i,j

Ai
jĉ

†
i1

· · · ĉ†ip
(
ĉj1 · · · ĉjp

)T
,

qB̂ =
∑
k,l

Bk
l ĉ

†
k1

· · · ĉ†kq

(
ĉl1 · · · ĉlq

)T
,

pÂ ⊗ qB̂ =
∑

i,j

∑
k,l

Ai
jB

k
l ĉ

†
i1

· · · ĉ†ip ĉ
†
k1

· · · ĉ†kq

× (
ĉl1 · · · ĉlq ĉj1 · · · ĉjp

)T
.

In these expressions i, j and k, l are the p- and q-dimensional
vectors of indices.

For our discussion it is instructive to introduce the cumulant
density matrices [28,29] p� which allow us to decompose
the p-RDM in terms of correlated (connected) p-particle
correlator and products of lower order correlators [30]:

1

1!
1Di

j = 1�i
j , (5a)

1

2!
2Dik

jl = 1�i
j ∧ 1�k

l + 2�ik
jl, (5b)

1

3!
3Dikm

jln = 1Di
j ∧ 1Dk

l ∧ 1Dm
n + 3 2�ik

jl ∧ 1Dm
n + 3�ikm

jln ,

(5c)

where ∧ denotes the wedge product [31] (for mathematical
details we refer to a treatise on differential forms [32] where
∧ appears under the name exterior product). We have, for
instance,

1�i
j ∧ 1�k

l = 1
2

(
1�i

j
1�k

l − 1�i
l
1�k

j

)
.

The 1/n! prefactor on the right-hand side of Eqs. (5) appears
naturally when the density matrices are written in the first
quantization:

1

n!
nD(1, . . . ,n; 1′, . . . ,n′)

=
∫

ψ∗
0 (1, . . . ,n,n + 1, . . . ,N)

×ψ0(1′, . . . ,n′,n + 1, . . . ,N)d(n + 1, . . . ,N), (6)

where i ≡ (ri,si) denotes a collection of space and spin
coordinates.

Returning back to Eq. (2) we find by direct comparison
1
1!S1 = ∑

ij Sij
1Di

j . It is, however, the second cumulant that
gives the lowest order (in |E0|2) contribution to the survival
probability, namely

|〈ψ0|ψ+〉|2 ≈ exp [−S2] ≈ 1 − S2,

S2 =
∑
ijkl

Sij Skl
2Dik

jl + σ 2
S . (7)

Thus, S2 can be written as the averaged value of a two-body
operator [first term in Eq. (7)], whereas σ 2

S = 〈[Ŝ2]〉 − 〈[Ŝ]〉2

is computed from 1-RDM. This equation can be written in an
alternative form. Consider the natural orbital basis (i.e., a basis
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in which 1-RDM is diagonal):

S2 =
∑
ijkl

Sij Skl

[
2�ik

jl + fifk(δij δkl − δilδkj )
]

+
∑
im

(SimSmifi − SiiSmmfifm)

=
∑
ijkl

Sij Skl
2�ik

jl +
∑
im

|Sim|2fi(1 − fm), (8)

where fi is the occupation number of the ith natural orbital.
Despite the fact that the second term in Eq. (8) has a form of the
Fermi golden rule [33] the latter is only valid for sufficiently
long pulses (adiabatic switching).

Equation (7) is a quite remarkable result as it allows us
to express the averaged 2-RDM in terms of experimentally
measurable quantities: the survival probability and the mean
square deviation of an excitation operator. Alternatively, one
can use the form (8) to access the 2� cumulant as a correction
to the single-particle result. A possible experiment that we
sketched in the Introduction could be a pump-probe setup in
which the system is excited nonresonantly by a half-cycle
pump pulse and the probe laser pulse is used to monitor the
ground state occupation. We envisage an application to molec-
ular systems in which the amount of electronic correlations
and, thus, 〈[Ŝ ⊗ Ŝ]〉 are driven by changes of geometry. On
the other hand, the one-body part σ 2

S is a quantity that is
weakly dependent on the geometric configuration (see also
the discussion below) and can also be easily computed [34].

