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We have studied the influence of a linearly polarized laser field on the dynamics of low (e, 2e) collisions
in atomic hydrogen. The influence of the laser on the target states is treated using a first-order perturbation
approach. The continuum states of the scattered and ejected electrons are described respectively by Volkov
and Coulomb-Volkov wave functions. The second Born approximation is used to calculate triple differential
cross sections for laser-assisted ionization by low-energy electron impact. The required scattering amplitudes are
evaluated by using the Sturmian basis expansion. The influence of the laser parameters (photon energy, intensity,
and direction of polarization) on the triple differential cross sections is analyzed, and several illustrative examples
are discussed. Our second Born approximation results agree very well with those obtained in the first-order Born
approximation at larger incident energies. The margins between the second and first Born approximation results
are large at low incident energies in the vicinity of the recoil peaks.

DOI: 10.1103/PhysRevA.90.053415 PACS number(s): 34.50.Rk, 34.80.Dp, 34.50.Fa

I. INTRODUCTION

Laser-assisted collision processes find increasing impor-
tance from both theoretical and experimental points of
view [1–8]. Particularly, the laser-assisted ionization of atoms
or ions by charged particles play a very dominant role in
many practical fields, such as in the plasma confinement in
fusion plasmas, laser heating of plasma [9–11], high-power
gas lasers, gas break down, semiconductor physics where
the electron-electron collision rate (and hence the transport
properties of the system) can be steered by applying an external
laser field [12,13], and the development and understanding
of ultrafast optoelectronic devices. The rapid development
in laser technology combined with the impressive advances
in multiparticle detection techniques allowed the realization
of the first kinematically complete experiment for the laser-
assisted electron-impact ionization [14,15]. The experiment
was performed using multiparticle imaging techniques “re-
action microscopes” by overlapping a 1-keV pulsed electron
beam and a Nd:YAG laser beam at the position of a supersonic
helium target beam. The experimental results are compared to
the predictions of a first-order Born approximation calculation
and clear deviations are observed. The choice of the atomic
target is very important to facilitate the comparison between
theory and experiment. From the theoretical perspective,
atomic hydrogen is ideal due to its analytically known
wave functions. Unfortunately, most of the experimental
data obtained for the e-H single ionization system are still
available only on a relative scale. The difficulty of putting the
data on the absolute scale leads to large error bars. On the
other side, helium is a much more convenient target for the
experimentalists. Consequently, there are a great deal more
data available for the e-He single ionization system. These
data generally have much smaller statistical error bars and
have been mostly put on an absolute scale with considerably
less uncertainty than in the case of the atomic hydrogen
target. For theorists, on the other hand, helium presents extra
difficulties over atomic hydrogen in the treatment of the initial
state and spin coupling in the final states. The measurable

quantity calculated by theory is the so-called triple differential
cross section (TDCS), which depends on the energies and the
emission solid angles of the continuum electrons.

At an early stage of this research field, theoretical studies
treated this process by neglecting the target dressing effects
and described the unbound electrons either as nonrelativistic
Volkov or Coulomb-Volkov states [16–22]. Later on, Joachain
and coworkers investigated the case of hydrogen [23,24] and
helium targets [25,26] while considering the dressing of the
atomic states. They found that the dressing of the target by the
laser field can significantly affect the TDCSs corresponding
to ionizing processes. In these studies, the S-matrix elements
were evaluated in the first Born approximation (FBA), which
provides a useful tool for capturing the qualitative trends in
the measured cross sections. It is usually assumed that the
first Born approximation for electron-atom ionization becomes
valid at sufficiently high impact energies [27].

