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Nondipole ionization dynamics in atoms induced by intense xuv laser fields
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Solving the time-dependent Schrödinger equation from first principles, the laser-induced breakup dynamics
of hydrogen is studied beyond the electric dipole approximation, at very high laser intensities. It is assumed that
the atom is being irradiated by an extreme ultraviolet laser light pulse at a wavelength of 13 nm, corresponding
to a photon energy of 95 eV. It has already been experimentally demonstrated that the free-electron laser (FEL)
FLASH in Hamburg can deliver irradiance levels up to about 1016 W/cm2 in this wavelength range. Although we
will go to even higher intensities in the present work, in order to spot nondipole effects, this merely demonstrates
that ultrahigh light intensities can be achieved with present FEL technologies. Furthermore, with new seeding
techniques the laser power is expected to go even higher in the future. In our study the atom is exposed to a short
attosecond laser pulse, and the role of higher-order corrections to the electric dipole approximation is studied
systematically. The main findings are that higher-order corrections beyond the leading first-order term, to a good
approximation, can be neglected for all intensities within the nonrelativistic regime, provided the pulse duration
is not too long. This means that the effect of second- and higher-order corrections only needs to be accounted
for when entering the relativistic regime, within the scope of the Dirac equation. It is further found that the
leading first-order correction to the dipole approximation has a great impact on the angular emission pattern of
the low-energy photoelectrons.
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I. INTRODUCTION

The interaction between atoms and laser fields is of
fundamental interest and has occupied physicists since the
invention of the laser in 1960. Laser pulses are today by far the
most powerful tools for manipulating and controlling atomic
systems and have opened a new era in the field of atomic,
molecular, and optical (AMO) physics. With the development
of ultrashort (femtosecond) pulses, the possibility of using
lasers as a kind of advanced camera for watching chemical
reactions in real time has become a reality [1]. The invention
of attosecond pulses through high-order harmonic generation
(HHG) techniques [2,3] has brought the study of atomic
processes to a new level of complexity [4], opening the door for
generating extremely short laser pulses of durations compara-
ble to the electron’s (classical) orbit time in atoms, opening up
new perspectives in imaging technologies. Free-electron lasers
represent another laser technology that is developed in parallel
with HHG sources [5,6]. Radiation produced by FEL is char-
acterized by its high photon energies and high intensity, thus
enabling the study of nonlinear breakup processes [7–9] as well
as K-shell ionization followed by Auger decay [10]. With new
seeding techniques the peak brightness and coherence proper-
ties of FELs are expected to improve even more in the future.

One of the most common approximations in AMO physics
is to treat the laser field as a homogeneous time-dependent
electric field, i.e., the so-called electric dipole approximation.
In this approximation any spatial dependence of the fields
as well as the homogeneous magnetic field component are
assumed to be negligible. As a matter of fact, the dipole
approximation is usually a very accurate one, and it is only
under certain circumstances that nondipole corrections need
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to be considered, e.g., for very intense laser fields. Above-
threshold ionization (ATI) and HHG by near-infrared light
beyond the electric dipole approximation have been studied in
atoms [11,12], and the breakdown of the dipole approximation
in high-order harmonic generation in molecules has been
demonstrated [13,14], i.e., both even and odd harmonics are
obtained beyond the dipole approximation. Near the cutoff
and for high intensities, it was shown that the even harmonic
generation originating from the nondipole component of the
driving field may ultimately become the dominating source of
HHG in polyacetylene [13]. The role of nondipole effects in
the ionization of hydrogen in superintense xuv laser pulses
has also been investigated [15–20] within the context of
atomic stabilization [21,22]. A characteristic lobe, coined
the nondipole lobe, was recognized in the corresponding
angular distribution of the emitted photoelectron [23,24], a
finding that was confirmed more recently [25]. A similar
lobe was also identified in the intense-field ionization of
H2

+ [26]. Furthermore, the electric dipole approximation is
not applicable in the extremely short-wavelength limit, e.g., in
the photoionization of atoms by hard x-ray radiation [27–31].