For a faithful correlation measure it is desirable to minimize
the artifacts coming from the dependence of Ŝ on the system’s
geometry. Consider a system subject to stretching. The values
of the matrix elements Sij can be quite large as compared to
the equilibrium geometry. Correspondingly, the value of S2

obtained according to Eqs. (7) and (8) will be at variance
with the equilibrium value—the effect that is not necessarily
reflecting properties of 2�. It is possible, however, to suppress
to some extent the large contributions to S2 originating from
the diagonal matrix elements of Ŝ. This can be achieved, for
example, by performing the experiment with oriented systems
and applying the HCP field in the direction for which 〈S〉 = 0.
Such a condition is always possible to achieve for systems
which contain Cs as their symmetry subgroup and is quite
common. Under this condition also σ 2

S is weakly dependent
on the geometry.

Is it possible to devise a measurement that exclusively
probes the cumulant density matrix 2�? Our answer to this
question is negative, based on the fact that the generating
functional for the cumulant and the reduced density matrices

G(J ) = 〈ψ0|O
(
e
∑

k Jk ĉ
†
k+J ∗

k ĉk
)|ψ0〉 (9)

is different from the bosonic-like generator of the evolution
operator (1). In other words, in order to probe the fermionic
RDMs one needs a direct coupling to fermionic degrees of
freedom as the Grassmann variables Jk in Eq. (9) realize.

Nonetheless, we will demonstrate below using two numeri-
cal examples that the survival probability is a versatile measure
of electronic correlations and will compare it to other proposed
measures of electronic correlations and entanglement.

III. MEASURES OF ELECTRONIC CORRELATION AND
ENTANGLEMENT

It was shown by Juhász and Mazziotti [35] that the
Frobenius norm of the second cumulant matrix [||2�||2F =
Tr[(2�)2]] possesses a number of properties that make it a
useful measure. ||2�||F scales linearly with the system size
and vanishes for single-determinant states. Although it is well
suited to compare different configurations of the same system
such a measure is less suited to compare different systems as
its upper limit is not known.

Here comes informational measures into play, e.g., von
Neumann entropy. The entropies based on the 1-RDM have
been widely studied. Less known are the entropies based
on 2-RDM. Carlen and Lieb [36] considered recently the
bipartite fermionic states and proved several bounds for the
entropy based on 2D. For a Hilbert space of the H1 ⊗ H2

Hamiltonian and corresponding ρ12 density matrix the von
Neumann entropy can be computed as

S12 = −Trρ12 log ρ12,

where the trace is understood in the sense of the tensor product
H1 ⊗ H2. The 2-RDM of a N -particle fermionic system can
be considered as a density matrix of a bipartite fermionic state.
For this case the following bounds are known (cf. Carlen and
Lieb [36])

S(ρ12) � 2 ln N + O(1), (10)

2S1 − S12 � ln

(
2

1 − Trρ2
1

)
� ln

(
2

1 − e−S1

)
. (11)

In the following we compare different correlation measures
and numerically verify the inequalities.

Applications

All results so far were represented in some abstract one-
particle basis. In what follows we will focus on molecular
systems with equal number of spin-up (Nα) and spin-down
(Nβ) electrons. To treat such systems it is convenient to work
in the closed shell Hartree-Fock (RHF) molecular orbital
(MO) basis, distinguish spin-up and spin-down MO states,
and to denote them as i and ī, respectively. This implies
some additional symmetries. Obviously 1Di

j = 1Dī
j̄

and 1Di
j̄

=
1Dī

j = 0, and we have the following blocks for the 2-RDMs:

2D
ij

kl = 2D
īj̄

k̄l̄
, 2D

ij̄

kl̄
= 2D

īj

k̄l
, (12)

and the same holds for the cumulants. Since 2-RDMs in
Eq. (12) are obtained as scalar products of the cicj |ψ〉
and cicj̄ |ψ〉 vectors we will denote these blocks as AA
and AB. Other 1- and 2-RDMs are obtained by the use of
anticommutation relations. In order to emphasize spin degrees
of freedom we separately compute the electronic correlation
measures associated with AA and AB blocks.