Recently, the fully differential cross section for the electron-
impact single ionization of atoms (in the absence of laser) at
low to intermediate energies has been calculated [28–30]. This
motivated us to attempt the present work, which studies the
laser-assisted single ionization of hydrogen atom, theoretically
the most preferred target, at relatively low impact incident
energies, where the energies of the outgoing electrons are
more equal. In this domain of incident energy, the first
Born approximation is inadequate to treat the projectile-target
interaction. In this paper, we present a second Born calculation
of the (e, 2e) triple differential cross section for the laser-
assisted ionization of atomic hydrogen by low electrons. The
calculation of the required radial amplitudes is performed by
expanding the atomic wave functions on to a Sturmian basis,
which allows us to exactly take into account the contribution
of the continuous spectrum to the dressing of the atomic
states. This method of computation constitutes an important
advantage over the closure approximation used in the recent
study of Zheng et al. [31]. We represent the variation of the
triple differential cross sections in the coplanar asymmetric
geometry. The interaction of the laser field with the unbound
electrons is treated in a nonperturbative way using Volkov
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wave functions [32], while that of the ejected electron moving
in the combined field of the residual ion H+ and of the laser is
obtained by using the ansatz formulated by Joachain et al. [23].
We have used the first-order time-dependent perturbation
theory to treat the influence of the laser field on the target states.

The present work is structured as follows. In Sec. II,
we develop the theory of laser-assisted (e, 2e) reactions of
atomic hydrogen in the first and second Born approximations.
In Sec. III, we present our numerical results and analysis.
Section IV summarizes our conclusions. Unless otherwise
stated, atomic units (a.u.) are used throughout.

II. THEORY

We assume the laser field to be classical, monochromatic,
linearly polarized, and spatially homogeneous over atomic
dimensions. Working in the Coulomb gauge, we have for the
electric field E(t) = E0 sin(ωt + ϕ) the corresponding vector
potential A(t) = A0 cos(ωt + ϕ) with A0 = c E0/ω, where
E0 and ω are the electric field amplitude vector and the laser
frequency, respectively. ϕ denotes the initial phase of the laser
field.

The process in the course of which � photons from the laser
field are exchanged, while the ionizing electron-atom collision
takes place, can be described by the equation

e−(ki) + H(1s) + �ω −→ H+ + e−(ka) + e−(kb), (1)

which presents the collision of an incoming electron of
momentum ki , with the hydrogen target (in its ground state)
in the presence of an incident laser field.

The energy conservation equation corresponding to the
laser-assisted (e, 2e) reaction of Eq. (1) reads

Eki
+ E0 + �ω = Eka

+ Ekb
, (2)

where E0 = −0.5 a.u. is the ground-state energy of atomic
hydrogen, while the atomic energy recoil is neglected. Eki

=
k2
i /2, Eka

= k2
a/2, and Ekb

= k2
b/2 represent, respectively, the

kinetic energy of the incident, scattered, and ejected electrons.
The time-dependant Schrödinger equation for the nonrel-

ativistic incident and scattered electrons embedded in a laser
field can be exactly solved, giving the well-known Volkov
wave function [32]

χk(r0,t) = (2π )−
3
2 exp{i[k · r0 − k · α0 sin(ωt) − Ekt]},

(3)

where k denotes the electron wave vector, Ek = k2/2 is its
kinetic energy, and α0 = E0

ω2 is the amplitude of oscillation of
a classical electron in the laser field.

On the other hand, the dressed wave function of the atomic
target in the laser field corresponding to the initial bound
state is obtained in the first-order time-dependant perturbation
theory [4]

φn(r1,t) = e−iEnt e−ia·r1

[
ψn(r1) + i

2

∑
n′

(
eiωt

ωn′n + ω

− e−iωt

ωn′n − ω

)
Mn′n ψn′ (r1)

]
, (4)

where r1 is the target coordinate, ψn is a target state of energy
En in the absence of the external field, ωn′n = En′ − En is the
Bohr frequency, and a = A/c where e−ia·r1 is a gauge factor.
Furthermore, we have defined

Mn′n = M∗
nn′ = E0 · 〈ψn′ |r|ψn〉 (5)

as the dipole-coupling matrix element. We note that if one
specializes Eq. (4) to the ground state φ0 and if the ground
state is spherically symmetric, then the sum in Eq. (4) runs
only over the discrete and continuum hydrogen atom p

states ψnp.
For the dressed continuum wave function representing the

state of the ejected electron moving in the field of residual ion
and in the presence of the laser field, we have used the wave
function proposed by Joachain et al. [23,24]