The aim of the present work is to study the breakdown of
the electric dipole approximation in the multiphoton ionization
dynamics of atoms in intense laser fields. We will consider the
soft x-ray regime, i.e., the photon energy 95 eV, corresponding
to a laser wavelength of 13 nm. This particular choice is
motivated by the availability of such photons at the European
free-electron laser facility at DESY in Hamburg (FLASH).
FLASH can deliver irradiance levels up to about 1016 W/cm2

at the current photon energy [7], and even higher intensities
are expected with future seeding techniques [5,32]. In this
work, we show that higher-order corrections to the electric
dipole approximation, beyond the leading first-order nondipole
correction, which corresponds to the (homogeneous) magnetic
field component of the laser field, only have a minor effect
on the resulting ionization dynamics and can under most
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circumstances be neglected. In order to show this, we solve the
fully three-dimensional time-dependent Schrödinger equation
(TDSE) for a hydrogen atom interacting with an explicitly
time- and space-dependent laser field, and obtain both total as
well as differential ionization probabilities. At high intensities,
the ionization dynamics is characterized by the emission of
low-energy electrons, giving rise to a low-energy structure in
the energy spectrum of the photoelectron. As this is a kind of
high-frequency counterpart to the well established low-energy
structure (LES) [33–35] observed in strong-field ionization of
atoms and molecules by midinfrared laser fields, we merely
call it the high-frequency low-energy structure (HLES) here.
The HLES has been noticed before [19,36]. Here, we show
that the emission of low-energy electrons becomes even more
important in the nondipole limit, as the relative fraction of
low-energy electrons that are emitted increases significantly.
Furthermore, we show that the corresponding angular distri-
butions of the low-energy electrons are significantly altered
by the nondipole (homogeneous magnetic field) component of
the laser field.

Our results are valid in the entire nonrelativistic domain,
i.e., for all field strengths so that the corresponding quiver
velocity of a (classical) free electron in the field does not
exceed 10% of the speed of light. For even higher laser
intensities, the nonrelativistic TDSE approach cannot be
applied, our results are no longer valid, and a fully relativistic
approach is a prerequisite for treating the problem [37–39].

Atomic units where me, �, e, and a0 are scaled to unity are
used throughout the paper unless stated otherwise.

II. THEORY AND METHODOLOGY

Assuming the dynamics of the laser-atom interaction being
nonrelativistic, the dynamics of a hydrogen atom interacting
with a classical electromagnetic field is governed by the time-
dependent Schrödinger equation, which in the velocity gauge
is given by

i
∂

∂t
�(r,t) = H�(r,t), (1)

with the Hamiltonian

H = 1

2
[ p + A(η)]2 − 1

r
. (2)

Here A(η) is the time- and space-dependent vector potential
defining the laser pulse, η = ωt − κ · r , ω is the central
frequency of the field, κ = |κ | = ω/c is the wave number, c

is the speed of light, and r = |r|. Assuming light propagating
in the positive x direction and of linear polarization along the
z axis, and expanding the space-dependent vector potential to
second order in powers of x/c, the vector potential takes the
approximate form

A(x,t) � A(t) + x

c
E(t) − 1

2

x2

c2

d

dt
E(t), (3)

where A(t) represents the homogeneous z component of the
vector potential, and E(t) = − d

dt
A(t) is the corresponding

(homogeneous) electric field. In the present work, we have
assumed a sine-squared carrier envelope for the laser pulse,
i.e., the time variation of the corresponding vector potential

follows

A(t) = E0

ω
sin2

(
πt

T

)
sin(ωt + φ), (4)

where E0 is the maximum electric field amplitude, φ is
the carrier-envelope phase (CEP), and T defines the (total)
duration of the laser pulse. In the simulations, the CEP is set
to zero and the pulse duration is given in numbers of optical
cycles. As the laser pulse considered here is relatively long
in terms of optical cycles, i.e., 15 cycles or longer, the actual
value of the CEP is rather unimportant for the results.