For the computation of entropies the density matrices
must be normalized to have trace equal to one. Thus,
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we introduce

1D̃i
j = 1

Nα

1Di
j , (13)

2D̃
ij

ij = 1

Nα(Nα − 1)
2D

ij

ij ,
2D̃

ij̄

ij̄
= 1

NαNβ

2D
ij̄

ij̄
, (14)

with Tr[1D̃] = ∑
i

1D̃i
j = 1, Tr[2D̃] = ∑

ij
2D̃

ij

ij = 1, and

Tr[ 2D̃] = ∑
ij

2D̃
ij̄

ij̄
= 1.

Carlen and Lieb showed [36] that the inequalities (10)
and (11) are saturated for single Slater determinant states.
In fact, it can be verified that boundary values are achieved
for each spin channel separately. For single determinant states
the cumulant matrix 2� vanishes and 2-RDM is given by
its unconnected components 2Dik

jl = 1�i
j ∧ 1�k

l . Specifically,
2Dik

jl = fifk(δij δkl − δilδjk) and 2Dik̄
j l̄

= fifk̄δij δk̄l̄ in the AA
and AB channels. The first matrix has Nα(Nα − 1)/2 nonzero
eigenvalues equal to 2, whereas the second one has NαNβ

nonzero eigenvalues equal to 1. Correspondingly, the entropies
in each channel are S0

AA = log 1
2Nα(Nα − 1) = 2 log Nα +

O(1) and S0
AB = log NαNβ . In the next section we will plot

the entropies with respect to these reference values.

IV. NUMERICAL ILLUSTRATIONS

We consider two simple multielectron systems, the LiH
molecule (Figs. 1 and 2) and the H6 ring (Figs. 3 and 4) and
study how different correlation measures vary when the system
deviates from equilibrium geometries. We use our implemen-
tation [37,38] of the algorithm by Olsen et al. [39] based
on the graphical unitary group approach [40] for performing
full CI calculations and subsequent determination of 2-RDMs,
coupled cluster and multireference calculations are carried
out with the GAUSSIAN 03 program. The systems represent
two different scenarios of electronic correlations adopted in
quantum chemistry. The diatomic molecule is a typical system
with importance of dynamic correlations. Numerous Slater
determinants contribute to the correlation energy, however,
one of them is dominant. Thus, even for stretched geometries
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E
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y 
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RHF
Full CI(36)
CAS(2,5)

FIG. 1. (Color online) Potential energy surfaces for the stretched
LiH molecule.

FIG. 2. (Color online) Full CI calculation for the stretched LiH
molecule performed with the 6-311++G(2d,2p) basis set, 20
molecular orbitals are included in a correlated treatment. The electron
correlation increases monotonically as the bond is stretched. This
is manifested in the correlational energy (a), the entropies (b),
the Frobenius norm of the second cumulant matrices (c), and the
expectation value of the z ⊗ z operator [cf. 〈[Ŝ ⊗ Ŝ]〉 in Eq. (7) or∑

ijkl Sij Skl
2�ik

jl in Eq. (8)] (d). The entropies are given with respect
to the single determinant values S0

AA and S0
AB .

the Hartree-Fock (HF) solution represents a valid starting
point for treating electronic correlations with single-reference
methods [41]. This is not so for the H6 ring for which static
correlations are important. Even for slight deviations from
the equilibrium the wave function of the system takes a form
of a sum of several equally significant Slater determinants.
It was shown by Bénard and Paldus [42] that restricted
HF solutions are unstable with respect to spin-unrestricted
perturbations for a wide range of geometries. This invalidates
the restricted Hartree-Fock approach and also all the single-
reference correlated methods based on it. At the same time it
poses an interesting question on whether such spin instabilities
could be detected by some correlation measures.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
RH-H (Å)

-3.40
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E
ne
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y 
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r)

RHF
CAS(6,6)
CCSD(30)
Full CI(30)

FIG. 3. (Color online) Potential energy surfaces for the symmet-
rically stretched H6 molecule.
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FIG. 4. (Color online) Full CI calculation for the stretched H6

ring molecule performed with aug-cc-pvqz basis set, 30 molecular
orbitals included in a correlated treatment. The electron correlation
increases monotonically as the bonds are stretched. This is manifested
in the correlational energy (a), the entropies (b), the Frobenius norm
of the second cumulant matrices (c), and the expectation value of the
z ⊗ z operator [cf. 〈[Ŝ ⊗ Ŝ]〉 in Eq. (7) or

∑
ijkl Sij Skl

2�ik
jl in Eq. (8)]

(d). The entropies are given with respect to the single determinant
values S0

AA and S0
AB . Thin lines with arrows denote results for � = 7

state. Notice that this state was only computed for larger interatomic
distances where it becomes indistinguishable from the ground state
(see the energy plot). Blue and red shading stands for the first and
second Carlen-Lieb bound [Eq. (11)]. Black and red circles denote
results for the 3H− asymptotic state.

