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Interferences and asymmetries in laser-assisted photoionization of diatomic molecules
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Several kinds of interference effects in laser-assisted photoionization of H2
+ molecular targets are theoretically

investigated by means of a Coulomb-Volkov model. The photoelectron angular distributions in the single-photon
ionization reaction are compared to more elaborated results, and the influence of usual approximations are
studied. Several configurations of pulses and assistant lasers are considered. Moreover, we show that previous
interference effects predicted for monochromatic pulses could be enhanced and/or diminished leading to a
directional selectivity of photoelectron emission. Finally, we analyze the influence of the pulse duration on the
photoelectron spectrum.
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I. INTRODUCTION

The development of the attosecond (as, 1 as = 10−18 s)
science has opened the possibility to explore the electron
dynamics in its own space and time scale. In this context,
it has also the potential of bringing promising tools able to
manipulate the electron dynamics, as the first step towards
the goal of controlling chemical reactions by a direct action
on their fundamental constituents. Many different techniques
have been developed to reach this goal. By using femtosecond
(fs, 1 fs = 10−15 s) technology, it has been possible to
control chemical reactions at the nuclear motion time scale,
demonstrating that the breaking of a given molecular bond was
an achievable process [1]. A few years later, the development
of ultrashort light sources has pushed the time resolution
from several hundreds of attoseconds [2] to less than one
hundred attoseconds [3], i.e., close to the electronic motion
time scale in atoms or molecules. Concepts such as control of
the electron dynamics in a reaction emerged as a consequence
of those technological achievements. Moreover, the ionization
of a coherent superposition of states [4,5], the control of
electron localization in dissociating molecular states [6–9],
and, recently, the control of orbital parity mix [10] have been
proved to be valid tools to control dynamical properties in
reactions. The key ingredient in all those works is the different
types of interferences that arise, particularly those generating
asymmetric distributions of fragments of the reaction. When
considered in conjunction with the Young-like (see [11] and
references therein) and confinement [12,13] interferences, a
wider range of effects are expected to emerge. Moreover,
interferences can arise due to differences in the phase shift
of the wave packets released by the several pulses composing
the ionizing signal [14–16].

The generation of single attosecond pulses (SATP) or
attosecond pulse trains (ATPTs) is usually achieved through
high harmonic generation by focusing an intense ultrashort
infrared laser pulse into a noble gas atom chamber [17].
The characterization of SATPs and ATPTs has been studied
both theoretically and experimentally [18,19]. The widespread
experimental procedure is the conversion of these light bursts
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in electron wave packets photoionizing atoms in the presence
of a near-infrared laser field (NIR).

The theoretical approach to the problem is by no means
simpler. Solving the time-dependent Schrödinger equation for
reactions such as the photoionization of molecular targets
assisted by a NIR laser represents a computational chal-
lenge [20–23], and also numerical results normally do not have
a straightforward interpretation. The use of simplified models
leading to predictions in reasonable agreement with ab initio
calculations could be a valuable tool to understand the physical
processes involved. The strong-field approximation (SFA) was
one of the first available models to tackle these problems.
Within this approximation, the Coulomb interaction between
the residual target and the photoelectron is not taken into
account in the dynamics of the latter one [24]. Nowadays, more
elaborated models are available. Among them, the separable
Coulomb-Volkov (SCV) model deals with atomic or molecular
targets [25–27] including the Coulomb interaction in the final
channel of the reaction. In the SCV approach, there are three
time steps in the electronic evolution. In the first one, the
ionized electron evolves as if it were subject exclusively to
the Coulomb field of the target, whereas in the third and last
interval of time, photoelectrons are described by the Volkov
continuum irrespective of the relative importance of Coulomb
and laser fields [26]. In the intermediate step, both the Coulomb
and NIR laser fields are acting on the ejected electron and are of
comparable importance. It is worth mentioning that the SCV
for the case of simple molecular targets described by linear
combination of atomic orbitals (LCAO) leads to analytical
expressions simplifying the computation of the observables
for the reaction.

In this work, we show that the SCV model gives a qualitative
agreement with ab initio calculations of monochromatic
photoionization cross sections [12,13,28] of H2

+ molecules.
Then, we analyze the case where the reaction is initiated
by a SATP or an ATPT assisted by a NIR laser in the
so-called streaking regime [16], focusing on those conditions
where asymmetrical fragments (i.e., photoelectron signals)
are generated. Different pulse durations ranging from 100
as to 2.5 fs and three possible polarizations are considered.
The initial molecular wave functions are described here as a
linear combination of Slater-type orbitals (STOs) variationally
optimized, whereas the final wave functions are SCV-type
wave functions [26]. Employing these initial and final wave
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functions, analytical expressions for the observables of inter-
est, such as photoionization spectra and photoelectron angular
distributions (PADs), are obtained.

Atomic units are used if not otherwise explicitly stated.

II. THEORY

Let us consider the photoionization of a diatomic molecule
through an ATPT assisted by a monochromatic NIR laser. To
fix ideas, we consider the case of the H2

+ target as its theoreti-
cal description is simpler than other multielectronic molecules.
In the following, we summarize the basic ingredients of the
SCV model [26].