Inserting the vector potential in Eq. (3) into the Hamiltonian
Eq. (2), and imposing the Coulomb gauge restriction ∇ · A =
0 on the field, we define three approximate Hamiltonians for
the laser-matter interaction: first, the usual dipole approxima-
tion Hamiltonian,

HD � 1

2
p2 − 1

r
+ A(t)pz, (5)

second, the Hamiltonian including the leading-order nondipole
correction,

HND1 � 1

2
p2 − 1

r
+ A(t)pz + x

c
A(t)E(t), (6)

and third, the Hamiltonian including also the next-leading-
order nondipole corrections, which we also will refer to as the
second-order nondipole corrections,

HND2 � 1

2
p2 − 1

r
+

[
A(t) + x

c
E(t)

]
pz + x

c
A(t)E(t)

+ 1

2

x2

c2

[
E2(t) − A(t)

d

dt
E(t)

]
. (7)

Note that here the purely time-dependent quadratic 1
2A2(t)

term has been removed by the gauge transformation

� ′ = exp

[
i

∫ t

0

1

2
A2(t ′)dt ′

]
�. (8)

The difference between Eqs. (6) and (7) is that in Eq. (6)
only the leading-order nondipole correction is included in
addition to the dipole term, whereas in Eq. (7) the next-leading-
order corrections are included as well. Note that we have
here chosen to not follow the usual convention of including
or excluding terms in the expansion of the Hamiltonian
depending on their inverse powers of c, as seen in Eqs. (6)
and (7), but rather to add or omit terms depending of their
physical significance. To elaborate on this, assuming for the
moment that the laser field is monochromatic, i.e., A(t) =
E0/ω sin(ωt), the time variation of the individual components
of the interaction Hamiltonian (7) follows

A(t)pz = E0

ω
sin(ωt)pz (9)

x

c
E(t)pz = −x

c
E0 cos(ωt)pz (10)

x

c
A(t)E(t) = −1

2

x

c

E2
0

ω
sin(2ωt) (11)

1

2

x2

c2

[
E2(t) − A(t)

d

dt
E(t)

]
= 1

2

x2

c2
E2

0 cos(2ωt). (12)
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Including yet higher-order corrections into the Hamiltonian (7)
would also yield terms oscillating with either ω or 2ω. This is a
consequence of the fact that the full interaction Hamiltonian (2)
contains two kind of operators for the atom-field interaction,
i.e., the A · p and A2/2 operators, representing one and
two-photon transitions, respectively. As such, the x/cA(t)E(t)
operator is not merely a correction to the electric field
component already included in the dipole approximation, but
represents two-photon transitions associated with the radiation
pressure caused by the combined (homogeneous) electric and
magnetic fields. Radiation pressure is not accounted for in
the dipole approximation due to the complete absence of a
magnetic field component. The A2/2 operator does not con-
tribute to the dynamics within the dipole approximation, as the
transformation (8) cancels out its effect, and we therefore con-
sider its first-order component x/cA(t)E(t) to be the leading-
order term in its own right. Hence, the xpz and the x2

operators merely represent the first-order corrections to the
two leading-order terms (9) and (11), respectively, and as a
result they should either both be included or omitted from the
interaction Hamiltonian, cf. Eqs. (7) and (6). These corrections
arise due to the spatial expansion of the electromagnetic
field and are expected to become important for the ionization
dynamics in the regime of extremely high-frequency fields
or for very long pulses. In our case, the additional terms in
Eq. (7) are of equal significance to the nondipole dynamics,
despite the different inverse powers in c. This can perhaps
be understood from the fact that they both account for the
first-order spatial correction but to the two different types of
transitions.

The numerical problem at hand is extremely challenging in
terms of convergence properties. The origin of the numerical
difficulty stems from the additional terms in Eq. (7) and
the diverse selection rules of the corresponding operators
[see Eqs. (A8) and (A9) in the Appendix]. Here, the dif-
ferent components of the operators, that can be associated
with a given selection rule, happen to have great impact
on the numerics individually, but the net effect when all
components are combined together may still be small. This
might cause what is known as catastrophic cancellation, and
therefore extra caution is needed when handling the problem
numerically. With this in mind, and in order to be confident
in the results, we have pursued two independent numerical
approaches.