φkb
(r1,t) = e−iEkb

t e−ia·r1e−ikb ·α0 sin(ωt)

×
[
ψ

(−)
c,kb

(r1)[1 + ikb · α0 sin(ωt)]

+ i

2

∑
n

(
eiωt

En − Ekb
+ ω

− e−iωt

En − Ekb
− ω

)

× Mnkb
ψn(r1)

]
, (6)

where ψ
(−)
c,kb

(r1) is a modified continuum Coulomb wave func-
tion with incoming spherical wave behavior, corresponding to
momentum kb and normalized to a δ function in momentum
space.

In the case of high laboratory intensities (which still E0 �
e

a2
0
) and low laser frequencies, the perturbative results given

by Eq. (6) should be modified in order to account for strong
coupling which is characteristic of the interaction between an
unbound particle and an intense external field in infrared limit.
For this purpose and for more details see [18] and references
therein.

The central quantity to be evaluated is therefore the direct
FBA S-matrix element

SB1
ion = −i

∫ +∞

−∞
dt

〈
χka

(r0,t)
kb
(r1,t)

∣∣Vd (r0,r1)

× |χki
(r0,t)
0(r1,t)〉, (7)

In this equation Vd (r0,r1) = 1
|r0−r1| − 1

r0
, r0 and r1 are,

respectively, the projectile and target electron coordinates.
Using Eqs. (3), (4), and (6) one finds that the FBA S-matrix
element can be recast in the form

SB1
ion = (2π )−1i

�=+∞∑
�=−∞

δ
(
Eka

+ Ekb
− Eki

− E0 − �ω
)

f B1,�
ion ,

(8)

where f B1,�
ion is the first Born approximation to the (e, 2e)

scattering amplitude with the transfer of � photons. This
quantity is given by

f B1,�
ion = f1 + f2 + f3, (9)
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with

f1 = −2�−2Jl(λ)
〈
ψ

(−)
c,kb

∣∣ exp(i� · r)|ψ0 〉, (10a)

f2 = i�−2
∑

n

〈
ψ

(−)
c,kb

∣∣ exp(i� · r)|ψn〉

×Mn0

(
J�−l(λ)

En − E0 − ω
− J�+l(λ)

En − E0 + ω

)
, (10b)

and

f3 = i�−2
∑

n

〈ψn| exp(i� · r)|ψ0〉

×M∗
nkb

(
J�−l(λ)

En − Ekb
+ ω

− J�+l(λ)

En − Ekb
− ω

)
− 2�−2kb · α0J

′
�(λ)

〈
ψ

(−)
c,kb

∣∣ exp(i� · r)|ψ0〉. (10c)

In these equations, J� is an ordinary Bessel function of
order �, � = ki − ka is the momentum transfer, and we have
introduced the quantity λ = (� − kb) · α0.

The first Born triple differential cross section corresponding
to the (e, 2e) reaction (1) accompanied by the transfer of �

photons is given by

d3σB1,�
ion

d�a d�b dE
= kakb

ki

∣∣f B1,�
ion

∣∣2
, (11)

and we remark that the results obtained by Cavaliere et al. [17]
can be recovered from the present treatment by keeping only
the first term f1 of Eq. (9).

Similarly, the second-order term in the direct interaction
potential reads

SB2
ion = −i

∫ +∞

−∞
dt

∫ +∞

−∞
dt ′〈χka

(r0,t)φkb
(r,t)|Vd (r0,r)

×G
(+)
0 (r0,r,t,r ′

0,r
′,t ′)

×Vd (r ′
0,r

′)|χki
(r ′

0,t
′)φ0(r ′,t ′)〉, (12)

where G
(+)
0 is the causal propagator defined by

G
(+)
0 (r0,r,t,r ′

0,r
′,t ′) = −i�(t − t ′)

∑
n

∫
dqχq(r0,t)

×χq(r ′
0,t

′)φn(r,t)φn(r ′,t ′), (13)

It should be noted that this term is second order in the
electron-atom interaction potential Vd , and contains atomic
wave functions corrected to first-order correction in E0 for
the target dressed states. If one retains a global first-order
correction in E0 for the target states, one finds that SB2

ion is the
sum of two terms which are respectively of zeroth and first
order in E0. We shall neglect the second-order contribution to
the S-matrix element for laser-assisted collisions calculated
in first order in E0, and concentrate our discussion on the
computation of the dominant term SB2,0

ion , which describes the
collision of a Volkov electron with the undressed atom.