The coordinate system used is one where R is the inter-
nuclear vector pointing from nuclei 1 to 2 and ri denotes the
electron position vector with respect to the ith nuclei. The
electron coordinate with respect to the molecular center of
mass will be given by r = (r1 + r2)/2.

The matrix transition amplitude in the dipole approximation
corresponding to the photoionization reaction by an ATPT in
the extreme ultraviolet regime (XUV) in the presence of a NIR
laser bath is given in the velocity gauge by [24]

MSCV(p) = −i

∫ ∞

−∞
dt〈�f (r,t)|p̂ · A(t)|�i(r,t)〉, (1)

where p̂ is the momentum operator, and �i(r,t) and �f (r,t)
are the initial and final wave functions corresponding to the
initial and final channels of the reaction, respectively.

The vector potential A(t) representing the XUV pulse is
given by

A(t) = �(φ)A0

∑
k

ςke
−i�t exp

[
− (t − tk)2

2τ 2

]
, (2)

= �(φ)A0τ

√
1

2π

∫ ∞

−∞
R(ω)e−i(ω+�)t dω, (3)

where � is the central frequency of the attosecond pulse. �(φ)
and A0 represent the polarization vector and the amplitude
of each pulse in the ATPT, respectively. The duration of the
attopulses denoted by τ is related to its full width at half
maximum (FWHM) duration through τFWHM = 2

√
ln 2τ . The

interference factor represented by R(ω) in Eq. (3) is given by

R(ω) =
∑

k

ςk exp[iωtk − ω2τ 2/2], (4)

where tk is the arrival time of the k-esime pulse composing
the ATPT and ςk is a factor that can assume the values ±1
according to the kind of simulated ATPT.

For low and intermediate NIR laser intensities (IL <

1013 W/cm2), one can reasonably approximate the bound
initial states by laser-free wave functions, i.e.,

�i(r,t) = ψ0
i (r) exp(iIpt), (5)

where Ip is the ionization potential of the initial molecular
bound state given by ψ0

i . The laser-free approximation is
justified for the NIR intensities of interest in our work as
in [29]. This is in agreement also with a large value of the
Keldysh parameter γ (γ ∼ 9 in our case), indicating that the
NIR laser field does not induce important modifications to the

Coulomb potential, i.e., the NIR may ionize the target only by
a multiphoton ionization, a process which is unlikely to occur
with the considered NIR intensities.

The initial molecular bound state is represented by a two
center development in terms of Slater-type functions located
on each molecular center (labeled as 1 and 2),

ψ0
i (r) =

∑
j

c
(1)
j φj (r1) +

∑
k

c
(2)
k φk(r2), (6)

where φi(r) are STOs.
We describe the asymptotic final states of the electron by

the Coulomb-Volkov ansatz [26] in which the interaction of
the ejected electron with both the residual ionic target and the
laser bath is taken into account,

�f (r,t) = ψ0
f (r) exp

{
− i

2

∫ t

[p + AL(t ′)]2dt ′
}

, (7)

with p the asymptotic value of the photoelectron momentum
and AL(t) the potential vector describing the NIR laser field.
The wave function ψ0

f (r) describes the continuum states of the
molecule [25], being given by

ψ0
f (r) = (2π )−3/2eip·rN2

pG(r1)G(r2), (8)

where Np = �(1 + iν) exp(πν/2) and G(ri) = 1F1(− iνi ;
1; −i(pri + p · ri)) is the confluent hypergeometric function,
and the Sommerfeld parameter is νi = Zi/p, where Zi is the
residual effective charge of the i-esime atom.

The phase multiplying the ψ0
f (r) wave function in Eq. (7)

is the well-known Volkov phase describing an electron of
momentum p in the presence of an electromagnetic field
represented by the potential vector AL in our case. This vector
potential corresponds to the NIR laser field and is given by

AL(t) ∼= −E1

ω0
sin(ω0t) − E2

ω0
sin(ω0t + φL), (9)

where ω0 is the laser field frequency corresponding to
the mutually perpendicular electric field components E1,2,
respectively, and φL is an arbitrary phase. The respective
electric field is given thus by

EL(t) = −dAL

dt
≈ E1 cos(ω0t) + E2 cos(ω0t + φL). (10)

Replacing Eqs. (3), (5), (7), and (9) into Eq. (1),
recognizing that in the velocity gauge, time and space
integrals are separable, and making use of the Jacobi-Anger
development [26,27] to expand the time-dependent terms in
the Volkov phase, the matrix transition amplitude given by
Eq. (1) may be rewritten as

MSCV(p) = A0τ
√

2πMph(p)
∞∑

m1,2,n1,2=−∞
in1+n2 (−1)m1+m2

×R(ω)Jm1 (M1)Jm2 (M2)Jn1 (N1)Jn2 (N2)

× ei(2m2+n2)φL, (11)

where we have defined

M1,2 = E2
1,2/(2ω0)3, (12)

N1,2 = p · E1,2/ω
2
0, (13)

ω = p2/2 + Ip − � + (2M1 + 2m1 + n1)ω0

+ (2M2 + 2m2 + n2)ω0. (14)

053414-2



INTERFERENCES AND ASYMMETRIES IN LASER- . . . PHYSICAL REVIEW A 90, 053414 (2014)

It is worth mentioning that the quadruple sum in Eq. (11)
collapses to a double sum in m1 and n1 or m2 and n2 when
E1 = 0 or E2 = 0, respectively, i.e., when considering a NIR
with just one component.