In the first approach, the time-dependent wave function is
expanded in B-spline functions [40] for the radial coordinate
and spherical harmonics for the angular components,

�(r,t) =
∑
klm

cklm(t)
Bk(r)

r
Ylm(θ,φ). (13)

Here m runs from −l to l, l runs from 0 to an upper value
lmax, and Bk(r) is the kth B-spline function. We distribute the
B-spline functions equidistantly in a radial box limited at the
largest value Rmax. B-spline functions do not have the property
of being orthogonal, but they have compact support, i.e., they
are nonzero only on some finite interval [40]. As such, any
operator constructed in a B-spline-based expansion will be
sparse in a matrix representation. This is one of the main advan-
tages of solving the TDSE directly in a B-spline-based basis,

as matrix-vector products are numerically cheap when only
operating upon nonzero entries, and memory consumption is
significantly reduced as compared to a representation with
global basis functions such as atomic eigenstates. However,
the use of B splines poses some restrictions on the choice of
time-propagation scheme, as the system becomes a so-called
stiff problem [41]. Therefore, we apply an unconditionally
stable temporal integration method, i.e., an implicit scheme.
Here, we make use of the Cayley propagator, also known as the
Crank-Nicholson scheme, which relates the wave function one
step into the future, �(t + 
t), to the current wave function,
�(t), as (

S + i
t

2
H (t + 
t)

)
�(r,t + 
t)

=
(

S − i
t

2
H (t)

)
�(r,t), (14)

where S is the basis overlap matrix, made necessary by the
nonorthogonality of the B-spline basis functions,

Sklm,k′l′m′ = δl,l′δm,m′

∫
Bk(r)Bk′(r)dr. (15)

Equation (14) has the property of being numerically stable
for stiff problems, but comes with the price of requiring the
application of a linear solver in every time step. The time step

t should in addition be kept small in order to minimize the
truncation error.

When applying the wave function expansion in Eq. (13)
to the Hamiltonian Eqs. (5)–(7), the resulting Hamiltonian
matrix may acquire a large dimension. As such, applying
a linear solver, as made necessary by Eq. (14), is unprac-
tical for the standard algorithms due to the cubic scaling
of arithmetical operations with the number of unknowns.
Instead, an iterative linear solver based on a Krylov subspace
expansion is used. Such a solver can exploit the sparse
structure of the matrix, as its kernel requires only matrix-vector
products. We solve the systems of equations (14) with the
generalized minimal residual (GMRES) algorithm [42]. Due
to the ill-conditioned nature of the atomic Hamiltonian matrix,
straightforward application of the GMRES algorithm results
in poor convergence. This is remedied by first applying an
incomplete LU algorithm (a preconditioner), solving only the
time-independent parts of the left-hand matrix of Eq. (14).
Since the preconditioner is time independent, the incomplete
factorization is performed only once prior to the propagation,
and each time step necessitates a combination of a forward
and a backward substitution of a banded sparse matrix. The
technique is numerically cheap, due to the sparse nature of
the system, and it significantly increases the convergence
rate of the GMRES. When applying the preconditioner, the
GMRES algorithm typically converges within a few tens of
iterations. The core and time-consuming component of the
algorithm depends exclusively upon matrix-vector products,
and as such, the computations can conveniently be distributed
on an arbitrary number of processors in a distributed-memory
architecture.

In the second numerical approach to solve the TDSE,
we have expanded the time-dependent wave function in
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time-independent eigenstates as

�(r,t) =
∑
klm

cklm(t)ψklm(r,θ,φ)

=
∑
klm

cklm(t)Rkl(r)Ylm(θ,φ)

=
∑
klm

cklm(t)
ukl(r)

r
Ylm(θ,φ), (16)

where Rkl(r) is the radial wave function (including both con-
tinuum and bound states) of the hydrogen atom and ukl(r) =
rRkl(r) is the corresponding reduced radial wave function.
The radial wave functions are obtained by diagonalizing the
field-free Hamiltonian in a B-spline basis. Then, the dipole and
nondipole coupling elements are calculated using the relations
given in the Appendix and the resulting system of ordinary
differential equations are solved by a predictor-corrector
method developed by Shampine and Gordon [43].