Let us consider first a simpler case of a single bond
breaking. It can be easier treated with quantum chemistry
methods as compared, e.g., with double bond breaking in
O2, C2, or triple bond breaking in N2 dimers. However, the
physical mechanisms are the same. LiH possesses only four
electrons (in 1σ 22σ 2 configuration of the ground 1�+ state)
which makes it well suited for exact diagonalization studies.
For these rather small full electron calculations we used
the 6-311++G(2d,2p) basis set yielding a total of 37 basis
functions. Even with (6s2p)/[4s2p] contracted basis functions
for the H atom and (12s6p2d)/[5s4p2d] contraction for the
Li atom it is capable of representing a substantial portion
of the correlation energy (Fig. 1). We used the augmented
cc-pv5z basis set for the verification of our results. Stretching
the molecule (the equilibrium distance is 1.6 Å based on a
CCSD calculation) leads to the breaking of a single covalent
bond and to an increase of the correlation energy (Fig. 2).
Our simulations indicate similar behavior for the entropies
and norms of the second cumulant matrices. Notice that
the molecule is in the singlet ground state and therefore
there are only two independent spin blocks: 2�BB = 2�AA,
2�BA = 2�AB . If HCP has the electric field vector aligned
perpendicular to the molecule’s axis (in z direction) the
expectation value of the dipole moment vanishes (〈z〉 = 0)
and we are in the situation analyzed above. The correlated part
of the survival probability is given by the expectation value
of the z ⊗ z two-particle operator and is also computed in AA

and AB channels (Fig. 2). Its dependence on the interatomic

distance is determined by two factors: the norm increase of
2� and the matrix elements reduction of the dipole opera-
tor. The latter dominates the behavior at large internuclear
separations.

Let us look now at the manifestly multireference system, the
H6 ring, and investigate how the correlation measures depend
on a single geometric parameter, the nearest neighbor distance
RH-H. Notice that such symmetric distortion represents a
somewhat artificial situation as the dimerized state possesses a
lower ground state energy. Multireference SCF in the subspace
of six electrons and six orbitals is capable of recovering a
major part of the correlation energy and also correctly predicts
the asymptotic state of six unpaired electrons residing on six
independent H atoms. In contrast, the RHF method which
assumes that each molecular orbital is doubly occupied cannot
produce such an asymptotic state and fails shortly above the
equilibrium distance. Even more drastic divergence shows the
single reference coupled cluster approach. In fact, it does not
even converge beyond RH-H = 3.6 Å. On the same Fig. 3
results of full CI are shown. The potential energy curve runs
almost parallel to MCSCF, however, has a slightly higher
energy because not all molecular orbitals (only 30) were
included in the calculation. Both methods nicely converge
towards the asymptotic energy of −3 hartree. We use the
augmented cc-pqz basis in the (7s4p3d2f )/[5s4p3d2f ]
contraction. The survival probability was computed for the
case of electric field perpendicular to molecular plane, the
expectation value of the dipole moment is zero (〈z〉 = 0).
Correlation energy of this system increases steeply as a
function of H-H distance. The norms of the second cumulant
matrix and the entropies behave similarly. As in the case
of LiH, the expectation value of the direct product z ⊗ z

is governed by two counteracting factors: increasing 2�

and reduction of z. At first sight the spin instability is not
manifested clearly in these correlational measures. They show
essentially the same dependence (up to some scaling) for
AA and AB blocks. The difference becomes obvious only
by comparing with other electronic states that have different
spin configurations.