The monochromatic transition matrix element Mph(p) is
given by

Mph(p) = −i
〈
ψ0

f (r)
∣∣�(φ) · ∇∣∣ψ0

i (r)
〉
. (15)

To obtain Mph(p), we employ the Coulomb continuum (CC)
model [25,26] in which a peaking approximation, summarized
in the Appendix, is performed. This approximation, valid when
pR 	 1 leads to the following expression,

Mph(p) = χ1M
(1)
at + χ2M

(2)
at , (16)

where the molecular interference factors denoted by χ1,2 are
given by

χ1,2 = N∗
pe±ip·R/2G∗(∓R), (17)

and the M
(1,2)
at factors correspond to the atomic transition

matrix amplitudes from the molecular centers 1 and 2,
respectively.

Therefore, the photoelectron spectrum is given by

d3PSCV

dp d�e

≡ S(p,θe,φe) = p2|MSCV(p)|2, (18)

where d�e = sin θedθedφe denotes the differential solid an-
gle in the direction of the asymptotic momentum of the
photoelectron.

III. RESULTS

First, we compare our SCV results with more elaborated
ones [21–23]. We test our monochromatic transition amplitude
by computing photoelectron angular distributions (PADs) for
H2

+ targets with a definite spatial orientation and a XUV pulse
with both polarization vector parallel and perpendicular with
respect to the internuclear vector R. Moreover, we include the
case of circular polarization.

Second, we consider different configurations of XUV
pulses and NIR in the streaking regime for two different XUV
energies, analyzing the interferences produced by coherent
emission from both nuclei and those generated by the presence
of the NIR. We also include a study of the photoelectron
spectrum dependence with SATPs or ATPTs individual pulse
durations, from 100 as and up to almost the NIR period (2.5 fs).

Finally, we consider the case where both SATP or ATPT
and NIR have circular polarization, studying the angle-energy
photoelectron spectrum.

A. Monochromatic PADs

In Fig. 1, we present our computed PADs for three different
photon frequencies � = 5, 9.5, and 16 a.u. for the above-
mentioned polarization cases.

To obtain the initial molecular bound state, we use the
GAMESS software package [30] at the restricted open-shell
Hartree-Fock level of theory. A medium size [4s2p1d]
polarized basis set of atomic STOs [31] was used by means of
a STO-6G expansion [32]. Choosing the internuclear distance

FIG. 1. (Color online) Monochromatic PADs (green-blue plots)
for H2

+ at R = 2 a.u., for XUV with linear polarization parallel
and perpendicular to the molecular internuclear axis as well as
circular polarization. The nuclei are indicated by two small spheres
(dark gray). For linear polarization (upper and middle panels), the
polarization vector is indicated by a purple axis. In the case of circular
right polarization, the purple axis indicates the incidence direction.

equal to the equilibrium value R = 2 a.u. leads to an ionization
potential Ip = 1.1019 a.u.

For linear perpendicular polarization, the presence of extra
lobes in directions other than the one of the polarization reveals
the existence of interferences that may be related to Young
type two-slit patterns [12,22]. At the lowest-energy case, the
wavelength of the photoelectrons is slightly greater than the
internuclear separation and even in that case small extra lobes
are present. As the photon energy increases, the PADs resemble
the distribution in Young’s two-slit experiment [21].

When the polarization is parallel to the molecular inter-
nuclear axis, a different scenario appears. In general, photo-
electrons are ejected mainly in the classical direction given by
the polarization vector. However, ejection in this direction is
partially forbidden for � = 9.5 a.u. This can be associated to
the so-called confinement effect that appears when the energy
of the ejected photoelectron approximately satisfies pR ∼ lπ ,
with l being an odd integer. Moreover, this confinement effect
may be traced to the presence of a minimum in the cross
sections as a function of the photon energy for the particular l

partial wave contribution [12,13,22]. Alternatively, this may be
understood also as a Cooper minima-type consequence [33].

In the case of circular polarization, our PADs exhibit
roughly a mixture of both linear parallel and linear perpendic-
ular cases with an additional feature given by a torsion [23] of
the PADs. Setting the polarization vector �(φ) = cos(φ)ez +
i sin(φ)ex with φ = +π/4(−π/4) we get left (right) circular
polarization XUV pulses. All the calculations with circular po-
larization were performed by setting φ = −π/4. Replacing the
circular polarization expression into Eq. (15), monochromatic
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FIG. 2. (Color online) Relative torsion at different photon en-
ergies and right circular XUV polarization, in monochromatic
photoionization of H2

+ molecules at R = 2 a.u. Panel (a) shows
the relative torsion obtained with CC model. Panel (b) shows relative
torsion for numerical integration of Eq. (15) compared to ab initio
results [23]. Results in full and dashed lines in panel (b) were taken
from [23].

transition amplitudes may be written as

Mph = Mz
ph + Mx

ph. (19)

The relative torsion (RT) is proportional to the cross product
between ionization transition amplitudes of the two indepen-
dent components of the XUV field divided by the maximum
of the PAD [23], i.e.,

MRT ∝ Mx ∗
ph Mz

ph + Mz ∗
ph Mx

ph, (20)

and can be seen in Fig. 2. Panel (a) shows the RT obtained
with the CC model. For the lower-energy case, this RT is
about three times smaller than in the ab initio results [23], but
the qualitative sin(2θe) behavior is reproduced.