The two numerical representations (13) and (16) have
both their advantages and disadvantages. The B-spline-based
approach has the clear advantage that it can be applied to much
larger numerical problems (higher lmax), simply due to the
sparseness of the resulting matrices and the following low-cost
memory consumption. On the other hand, the eigenstate
approach is significantly more well conditioned and the
predictor-corrector method is implemented with an adaptive
time step that controls the truncation error. To this end, as a
means to control the numerical convergence of the results, both
numerical approaches have been pursued in the present work.

Having obtained the final wave function at the end of
the laser pulse, the resulting angular- and energy-resolved
probability density is obtained as

d2P

dkd

=

∣∣∣∣∑
lm

(−i)leiσl Ylm(
)
〈
�C

klm(r)
∣∣�(r,t = T )

〉∣∣∣∣
2

,

(17)

where �(r,t = T ) is the wave function at the end of the
pulse, �C

klm(r) is the Coulomb wave function (normalized
on the k scale), k = √

2E is the wave number, and σl = arg
� (l + 1 − i/k) is the Coulomb phase shift.

III. RESULTS AND DISCUSSION

We find that the problem at hand is quite demanding in terms
of computational resources. During the laser-atom interaction
the electron attains a high value of angular momentum. As a
matter of fact, lmax = 69 is required in order to obtain fully
converged results. This makes the total number of angular
channels 4900 when all values of the magnetic quantum
number, m, are explicitly included. With roughly a thousand
B splines the dimension of the problem is of the order of
5 × 106. The B splines are distributed in a radial box extending
to Rmax = 300 a.u., making sure that the (ionized) wave
function can evolve freely into the space exterior to the atom
during the laser-atom interaction.

Figure 1 shows the total ionization probability as a function
of the peak electric field amplitude of the laser pulse, for
a pulse of 15 cycle duration and angular frequency ω =

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

Electric Field Strength (a.u.)

P
ro

ba
bi

lit
y

FIG. 1. (Color online) Total ionization probability vs electric
field strength for a 15-cycle laser pulse with ω = 3.5 a.u. Solid black
line: the nondipole result obtained by solving the TDSE with the
Hamiltonian in Eq. (6). Red diamonds: the nondipole result obtained
by solving the TDSE with the Hamiltonian in Eq. (7). Dashed
blue line: the dipole approximation result obtained by solving the
TDSE with the Hamiltonian in Eq. (5). The vertical black dotted
line indicates the limiting value where the quiver velocity of a
corresponding free (classical) electron in the laser field may exceed
10% of the speed of light during the pulse, and where relativistic
effects may become important.

3.5 a.u., corresponding to 95 eV photons. Results obtained
by solving the TDSE with the three Hamiltonian Eqs. (5)–(7)
are shown for comparison. It is seen that, as far as the
total ionization probability is concerned, the electric dipole
approximation breaks down at about E0 = 30 a.u. for the laser
parameters considered. Furthermore, the results applying the
Hamiltonians (6) and (7) are virtually identical. As a matter
of fact, it is found that the difference in total ionization
yield is less than 0.5% for all intensities considered. This
means that the Hamiltonian in Eq. (6) turns out to be a good
approximation to the dynamics as far as the total survival
probability is concerned. A similar conclusion was drawn in
a previous study of nondipole effects in a two-dimensional
model atom [15,16]. The decrease in the ionization probability
with increasing laser intensity, observed for the intermediate
field strengths in Fig. 1, is a characteristic of the phenomenon
called atomic stabilization [21,22]. The figure shows that
the nondipole corrections have a detrimental effect on the
degree of stabilization of the atom, in that the probability
of ionization is enhanced, a result that is in agreement with
earlier findings [15–20].