Thus, it turns out that the lowest-order component SB2,0
ion

evaluated at the shifted momenta �i = ki − q and �f =
q − ka can be expressed in terms of the simpler second Born

amplitude (SBA) as

SB2,0
ion = −(2π )−1i

�=+∞∑
�=−∞

δ
(
Eka

− Ekb
− Eki

−E0 − �ω
)
f B2,�,0

ion (�), (14)

with

f B2,�,0
ion (�) = −J�(λ)

π2

∫ +∞

0
q2dq dξq

×
〈
ψ

(−)
c,kb

∣∣Ṽd (�f ,r)Gc(ξ )Ṽd (�i ,r)|ψ0〉
�2

i �
2
f

. (15)

The electron-atom amplitude with the transfer of � photons
may be written in the second Born approximation as

f �
ion(�) = f B1,�

ion (�) + f B2,�,0
ion (�), (16)

where the first-order term f B1,�
ion (�) is given by Eq. (9),

Gc(ξ ) =
∑

n

|ψn〉〈ψn|
ξ − En

(17)

is the Coulomb Green’s function with argument ξ = Eki
+

E0 − Eq − Ekb
+ �ω, and we have used the definition λ =

α0.(� − kb) with � = �i + �f .
In Eq. (16) and according to the expansion (15), we may

write the second-order amplitude f B2,�,0
ion (�) in the form

f B2,�,0
ion (�) = J�(λ)f B2

ion (�), (18)

where

f B2
ion (�) = − 1

π2

∫ +∞

0
q2 dq dξq

×
〈
ψ

(−)
c,kb

∣∣Ṽd (�f ,r)Gc(ξ )Ṽd (�i ,r)|ψ0〉
�2

i �
2
f

. (19)

is the field-free second Born ionization amplitude evaluated at
the shifted momenta �i and �f .

We note that the integral in Eq. (19) over the virtual
projectile states χq(r0,t), with wave vector q, is prohibitively
difficult, which is actually zero at some values of incident
electron energies. We shall overcome this difficulty by using
the exact upper boundary of the integral (19) over the virtual
projectile energies, which is obtained by the requirement [33]

Eq � inf
(
Eki

,Eka

)
. (20)

The first and second Born amplitudes corresponding to the
first- and second-order contributions to the S-matrix element,
for the laser-assisted electron-impact ionization, have been
computed exactly without further approximation with the help
of a Sturmian approach, similar to that described in [25,34].
This method of computation constitutes an important advan-
tage in the present context with earlier computations relying
on the closure approximation [4,5,35,36].

Finally, the second Born triple differential cross section
corresponding to the ionization process, with the transfer of �
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photons, is given by

d3σB2,�
ion

d�a d�b dE
= kakb

ki

(
1

4

∣∣f �
ion + g�

ion

∣∣2 + 3

4

∣∣f �
ion − g�

ion

∣∣2
)

.

(21)

g�
ion is the first Born exchange amplitude with the transfer of �

photons,

g�
ion(�) 	 J�(λ)gOch

ion , (22)

where gOch
ion is the Ochkur amplitude calculated in the absence

of the field [37].

III. RESULTS AND DISCUSSION

Let us turn to a discussion of the new results obtained in the
case of (e, 2e) collisions in several geometrical configurations.
Our calculations focus on the case of atomic hydrogen, for
which difficulties arising from the choice of the target wave
function and the motion of the ejected electron in the field of the
ion are not present. Note, however, that though simplified, the
model contains all the ingredients needed for the discussion of
the physics of such processes. In the present investigation, our
results are interpreted by estimating the first and second Born
triple differential cross sections, where the scattering angle is
kept fixed at 5◦.