This feature is quite sensitive to the description of the
molecular initial bound state and the final photoelectron wave
function. The inclusion of d (l = 2) states in the description of
the initial wave function plays a major qualitative role. They
allow the reproduction of the qualitative behavior; otherwise,
a sin(3θe) dependence is obtained. This can be understood
in terms of dipolar couplings between initial-state basis set
elements and the continuum partial waves that dominate in a
given energy region. At � = 5 a.u., the linear perpendicular
polarization cross section is dominated by l = 3 partial waves,
whereas for linear parallel polarization they have a non-
negligible contribution [28].

We have also checked that this RT disappears if only 1 s
STOs are used in the description of the initial state in the CC
model. Moreover, no asymmetry is observed if the Coulomb
interaction between the photoelectron and the residual target
is not taken into account in the final continuum wave function
as it occurs in the SFA, irrespective of the basis set considered
to describe the initial bound state.

Finally, this RT is also affected by the peaking approxi-
mation considered in our calculations. A numeric evaluation
of matrix elements in Eq. (15), as those shown in panel
(b) of Fig. 2 for photon energies of � = 70 and 200 eV,

respectively, yields a RT in better agreement with more
elaborate results [23]. While for a photon energy of � =
200 eV a remarkable agreement with results taken from [23] is
found, the � = 70 eV case shows an oscillation and peaks in
qualitative agreement. This can be related to the fact that the
final photoelectron wave function considered is asymptotically
correct. The lower the energy of the photon, the worse the
description of continuum states.

B. Photoelectron spectrum in the streaking regime

The relationship between the duration of each pulse in
the ATPT (τ ) and the period of the NIR (TNIR) establishes
different physical situations for the reaction. When the NIR
gives a negligible ionization probability of the target but it is
able to exchange a noticeable momentum with photoelectrons
released by a short (τ/TNIR � 1) XUV pulse, we are in the
so-called streaking regime [16]. Classical [16], semiclassi-
cal [14,15], and quantum [26,34] formulations are used to
explain the features exhibited by a system under the streaking
conditions.

In Fig. 3, we show the photoelectron spectra as a function of
the XUV-NIR delay and the asymptotic kinetic energy of the
photoelectrons, in the so-called parallel detection geometry
(θe = 0) (PDG+). We consider SATPs or ATPTs of energy
� = 5 a.u. and � = 9.5 a.u. with a FWHM pulse duration of
200 as in the presence of a linearly polarized NIR of 800 nm
with intensity IL = 3.5 × 1012 W/cm2.

As can be seen in Figs. 3(a)–3(d), the photoelectron
spectra as a function of the XUV-NIR delay shows an
oscillation with the same period as the NIR, irrespective of
the XUV photon energy. Moreover, the amplitude (in energy)
of this oscillation depends on both the NIR strength and the
photoelectron momentum. This dependence may be explained
classically [16].

If the Coulomb interaction of the photoelectron with the
residual target is neglected, then the value of its asymptotic
momentum is related to its birth time t0 (arrival time of the
XUV pulse) through the simple relation,

p = p0 − AL(t0), (21)

where p0 =
√

2(� − Ip) represents the unshifted momentum
that would acquire the ionized electron by absorption of an
XUV photon in the absence of the NIR laser field [17]. In
this approximation, it is assumed that the photoelectron is
acted on instantaneously by the laser field provoking a jarring
in its classical motion. Moreover, it is worth mentioning
that the quantum effects of the confinement interferences
can be traced in Figs. 3(a) and 3(b). For the later one,
confinement effects [12] are produced and their influence is
superimposed to the well-known decrease of the cross sections
as the asymptotic photoelectron energy increases. On the
other hand, the photoelectron spectrum in Fig. 3(a) exhibits a
smaller decrease rate as compared to photoelectron spectrum
in Fig. 3(b) owing to the absence of confinement. A similar
analysis can be performed for Figs. 3(c) and 3(d).

If a train of XUV pulses instead of a single one is
employed, a SPIDER-like attosecond spectrometer [14,15]
is obtained and the situation changes dramatically as can be
seen in Figs. 3(e) and 3(f), where structures appear in the
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FIG. 3. (Color online) (a) Photoelectron spectrum in the PDG+ for H2
+ at R = 2 a.u. ionized by a SATP of energy � = 5 a.u. with

a duration FWHM of 200 as, in the presence of a linearly parallel polarized NIR. The NIR wavelength and intensity are 800 nm and
IL = 3.5 × 1012 W/cm2, respectively. (c) Same as (a) but with a SATP extra delay of π/ω0. (e) Same as (a) but with an ATPT composed of a
XUV pulse and a delayed replica. Figures (b), (d), and (f), the same as Figs. (a), (c), and (e), respectively, but XUV photon energy � = 9.5 a.u.
Sketches in the right-hand side show the delay definition schema.

crossing region, i.e., in the time-energy window delimited by
dashed blue lines. These structures are a clear manifestation
of quantum interferences produced by the existence of several
quantum paths leading to the same final state [16].