Having confirmed the validity of the Hamiltonian (6) in
obtaining total ionization yields, we now turn to the problem
of testing whether the higher-order nondipole correction terms
in Eq. (7) also can be neglected when calculating differential
ionization probabilities. Figure 2 depicts the kinetic energy
distribution of the photoelectron for the laser pulse considered
in Fig. 1 and for three different laser intensities, E0 = 25 a.u.
(top panels), E0 = 35 a.u. (middle panels), and E0 = 45 a.u.
(bottom panels). The left panels show a comparison between
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FIG. 2. (Color online) Kinetic energy spectrum of the emitted
photoelectron for a 15-cycle laser pulse with ω = 3.5 a.u., and for
three different electric fields strengths, E0 = 25 a.u. (top panels),
E0 = 35 a.u. (middle panels), and E0 = 45 a.u. (bottom panels).
Solid black line in left/right panels: the nondipole result obtained by
solving the TDSE with the Hamiltonian in Eq. (6). Dashed blue line
in left panels: the dipole approximation result obtained by solving
the TDSE with the Hamiltonian in Eq. (5). Dashed red line in right
panels: the nondipole result obtained by solving the TDSE with the
Hamiltonian in Eq. (7).

the dipole approximation result (dashed blue line) and the
result obtained with the nondipole Hamiltonian in Eq. (6) (solid
black line). Likewise, the right panels depict the result obtained
by solving the TDSE with the nondipole Hamiltonians Eqs. (6)
(solid black line) and (7) (dashed red line), respectively.

The structure located around 3 a.u. of energy in Fig. 2
corresponds to the net absorption of one photon (N = 1) from
the laser field. Starting with the left panels, clear differences
are found between the dipole and nondipole spectra, in that the
dipole result exhibits an oscillatory structure around the N = 1
resonance. The oscillations are also present in the nondipole
calculations for the lower intensities, but are gradually washed
out with increasing laser power. The oscillations are due
to interferences caused by the multiple rescattering of the
outgoing electron on the nucleus. Accordingly, the suppression
of the oscillations in the nondipole limit is understood by the
fact that the (nondipole) magnetic field component of the laser
field, in combination with the electric (dipole) field, causes
a radiation pressure on the electron in the laser propagation
direction. As a result, the electron avoids the nucleus and
multiple rescattering events become less likely, ultimately
leading to the suppression of the interference fringes. It should

be noted that, while nondipole effects are observed in the
electron kinetic energy distribution even for the lowest laser
field strength considered in Fig. 2, i.e., E0 = 25 a.u., the dipole
approximation result still provides the correct total ionization
probability.

A structure located at low kinetic energies is also observed
in Fig. 2. The structure becomes more pronounced for the
highest intensities, and is present both in the dipole and
nondipole cases. However, as it turns out, the emission of
low-energy electrons is enhanced by nondipole effects, as
can be clearly seen in the bottom left panel in the figure.
The appearance of low-energy electrons in the high-frequency
and high intensity limit was already discussed in earlier
works [19,36], and was attributed to the nonadiabatic turn-
on of the laser field and shake-off processes. The process
may also be understood as a �- or Raman-type two-photon
transition [22], where one photon is absorbed from the field
while the other is emitted, the photon energy difference being
transferred to the electron. Note that this type of process will
be forbidden in the limit of monochromatic light, simply due
to the energy conservation rule, but will be allowed in the case
of short and intense laser fields. This also explains why the
fraction of low-energy electrons increases with the laser pulse
intensity in Fig. 2.

Turning to the right panels in Fig. 2, it is seen that the
low-energy structure is essentially unaffected by the inclusion
of second-order nondipole corrections. Nonetheless, a small
difference between the results obtained by solving the TDSE
with the Hamiltonians (6) and (7) is noticeable at the N = 1
resonance, in particular for the highest intensity. The inset in
the bottom right panel reveals a small shift of the spectrum
when including second-order nondipole effects. For even
higher photoelectron energies, this trend becomes even more
salient, as is demonstrated in Fig. 3. Figure 3 is an extension of
Fig. 2 (bottom right panel), showing on a logarithmic scale the
resonances corresponding to the net absorption of one, two,
three, and four photons from the field, for E0 = 45 a.u. As
apparent from the figure, the induced shift, that is associated
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FIG. 3. (Color online) Kinetic energy spectrum of the emitted
photoelectron for a 15-cycle laser pulse with ω = 3.5 a.u., and for
E0 = 45 a.u. Solid black line: the nondipole result obtained by solving
the TDSE with the Hamiltonian in Eq. (6). Dashed red line: the
nondipole result obtained by solving the TDSE with the Hamiltonian
in Eq. (7).
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FIG. 4. (Color online) Ionization probability vs electric field
strength for a 15-cycle laser pulse with ω = 3.5 a.u. Top panel:
total probability of emission of low-energy electrons, i.e., electron
kinetic energy < 1 a.u. Bottom panel: total probability of emission of
high-energy electrons, i.e., electron kinetic energy E > 1 a.u. Solid
black line: the nondipole result obtained by solving the TDSE with the
Hamiltonian in Eq. (6). Red diamonds: the nondipole result obtained
by solving the TDSE with the Hamiltonian in Eq. (7). Dashed blue
line: the dipole approximation result obtained by solving the TDSE
with the Hamiltonian in Eq. (5).