In the asymptotic limits some electronic states of the H6

system permit analytical treatment. Because of the vanishing
electron repulsion, 6H is the asymptotic ground state with
four possible values of the total spin. At large RH-H the
atomic orbitals of six H atoms are not perturbed by the
interaction with other ions or electrons and each electron is
in 1s state. Thus, the density matrices can be conveniently
computed in this basis. Since Nα = Nβ each quantum state of
such a six electron system is given by a linear combination
of the following Slater determinants |α1α2α3β̄1β̄2β̄3〉, where
{α1,α2,α3,β1,β2,β3} is a permutation of orbitals 1 to 6 such
that α1 < α2 < α3 and β1 < β2 < β3, i.e., α and β string are
written in the lexicographic order. The spin part of the basis
functions is indicated by bar for the spin-down states. There
are in total 6!

3!·3! = 20 such determinants and they can be further
divided into four groups with multiplicities � = 1, 3, 5, 7 each
containing 5, 9, 5, and 1 state, respectively. All 20 states
are degenerate and we consider a particular example of the
� = 7 state in which all the Slater determinants enter with the
same coefficient. Other spin multiplicity states can be easily
constructed as explained in Pauncz [43]. The two-body density
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matrix is built from combinatorics factors and evaluates as
follows:

2D
ij

ij = −2D
ij

ji = 4
20 (1 − δij ), (15a)

2D
ij̄

ij̄
= −2D

ij̄

j ī
= 6

20 (1 − δij ), (15b)

and vanishes otherwise. Tracing AA or AB blocks leads to the
same one-particle density matrix

1Di
j = 1

Nα − 1

6∑
k=1

2Dik
jk = 1

Nβ

6∑
k=1

2Dik̄
j k̄

= 1

2
δij . (16)

It is clear that 1Q
j

i = 〈ĉj ĉ
†
i 〉 = 1Di

j and 1Qi
j̄

= 1Di
j̄

= 0. One
verifies that the expectation value of the total spin squared
operator indeed corresponds to the multiplicity � = 2 · 3 +
1 = 7:

〈Ŝ2〉 = 〈
Ŝ−Ŝ+ + Ŝ2

z + Ŝz

〉 〈Ŝz〉=0=
〈∑

i

c
†
ī
ci

∑
j

c
†
j cj̄

〉

= Nβ −
6∑

i,j=1

2D
jī

ij̄
= 12. (17)

The cumulant matrix is easily evaluated

2�
ij

ij = −2�
ij

ji = − 1
40 (1 − δij ), (18a)

2�
ij̄

ij̄
= 1

40 − 6
40δij , (18b)

2�
ij̄

j ī
= − 6

40 + 1
40δij . (18c)

This yields the norms ||2�AA||F =
√

15
20 and ||2�AB ||F =

√
315
20 .

The expectation values of z ⊗ z with respect to 2�AA and
2�AB are zeros because the dipole transition moments between
1s states vanish due to symmetry as manifested in the
selection rules. Notice that for finite distances there is a
hybridization between these and higher angular momentum
states. Therefore, z ⊗ z can be different from zero.

The eigenvalues of the matrices [Eqs. (15)] are wAA
1,...,15 =

1
15 , wAA

16,...36 = 0 and wAB
1,...,15 = 3

15 , wAB
16,...36 = 0. After the

normalization we obtain the pair entropies SAA = SAB =
log 15. Similarly, the entropies can be computed from the
1-RDM, SA = SB = log 6.

Another interesting case is in which the system dissociates
into three hydrogen anions (H−) and three protons. This
is an excited 20-fold degenerate, yet bound state of the
system with the binding energy of just 3 × 0.7542 eV =
3 × 0.0277 hartree (measured with respect to the energy of
three neutral H atoms). The state is extremely correlated with
RHF not being capable of yielding the negative energy (for an
overview on the electronic structure of H− we refer to Rau [44],
in particular we quote from this work: “The (wave-) function
exhibits a radial ‘in-out’ correlation between the electrons such
that when one electron is ‘in’ close to the nucleus, the other is
kept ‘out.’ ”). We can also view H− as a partial case of the He
isoelectronic series with the nuclear charge Z being very close

to the critical value Zcrit ≈ 0.911 at which “a quantum phase
transition” from a bound to an unbound two-electron system
occurs. A detailed analysis of this system was performed in
the context of strictly correlated-electrons functional [45]. The
fact that there are just two electrons in the system allows us
to exactly compute the Kohn-Sham (KS) potential by simple
inversion of the KS equation [46]. The KS molecular orbitals
are eigenfunctions of the noninteracting Schrödinger equation.
For the singlet � = 1 two-electron state there is a one-to-one
correspondence between the exact density and the Kohn-Sham
orbitals ψ(r) = [ ρ(r)