Moreover, the relation between the bandwidth of the pulses
in the ATPT and the intermediate NIR intensity regime
considered gives rise to an interesting feature. The intensity
is strong enough to impart a noticeable momentum transfer
to the XUV released photoelectron, whereas the initial bound
state remains almost unchanged [29]; also the bandwidth of
the pulses is short enough to ensure that there will be regions
where the energy gap cannot be overcome by absorption
or emission of NIR photons. Under these conditions, two

different behaviors coexist. Regions enclosed by dashed blue
lines in the photoelectron spectrum of Fig. 3(e) present
quantum mechanical features, i.e., interferences of photoelec-
tron signals produced by each pulse in the ATPT, whereas
the rest of the spectrum is almost equal to the incoherent
superposition of the spectra generated by each of the two pulses
comprising the ATPT. A similar behavior can be identified in
Fig. 3(f) regardless of the confinement interference influence
analyzed before. The dependence of this feature with the
bandwidth of each pulse in the ATPT will be analyzed in the
next section.

The existence of asymmetric emission patterns may be
inferred from the energy-resolved photoelectron spectra, in the
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FIG. 4. (Color online) (a),(c) Laser-assisted PADs for H2
+ at

R = 2 a.u., with XUV polarization parallel to the molecular inter-
nuclear separation and different delays t0. The polarization vector
is indicated by a purple axis. Other parameters are the same as in
Fig. 3(a). (b),(d) Interfering satellite terms in the quantum treatment
(see text).

PDG+, shown in Figs. 3(a)–3(d). The photoelectrons emitted
in the polarization direction have an energy that depends on
the XUV-NIR delay t0. Alternatively, the number of electrons
with a given energy emitted in the PDG+ depends on the
mentioned delay t0. To further investigate these asymmetric
emission patterns we computed the PADs with conditions
corresponding to the crossings of the dashed blue lines in
Fig. 3(b), i.e., p2/2 = 247 eV and delays t0 = π/2ω0 and
3π/2ω0. They are shown in Figs. 4(a) and 4(c).

As can be seen, the presence of the NIR induce strong
asymmetries compared to the completely symmetric case
produced by the XUV solely [Fig. 1(e)].

Even if these asymmetries have been already found for
assisted photoionization of atomic targets [14,15,34,35], the
SCV model provides an interpretation of this effect based
on interferences of the different channels opened by the NIR
presence. Considering Eq. (11) with just one NIR component,
we note that for the chosen NIR intensity the constant M1 is
close to zero (M1 = 0.067 660 152), so J0(M1) 	 Jm1 (M1)
with m1 �= 0. Thus the main contributions to the sum in
Eq. (11) will be given by the partial sum in n1 with m1 = 0.
We have also found that under these conditions the real and
imaginary parts in this sum have a similar behavior, so it is only
necessary to analyze one of them. In Figs. 4(b) and 4(d), we
show the real part of the contributions of selected terms in the
partial sum in n1 with m1 = 0. As can be seen, as the ejection
angle approaches the value θe = π/2, major contributions

come from terms with a decreasing value of |n|. This may
be related to the fact that momentum exchange between
the photoelectron and NIR is proportional to p0 · AL(t0) in
the classical model [16,17], so when p0 ⊥ AL there is no
momentum exchange. In a quantum formulation, there will be
no NIR photon absorption or emission by the photoelectron.
More interesting is the observed upside-down asymmetry. In
Fig. 4(b), for ejection angles θe belonging to [0,π/2] almost
all terms have a positive contribution to the sum, giving a
nonvanishing upward probability of emission. On the contrary,
for ejection angles θe in the domain [π/2,π ] the sign of the
terms alternates between positive and negative, so different
contributions to the partial sum cancel each other giving a
negligible downward probability of emission, as can be seen
in the colored zoomed areas. All these terms were previously
identified as satellite interferences [26]. So we may conclude
that the strong asymmetries shown in Figs. 4(a) and 4(c)
come from interfering channels opened by the NIR. The
results presented in Fig. 4(d) have a straightforward analogous
interpretation.

As it has been shown in Figs. 3(e) and 3(f), when the
ATPT is composed by two XUV pulses the spectra change
in a marked fashion. The interferences in the crossing region
come from the difference in the phase shift of the wave packets
released by the pulses composing the ATPT [14–16].

In Fig. 5, we show the photoelectron spectrum for the
PDG+ as a function of the asymptotic photoelectron energy
corresponding to the dash-dotted blue line in Fig. 3(f). As can
be seen, the signal is modulated in amplitude by a bell-shaped
function. Moreover, it presents an oscillation of a slowly
varying frequency. This spectrum can be accurately fitted with
a function f (E) given by

f (E) ∝ (1 + cos γn)|Zn|2, (22)

where the γn function is given in the Appendix, and the bell-
shaped envelope is approximated in first (n = 1) and second

FIG. 5. (Color online) 2D cut of photoelectron spectrum in
Fig. 3(f) for a delay between the ATPT and the NIR equal to TNIR/2.
The calculated spectrum is given by the green small circles, whereas
the fit with Eq. (22) is given by the continuous black line and dashed
red line.
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(n = 2) order by

|Z1|2 = exp

{
−a1τ

2

(
p2

2
− a2

)2}
, (23)

|Z2|2 = exp

{
−a1τ

2

(
p2

2 − a2
)2

1 + p2E2
Lτ 4

}
, (24)

where a1,2 are considered as fitting free parameters.
It can be observed that the second-order fitting function

provides reliable results all over the considered energy interval.
On the other hand, the first-order fitting function is unable to
reproduce accurately even the position of the central bands in
the spectrum. This fact could be anticipated by means of the
validity condition for a first-order fitting, given in Eq. (A27)
of the Appendix. Replacing the corresponding values into
Eq. (A27), we get pELτ 2 ∼ 1, where it is clear that the
aforementioned condition is not met.