with both the xpz and x2 nondipole terms in Eq. (7), increases
with increasing kinetic energy of the continuum electron.

In Fig. 2 we observed that the emission of low-energy
electrons became more important in the beyond dipole limit.
To study this in more detail, the top panel in Fig. 4 shows
the total probability of emission of low-energy electrons, i.e.,
electrons with energy less than 1 a.u., as a function of laser
field strength. Likewise, the bottom panel in the figure depicts
the corresponding probability for the emission of electrons
with energies greater than 1 a.u., i.e., the probability for
the net absorption of one, two, three, etc. photons from the
field. Now it becomes clear that the likelihood of generating
high-energy continuum electrons is largely unaffected by
nondipole effects, and that the main nondipole effect sets
in at low electron energies, leading to a decreased survival
probability. Furthermore, the results in Fig. 4 confirm that the
Hamiltonian (6) is a good approximation to the full nondipole
dynamics. Comparing Figs. 1 and 4 it seems obvious that,

 

 

0

0.01

0.02

0.03

0.04

0.05

FIG. 5. (Color online) Electron angular distributions, integrated
over electron energy, for ω = 3.5 a.u., and for a 15-cycle laser pulse
linearly polarized in the horizontal direction and propagating in the
upward direction (indicated with an arrow), and for three different
electric field strengths, E0 = 30 a.u. (top panels), E0 = 40 a.u.
(middle panels), and E0 = 45 a.u. (bottom panels). Left column:
the dipole approximation result obtained by solving the TDSE with
the Hamiltonian in Eq. (5). Middle column: the nondipole result
obtained by solving the TDSE with the Hamiltonian in Eq. (6). Right
column: the nondipole result obtained by solving the TDSE with the
Hamiltonian in Eq. (7).

in the context of atomic stabilization [15–22], if one were
to measure the stabilizing effect experimentally, it would be
advantageous to design the experiment (the laser pulse) so that
the production of low-energy electrons is suppressed.

The angular distributions of the continuum electron is
plotted in Fig. 5. The data are taken for a 15-cycle laser
pulse with ω = 3.5 a.u., and for E0 = 30 (top panels),
40 (middle panels), and 45 a.u. (bottom panels), respectively.
The horizontal axis in the figure indicates the laser polarization
direction, and the pulse propagates in the upward direction,
as shown by the arrow. The dipole result is depicted in
the left column, and the nondipole results obtained with
the Hamiltonians (6) and (7) are presented in the middle
and right columns, respectively. Obviously, the nondipole
Hamiltonian (6) again yields very accurate results, as no
visible difference between the two nondipole calculations is
detected. For the lowest laser intensity (E0 = 30 a.u.) the
dipole approximation result is valid, whereas for the two
higher intensities clear nondipole effects are expressed, the
main one being a characteristic angular lobe growing along
the counterpropagating direction (downward in the figure).
The emergence of this unique nondipole lobe in the angular
distributions, as well as the mechanism behind it, have been
discussed in previous works [23–26,39], and is related to the
radiation pressure of the combined (homogeneous) electric
and magnetic fields acting on the electron throughout the laser
pulse [23]. This leads to a net shift of the electronic wave
function in the laser propagation direction, from which the
electron falls in the bare Coulomb field of the atomic nucleus
as the laser pulse deceases and scatters off it. The bending
of the two other lobes pointing along the laser polarization
axis was also discussed in Ref. [23] and arises from a similar
mechanism.
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FIG. 6. (Color online) Electron angular distributions, integrated
over electron energy, for ω = 3.5 a.u., E0 = 45 a.u., and for a 15-
cycle laser pulse linearly polarized in the horizontal direction and
propagating in the upward direction (indicated with an arrow). Left
column: the angular distribution of the low-energy electrons, i.e.,
electron kinetic energy < 1 a.u. Right column: the angular distribution
of the high-energy electrons, i.e., electron kinetic energy E > 1 a.u.
Top panels: the dipole approximation result obtained by solving the
TDSE with the Hamiltonian in Eq. (5). Middle panels: the nondipole
result obtained by solving the TDSE with the Hamiltonian in Eq. (6).
Bottom panels: the nondipole result obtained by solving the TDSE
with the Hamiltonian in Eq. (7).