In this section, we present and analyze our findings for the
TDCS of the laser-assisted (e, 2e) reaction in the coplanar
asymmetric geometry. Without loss of generality, we assume
the origin of the coordinate system to be the target nucleus
and the z axis to be along the incident momentum. The x

axis is in the plane defined by the incident momentum and the
polarization vector of the external field. The scattering angle
of the scattered electron and the emission angle of the ejected
electron are denoted, respectively, by θa and θb. The former is
measured in anticlockwise direction, and the latter clockwise.

In Fig. 1, we give the triple differential cross sections
corresponding to the laser-assisted electron-impact ionization
of a hydrogen target as a function of the incident electron
energies, where the angle of the ejected electron is kept fixed.
The polarization vector of the field ε̂ (which is along E0 for
the case of linear polarization considered here) is set parallel
to the impact momentum ki . The complete results obtained
by using the ionization amplitude equations (9) and (16) for
the first and second Born approximations are compared with
those obtained from the simplified nonperturbative analysis
of Cavaliere et al. [17] (results obtained by neglecting the
dressing of the target which coincide with the electronic
amplitude f1) and with field-free results. It is interesting
to note that the results are notably sensitive to the second
Born approximation at low incident electron energies. As the
incident energy increases, the ratio of the second Born triple
differential cross section to the first one becomes smaller,
and at high incoming energies such proportionality factor
is completely absent, where the second Born approximation
does not offer a significant improvement over the first Born
treatment.

According to the domain of validity of the treatment used
for taking into account the laser-atom interaction, the Nd-YAG
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FIG. 1. (Color online) Triple differential cross sections corre-
sponding to the laser-assisted electron-impact ionization process of
atomic hydrogen as a function of the incident electron energy. The
laser frequency is 1.17 eV, the electric field strength is 107 V/cm.
The ejected electron energy is Ekb

= 5 eV, and the scattering angle
is θa = 5◦. The laser polarization of the field is set parallel to the
incident momentum ki . Solid lines: second Born approximation
results. Dashed lines: first Born approximation results. Dotted lines:
results obtained by neglecting the dressing of the target. Dashed
dotted lines: field-free results.
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laser frequency is taken to be �ω = 0.043 a.u. For no net
transfer of photons (� = 0), our results of TDCS are nearly
of the same order of magnitude as field-free TDCS, while for
|�| = 1 the field-free results are much larger (not presented
here in our figures). This results from the fact that the laser
itself does not contribute to the ionizing process. In fact,
the laser redistributes the ejected electrons in new channels
associated with indices � �= 0 in the energy conservation
relation, Eq. (2), which are accessible in the dressed continuum
of the atomic target. One observes significant departures of
the results obtained by the simplified treatment of Cavaliere
with respect to those obtained by the first and second born
approximations. This difference in magnitude is traced to the
role played by the explicit introduction of the atomic-state
dressing of which the contribution was neglected by Cavaliere
et al. This directly reflects the role of the dressing of the
projectile target system by the external laser field. This is
one of the interesting typical signatures of the dressing of
the electron-target system in the TDCS which clearly shows
the effects of the internal structure of the atomic target. Such
a distorted atom also acts on the projectile by a long-range
dipole potential (∼1/r2), which requires a nonperturbative
treatment of laser-atom interactions. The long-range dipole
potential affects mainly the distant collisions, which contribute
when the energies of the primary electron are weak. Another
interesting point is the fact that the overall magnitude of
the cross sections corresponding to the difference between
SBA and FBA decreases with the increase of the incident
electron energies. Moreover, our second and first Born TDCSs
present an absolute maximum corresponding to the zero of the
momentum transfer (i.e., 1/�2) contained in various TDCS
expressions. The same remark appears in the results obtained
by using the simplified approach of Cavaliere and laser-off.