Interestingly, from this fitting procedure it may be possible
to extract from γn the NIR intensity, the delay between XUV
pulses, and the individual XUV pulse duration, the latter one
appearing only in the second-order treatment (n = 2).

For the energies indicated in Fig. 5 by letters and arrows,
we have calculated the corresponding PADs that we present in
Fig. 6 showing its variation with the asymptotic photoelectron
energy for a fixed ATPT delay.

As can be seen, a small change in the asymptotic energy of
the photoelectron has a deep influence on the PADs. The PAD
closest to the central energy of the spectrum (E = 8.4 a.u.) is
the one for E = 228.681 eV [indicated as (e) in Figs. 5 and 6].
PADs at both sides of the latter one show the same kind of
behavior which ranges from almost complete erasure of the
confinement effect [PAD (b) in Fig. 6] to an enhancement of
this effect in one or both directions.

As expected, PADs corresponding to the various interfer-
ence minima in Fig. 5 share a common feature, i.e., emission
along the direction given by θe = 0 vanishes, as can be seen in
Figs. 6(a), 6(c), 6(e), 6(g), and 6(i). On the contrary, emission
along θe = π is less regular. PADs far apart from the center
energy of the spectrum [(a) and (i)] have a non-negligible
probability in the θe = π direction, while the remaining
PADs give an almost zero probability of emission in this
direction.

Besides, the emergence of new structures in the PADs
is clearly visible by comparing the monochromatic case
[Fig. 1(e)] with the one closest to the central photoelectron
energy. These structures comes from the fact that the ac-
tion of the NIR opens several intermediate channels in the
final one.

C. Photoelectron spectrum dependence
with the ATPT pulse duration

The aim of this section is twofold. On one hand, we
analyze the departures from the streakinglike behavior with
an increasing pulse duration in the SATP. On the other hand,
by changing the individual pulse duration in the SPIDER-like
arrangement analyzed before, we study the influence of the
pulse bandwidth on the spectrum.

FIG. 6. (Color online) Angular distributions (orange plots) for
several photoelectron asymptotic energies indicated in Fig. 5. All
PADs were calculated for the same delay between the ATPT and the
NIR. The rest of the parameters are the same as in Fig. 3(f).

As the pulse duration in the SATP increases, departures
from the streaking regime behavior are observed owing to
the interferences coming from the different quantum paths
available. To study the dependence of the photoelectron
spectrum with the pulse duration τ , we have computed this
observable for different τFWHM values ranging from 100 as
to 2.5 fs. In Fig. 7, a streakinglike behavior may be seen for
pulse durations up to 500 as, where interferences arise for
delays around π/2ω0 and 3π/2ω0.

A subsequent increase of the pulse duration gives place to
a rise in the number of sidebands and, at the same time, an
erasing of the streakinglike behavior. Our calculated spectrum
shows the same qualitative behavior as those of laser-assisted
atomic photoionization [36]. However, in our case the presence
of confinement interferences modifies the modulation in
intensity of the sideband lines. For pulse durations reaching
the period of the NIR, it is almost impossible to distinguish
oscillations as a function of the delay showing that with
increasing XUV pulse duration the spectrum becomes delay
independent, as shown in the atomic case [36]. Moreover, the
sidebands separation tends to the NIR photon energy, as the
XUV pulse duration increases.

In Fig. 8, we focus on the case of an ATPT composed by
two pulse replicas where some sort of sidebands appears even
in the case of short durations. This may be ascribed to the
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FIG. 7. (Color online) Photoelectron spectra for fixed in space H2
+ at R = 2 a.u. for a linearly polarized SATP parallel to the molecular

internuclear axis. The driven NIR is collinear to the SATP. Different pulse durations are considered. The other parameters are the same as in
Fig. 3(f).
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FIG. 8. (Color online) Same as Fig. 7 but for ionization with an ATPT composed by a pulse and a half NIR period delayed replica.

fact that for such a short duration of the pulses, the bandwidth
broadening allows the formation of interferences produced
by the signals generated by the two pulses comprising the
ATPT and mediated by NIR photons. As long as the individual

pulse duration increases, a hybrid coherent and incoherent
superposition region behavior as the one analyzed in the
previous section emerges at least up to τFWHM = 500 as, where
sideband formations are almost all over the spectrum. For
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longer pulse durations, the changes are of the same type as
in the case of SATP, except that oscillations as a function
of the delay are present even for the longest pulse duration

considered, indicating that a dependence of the spectrum with
the delay persists even if streakinglike features are not present.
Under these conditions and opposed to what happens with a

FIG. 9. (Color online) Photoelectron spectra for fixed in space H2
+ at R = 2 a.u. The SATP and the assistant NIR are both circularly

polarized. Several pulse durations are considered. The rest of the parameters are the same as in Fig. 3(f).
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single XUV pulse analyzed before, the precise knowledge of
the delay between the XUV pulse and the NIR may become
important to clearly characterize sidebands.