2 ]1/2. Even though the KS potential can
be explicitly constructed, the density functional theory does
not permit us to find the off-diagonal elements of 1-RDM.
Therefore, we use again the full CI approach. It is sufficient to
diagonalize the Hamiltonian for a single H− atom (for such a
system the larger aug-cc-pv6z basis set can be used) and to
construct the 2� for the total system by the observation that
it is given by a direct sum of the cumulant matrices of each
subsystem. In order to compute the entropies we reconstruct
the 2-RMD from the cumulant matrix and using the fact that
1-RDM is nonzero only when both indices denote states of the
same H− anion.

Numerical results for different correlation measures are
shown at Fig. 4 for the ground state together with the
asymptotic values for the � = 7 state (obtained analytically)
and for the 3H− state. The latter is based on the full CI
treatment of H− and is only valid for RH-H → ∞. For finite
distances there is a coupling between the subsystems and one
needs to diagonalize the full Hamiltonian. This is, however,
a formidable task since 3H− is a highly excited state of the
system not amenable to the Lanczos diagonalization.

The blue shaded area on the entropy plot shows the differ-
ence between the exact value of the two-particle entropy and
the first Carlen and Lieb estimate, 2S1 − ln( 2

1−Trρ2
1
). The red

shaded area illustrates the second Carlen and Lieb inequality,
2S1 − ( 2

1−e−S1
). Since at the asymptotic limit the 1-RDM and,

therefore, S1 and Trρ2
1 are the same for all 20 degenerate

states, the same inequalities hold for all of them. � = 7 state
saturates the inequalities and hence has the largest possible
two-particle entropy among these states. 3H−, on the other
hand, has the smallest entropies and Frobenius norms out of
all states that we considered. For them correlational measures
lie in between these extremes. In fact, all three of them are
capable of discriminating between the spin configurations. The
survival probability which is closely connected to the averaged
value of z ⊗ z can even be measured experimentally. In
contrast, the 1-RDM and all associated correlational measures
are ignorant to the spin configuration as the example of the
asymptotic 6H states shows. Finally, we note the correlation
between the saturation behavior seen in Figs. 4(b) and 4(c)
when RH-H is increased beyond ≈2.5 Å and the flatness at
these distances of the corresponding potential energy surface,
depicted in Fig. 3. Even though the electrostatics is less
relevant at these distances, the nonlocal nature imposed by
the (anti)symmetry on the total wave function persists for the
isolated expanding system. This means, on the other hand,
that the asymptotic values of the entropy and ||2�||F delivers
short-range (atomistic) information. This picture might change
in a nontrivial way when coupling the electronic and the ionic
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system to external baths, in particular if the bath implies some
spin-flip scattering.

V. CONCLUSIONS

We explored theoretically the possibility of accessing the
electron correlations using a pump-probe technique with
half-cycle pulses. The nonresonant kick-type excitation is
appropriate in so far as it allows for many-particle excitations
and can still be amenable to quasianalytical treatment. We
demonstrated that to the leading order in the field intensity,
the probability for a system to remain and/or recur to the
initial state (the survival probability) can be expressed in terms
of 2-RDM and, hence, represents a measure for electronic
correlations. Exact diagonalization studies were performed
on two molecules LiH and H6—prototypes of systems with
importance from the point view of dynamic and static

correlations. In the dissociative limit the second system permits
an analytical treatment of some electronic (asymptotic) states
for which different correlational measures and entanglement
entropies were computed. Even though these asymptotic
subsystems can be considered as noninteracting, the states
are entangled due to the wave function antisymmetry. This is
reflected in the two-particle entropy, the Frobenius norm of
the second cumulant matrix ||2�||F , and in the expectation
value of the z ⊗ z operator. The latter can be inferred from
the proposed measurement of the survival probability. Thus
corresponding experiments can probe the spin configuration
of many-body systems.
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