Figures 2 and 3 shows triple differential cross sections
versus the field amplitude. Apparently, the (e, 2e) reaction
process can be controlled by the field strength. Two special
geometries of laser polarization are considered: ε̂0||ki (the
laser polarization vector parallel to the incident momentum)
and ε̂0 ⊥ ki (the laser polarization vector perpendicular to
the incident momentum). For no net exchange of photons,
the margins between the results of the first and second Born
approximations reaches maxima at several values of field
strengths in the case of ε̂0||ki , while for ε̂0 ⊥ ki the margin
occurs at weak field strength and at E0 = 7 × 107 V/cm.
Note that for both geometries, dressing effects become very
important with the increase of the field strength, this is because
the stronger the laser is, the more the atomic states are distorted.
The second-order correction is seen to be significant in the
vicinity of the maxima of the peaks and decreases with the
increase of the laser field amplitude. We also observe a small
influence of the laser field at low field strength with the net
exchange of photons. This is due to the chosen geometry that
coincides approximatively with the region of the binary peak.
This situation changes in the recoil peak region, with even
a weak field strength, leads to sizable changes in the cross
section.

In Figs. 2 and 3, the corresponding dispersion curves in
terms of E0 are characterized by the occurrence of sharp max-
ima separated by deep minima. The number of lobes increases
with the laser intensity. This behavior can be traced back to the
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FIG. 2. (Color online) Triple differential cross sections corre-
sponding to the laser-assisted electron-impact ionization process of
atomic hydrogen as a function of the amplitude vector. The laser
frequency is 1.17 eV, the incident electron energy is Eki

= 30 eV,
and the ejected electron energy is Ekb

= 5 eV. The scattering angle is
θa = 5◦, and the emission angle of the ejected electron is θb = 130◦.
The laser polarization of the field is set parallel to the incident
momentum ki . Solid lines: second Born approximation results.
Dashed lines: first Born approximation results. Dotted lines: results
obtained by neglecting the dressing of the target.
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FIG. 3. (Color online) All the parameters are the same as Fig. 2,
while the laser polarization is perpendicular to the incident momen-
tum ki .

fact that the argument of the Bessel functions J�(λ), entering
the expressions of the amplitudes in Eqs. (10) and (15),
grows with E0. By comparing Figs. 2 and 3, one observes
that changing the polarization orientation significantly affects
the triple differential cross sections. Indeed, the amplitudes
f B2,�,0

ion and f B1,�
ion depend on the laser polarization direction in a

quite intricate way since ε̂0 enters their expressions though the
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FIG. 4. (Color online) Triple differential cross sections corre-
sponding to the laser-assisted electron-impact ionization process of
atomic hydrogen as a function of the ejected angle θb. The laser
frequency ω = 1.17 eV and the electric field strength is 107 V/cm.
The incident electron energy is Eki

= 30 eV, the ejected electron
energy is Ekb

= 5 eV, and the scattering angle is θa = 5◦. The laser
polarization of the field is set parallel to the incident momentum
ki . Solid lines: second Born approximation results. Dashed lines:
first Born approximation results. Dotted lines: results obtained by
neglecting the dressing of the target.

second-order matrix elements and also via the scalar products
α0 · � and α0 · kb. Dressing effects, i.e., the contributions of
the amplitudes f2 and f3 in Eqs. (10b) and (10c) significantly
affect the TDCS corresponding to the ionizing process. This
observation is applied well to the SBA where the contribution
of the correction term is seen to be important and improves
TDCS calculations.

In Figs. 4–6, we give the triple differential cross sections
corresponding to the ionization of atomic hydrogen from the
ground state by electron impact, in the presence of a laser field,
as a function of the ejected electron angle θb. The incident
electron energy is Eki

= 30 eV, the ejected electron energy is
Ekb

= 5 eV, and the scattering angle is θa = 5◦. We are work-
ing in a geometry in which the polarization vector ε̂0 of the field
is parallel to the incident momentum ki . We present the results
of our complete computation of the TDCS in the second Born
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FIG. 5. (Color online) Same as Fig. 4, but with the laser fre-
quency ω = 2.34 eV.

approximation, and compare them with the FBA ones, and with
those obtained by neglecting the dressing effects by the laser
field. One notices that dressing effects have a relatively large
effect on the cross sections with the exchange of one photon
(� = ±1). The frequency regimes also have controlling effects
on the collision process. In Fig. 4, we observe that the binary
peak remains unchanged for the first and second term of the
Born series, while the recoil peak is suppressed. Furthermore,
the binary peak is dominant and the magnitude of the cross
sections is considerably smaller when (� = −1) compared to
the case of the absorption of a photon (� = 1).