D. ATPT and NIR circularly polarized

Let us consider now ATPT and NIR fields both with the
same right circular polarization, in which one component of

FIG. 10. (Color online) Same as Fig. 9 but for ionization with an ATPT composed by a pulse and a half NIR period delayed replica.
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the electric field is parallel and the other one perpendicular
to the internuclear separation vector R. Although not shown
here, the energy-delay photoelectron spectra for different pulse
durations in the PDG+ are similar to those for the linear
polarization case already shown in Figs. 7 and 8. Instead of
them, we present angle-energy photoelectron spectra as they
are instructive in order to visualize the emergence of new
structures as the pulse duration increases.

In Fig. 9, we show the angle-energy photoelectron spectra
for different pulse durations of the SATP. In this case, the
delay of the pulse with respect to the NIR is fixed at t0 = 0.
By increasing the pulse duration, more sidebands appear as
a result of the increase in quantum paths available to reach
the same final state. The two angular values where the signal
vanishes, almost symmetric with respect to θe = π/2, are the
same as those for which the monochromatic PADs for circular
polarization in Fig. 1 vanish. In the plane-wave model of
Walter and Briggs [37], PADs follow an angular distribution
proportional to cos2(p · R/2), where the ejection angles at
which this expression is zero are shown in Fig. 9 with dashed
black lines.

As before, the value τFWHM = 500, as seems to be the
boundary between the streakinglike behavior and the sideband
formation.

If the ATPT is composed by two pulses, then some
interesting features arise in Fig. 10. For every pulse duration,
photoelectrons ejected in the direction parallel to the molecular
internuclear axis are modulated by interference patterns. On
the other hand, for ejection in the perpendicular direction to the
molecular orientation, interference patterns are present only
for small or large durations. No interferences are produced
for intermediate τFWHM values as observed in the case of
linear polarization. It is worth pointing out that the delay used
in Fig. 10 has the property of separating the perpendicular
emission peaks as much as possible. Then, the presence of
interferences in the perpendicular emission direction may be
modified if other delays are considered.

IV. CONCLUSIONS

We have shown that our simple model is able to describe
the main physical features of the photoelectron spectra for
H2

+ molecules in several situations. We have also addressed
some issues related to approximations of extended use as SFA,
showing some consequences of its use particularly for circular
polarization XUV pulses where Coulomb interactions play
a major qualitative role. Besides, a quantitative agreement
can be achieved for the relative torsion in the monochromatic
circular polarization case if the use of peaking approximation
is omitted. In general, a qualitative agreement is obtained
between the predictions of our simple model and the more
elaborate ab initio results.

Moreover, we have analyzed the physical origin of PADs
asymmetries in laser-assisted photoionization in the streaking
regime showing that satellite interferences are responsible
for them in a quantum mechanical sense. We have also
introduced a fitting procedure that allows the recovery of
physically important parameters of the reactions when an
ATPT is considered as ionizing signal, in which the individual
pulse duration has a second-order importance. We have also

analyzed the conditions under which previous interference
effects predicted for monochromatic pulses could be enhanced
and/or diminished leading to a directional selectivity of the
photoelectron emission.

In addition, we have examined the individual pulse duration
influence on the photoelectron spectrum for SATPs and
ATPTs with linear and circular polarizations. For all the cases
analyzed, an individual pulse duration of ∼500 as seems to be
an upper boundary for the streaking regime when the NIR has
a wavelength of 800 nm. Also, when an ATPT with individual
pulse durations similar to the NIR period is considered, a rather
small spectrum dependence with the delay is found, indicating
that the knowledge of the delay between the ATPT and the NIR
might be necessary to properly characterize the sidebands.

These results are encouraging as our calculations may
be extended without great effort to more complex diatomic
molecules where ab initio calculations are computationally
very CPU-time consuming or even prohibitive. Work in this
direction is in progress.
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APPENDIX

1. Monochromatic transition matrix elements

We summarize the basic steps to obtain analytical ex-
pressions for the monochromatic transition matrix elements.
Replacing Eqs. (6) and (8) into Eq. (15) and performing an
expansion of the integral as a sum of integrals over each
molecular center, Mph(p) may be written as

Mph(p) = M
(1)
ph (p) + M

(2)
ph (p). (A1)

To obtain M
(1,2)
ph (p), we employ the Coulomb continuum (CC)

model [25,26] in which the expression

M
(1,2)
ph (p) = −i(2π )−3/2(N∗

p)2e±ip·R/2

×
∫

d3r1,2e
−ip·r1,2G∗(r1,2)G∗(r1,2 ∓ R)

×�(φ) · ∇r1,2

∑
j

c
(1,2)
j φj (r1,2) (A2)

is approximated by

M
(1,2)
ph (p) = −i(2π )−3/2(N∗

p)2e±ip·R/2G∗(∓R)

×
∫

d3r1,2e
−ip·r1,2G∗(r1,2)�(φ) · ∇r1,2

×
∑

j

c
(1,2)
j φj (r1,2), (A3)

provided that the largest contributions to the integral are
located around nucleus labeled as 1,2. This approximation,
valid when pR 	 1, is usually referred to as the peaking
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approximation and leads to the expression

Mph(p) = χ1M
(1)
at + χ2M

(2)
at , (A4)

where the molecular interference factors denoted by χ1,2 are
given by

χ1,2 = N∗
pe±ip·R/2G∗(∓R), (A5)

including the factored Coulombic term G∗(∓R) coming from
the peaking approximation. The M

(1,2)
at factors are given by

M
(1,2)
at = −i(2π )−3/2N∗

p

∫
d3r1,2e

−ip·r1,2

×G∗(r1,2)�(φ) · ∇r1,2

∑
j

c
(1,2)
j φj (r1,2), (A6)

which correspond to the atomic transition matrix amplitudes
from the molecular centers 1 and 2, respectively, and they are
solved analytically using the Nordsieck’s method [38].