Let us now consider the case of higher frequency lasers.
The preceding discussion remains qualitatively valid as long
as the condition ω < Ekb

is satisfied. This is well illustrated by
our results presented in Figs. 4 and 5 which display the angular
distribution for the frequencies ω = 1.17 eV and ω = 2.34 eV.
By comparing these results, one observes that the shapes
of the angular distributions are mostly the same, the main
difference lying in the overall magnitude of the TDCS. Indeed,
if everything else is kept fixed, the frequency is increased
by a factor of 2, and the electric field coupling parameter
α0 is four times smaller, which correspondingly affects the
magnitude of the cross sections. The high-frequency regime
where ω > Ekb

is satisfied leads to strong modifications of the
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FIG. 6. (Color online) Same as Fig. 4, but with the laser fre-
quency ω = 6.42 eV.

angular distribution of the ejected electron. This is confirmed
by the results given in Fig. 6 for ω = 6.42 eV and Ekb

= 5 eV.
One observes a typical splitting of the binary and recoil peaks.
For the absorption of one photon � = 1, the margins between
SBA and FBA results are negligible, but for the case of
emission � = −1, the modification is large. In fact, the margins
between the SBA and FBA results are large except in the
vicinity of the binary peak where the two curves coincide. As
seen in Fig. 6, at a given field strength, the overall magnitude of
the TDCS for � = −1 is smaller by three orders of magnitude
than in the case of � = 1.

The results displayed in this paper show that the photon
absorption processes dominate the photon emission ones,
meaning that the system absorbs net energy from the laser field
background. The curves for � and −� present similar features
since J−�(λ) = (−1)�J�(λ). Nevertheless, the magnitudes of
the cross sections for � and −� are different. The origin of
this difference lies in terms of different expressions of (e,
2e) scattering amplitudes other than J�(λ). The cross sections
in Figs. 2 and 3 for both geometries are different. In both
cases, the oscillation structure in the results is determined by
the Bessel function entering the expressions of the ionization
amplitudes. When the argument λ and the order � are
approximately equal, the value of the function J�(λ) diminishes
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rapidly. Physically, in the extreme case where � − kb is very
small, e.g., when the nucleus is a spectator during the collision,
λ is as well very small and the laser field plays a minor role.
This is because the energy absorbed by the electrons from the
radiation field needs to be converted into a linear momentum
via a rescattering from the massive residual ion. Small |� − kb|
means that the rescattering did not take place and hence the
weak influence of the laser field on the outcome of the collision
process. For large |� − kb|, the scattering processes take place
near the nucleus and hence the probability for the electrons
to experience a violative transition is generally much higher,
except for λ = 0 (the electric field is ⊥ to � − kb).

IV. CONCLUSION

The laser-assisted electron-impact ionization (e, 2e) colli-
sions in atomic hydrogen were studied in the second Born ap-

proximation. This work is an attempt to study the laser-assisted
ionization process in the case of low incident energy. Our treat-
ment consistently includes the dressing of the atomic target by
the laser field. We have clearly demonstrated the inadequacy
of simplified treatments in which the dressing effects are not
included. We have investigated the role of the laser parameters:
field strength, frequency, and polarization orientation. It has
been shown that dramatic changes in the triply differential
cross sections can occur when varying these parameters. At
low incident electron energies, the second-order correction is
seen to be important and significant at the recoil peak, while
it is negligible in the vicinity of the binary peak. Up to now,
no laser-assisted (e, 2e) experiment on atomic hydrogen is yet
available in the literature. The absence of any experimental
data adds further importance to the theoretical study of such a
process. We believe that our results should serve as an incentive
to perform such laser-assisted collision experiments.
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