2. Taylor expansion of the Volkov phase

We present the approximations performed to obtain
Eq. (22). Replacing in Eq. (1) the initial and final wave
functions and also the expression for vector potential of
the XUV ATPT, we obtain an expression for the transition
amplitude. Recalling that in the velocity gauge, time and space
integrals are separable, and considering space integrations as
performed, then a time integral has to be solved. Now, instead
of using the Jacobi-Anger identities, we perform a Taylor
expansion of the Volkov phase in Eq. (7), around the arrival
time tk ,

θ (t) =
∫ t

[p + AL(t ′)]2dt ′ (A7)

= θ (tk) + θ ′(tk)(t − tk) + 1

2
θ ′′(tk)(t − tk)2 + · · · , (A8)

and we keep terms up to the second order. Then, the time
integral reads

I =
∑

k

ςk

∫ ∞

−∞
exp

{
− (t − tk)2

2τ 2
+ i(Ip − �)t

+ i

2

[
θ (tk) + θ ′(tk)(t − tk) + 1

2
θ ′′(tk)(t − tk)2

]}
.

(A9)

Extracting constant phases and grouping together terms of the
same (t − tk) order, we obtain the following expression:

I =
∑

k

ςke
i[ θ (tk )

2 +(Ip−�)tk ]
∫ ∞

−∞
exp(−α2ξ 2 + βξ )dξ, (A10)

where

α2 =
(

1

2τ 2
− iθ ′′(tk)

4

)
, (A11)

β = i

(
Ip − � + θ ′(tk)

2

)
. (A12)

The definite integral in Eq. (A10) has a straightforward
solution [39], namely∫ ∞

−∞
exp(−α2ξ 2 + βξ )dξ =

√
π

α
exp

(
β2

4α2

)
, (A13)

with Reα2 > 0, which can be rewritten as
√

πα∗

|α|2 exp

(
β2(α2)∗

4|α2|2
)

, (A14)

with

β2 = −
(

θ ′(tk)

2
+ Ip − �

)2

, (A15)

4|α2|2 = 1

τ 4
+ θ ′′2(tk)

4
, (A16)

α∗ = |α∗|e−i θα
2 , (A17)

θα = − arctan

(
θ ′′(tk)τ 2

2

)
, (A18)

to finally get the expression

I ∝
∑

k

ςk exp

⎧⎨
⎩i

⎡
⎣θ (tk)

2

(
θ ′(tk )

2 + Ip − �
)2

4
τ 4 + θ ′′2(tk)

− θ ′′(tk)

+ (Ip − �)tk − θα

2

⎤
⎦−

(
θ ′(tk )

2 + Ip − �
)2

2
τ 2 + θ ′′2(tk )τ 2

2

⎫⎬
⎭, (A19)

which is valid when θ ′′ 2(tk) is independent of k.
When considering two replicas, with tk = (k+1)π

ω0
, and k =

0,1, in the PDG+, i.e., θe = 0 or p ‖ AL, we have

θ (t0,1) = E2
L

2ω2
0

t0,1 ∓ 2pEL

ω2
0

+ p2t0,1, (A20)

θ ′(t0,1) = p2, (A21)

θ ′′(t0,1) = ±2pEL. (A22)

As θ ′′(tk) does not depend on time, both terms corresponding
to k = 0,1 in Eq. (A19) may be written as Z2 + Z2e

iγ2 , with
γ2 being a phase shift. Under these conditions, we have |I |2 ∝
(1 + cos γ2)|Z2|2, where

γ2 = π + 2pEL

ω2
0

+ E2
L

4ω2
0

�t +
(

p2

2
+ Ip − �

)
�t

− arctan(pELτ 2) + pELτ 4

(
p2

2 + Ip − �
)2

1 + p2E2
Lτ 4

, (A23)

with �t = π/ω0, and |Z2|2 given by

|Z2|2 = exp

⎧⎨
⎩−τ 2

(
p2

2 + Ip − �
)2

1 + p2E2
Lτ 4

⎫⎬
⎭. (A24)

If only first-order terms in the Taylor expansion are kept, we
obtain

γ1 = π + 2pEL

ω2
0

+ E2
L

4ω2
0

�t +
(

p2

2
+ Ip − �

)
�t (A25)
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and

|Z1|2 = exp

{
−τ 2

(
p2

2
+ Ip − �

)2}
. (A26)

In passing from the second to the first order in the Taylor
expansion, a condition of applicability for the latter can be

found, namely,

pELτ 2 � 1. (A27)

Interestingly, this relation does not depend on ω0.
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