The left column in Fig. 6 shows the angular distribution
emerging from the low-energy electrons solely, i.e., from elec-
trons having kinetic energies less than 1 a.u. Correspondingly,
the right column depicts the distribution attributed to electrons
with energies higher than 1 a.u. The top panel yields the dipole
result, while middle and bottom panels present the nondipole
calculations with the Hamiltonians (6) and (7), respectively.
Only the result for E0 = 45 a.u. is shown in the figure, and the
pulse is the same as before. As can be seen from the figure, the
angular distributions of the high-energy electrons are largely
unaffected by nondipole effects, while the bending of the lobes
as well as the extra nondipole lobe emerge from the low-energy
electrons.

We have found that the emergence of low-energy electrons
in the ionization process is intimately related to the nonadi-
abatic turn-on of the laser pulse and shake-off processes, in
particular in the dipole approximation case. In the nondipole
limit, production of low-energy electrons is enhanced due
to the electron-nucleus scattering process during the laser
pulse ramp-off. Furthermore, as it turns out higher-order
nondipole corrections beyond the leading first-order correction
are essentially unimportant for the relatively short laser pulse
(15 cycles) considered, the only observed difference being
a minor shift of the multiphoton peaks in the corresponding
kinetic energy distributions of the photoelectron, cf. Fig. 3.
Now, the natural question arises as to what will happen
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FIG. 7. (Color online) Kinetic energy spectrum of the emitted
photoelectron for ω = 3.5 a.u. and E0 = 45 a.u. Top panel: 15-cycle
laser pulse. Bottom panel: 30-cycle laser pulse. Solid black line:
nondipole result obtained by solving the TDSE with the Hamiltonian
in Eq. (6). Dashed red line: nondipole result obtained by solving the
TDSE with the Hamiltonian in Eq. (7).

in the long-pulse duration limit; can higher-order nondipole
corrections to the laser field still be neglected? Such a question
is also interesting from the point of view of FELs, as FEL
pulses typically have durations of the order of femtoseconds,
as opposed to the attosecond pulse considered here. In order
to seek an answer to such question, we have considered a laser
pulse twice as long.

Figure 7 presents a comparison of the kinetic energy
spectrum of the photoelectron for ω = 3.5 a.u. and E0 =
45 a.u., for a 15-cycle (top panel) and 30-cycle (bottom panel)
laser pulse, respectively. The figure reveals two characteristic
features: First, the fraction of low-energy electrons declines
for the longer pulse, as the laser turn-on and turn-off becomes
more adiabatic. But more importantly, the role of the higher-
order nondipole correction terms in the Hamiltonian (7)
clearly becomes more important for the longer pulse, in that
the photon resonance corresponding to the net absorption
of one photon from the field is shifted to lower electron
energies when second-order corrections are considered. The
corresponding shift is much less pronounced for the shorter
pulse (top panel in the figure). This merely demonstrates
that, despite higher-order nondipole corrections are of less
importance to the nondipole dynamics, they still come into
play in the long pulse regime. Nevertheless, we have found
that the total ionization probability is much less influenced
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by second-order nondipole effects, the difference between the
results obtained with the Hamiltonians (6) and (7) being only
about one percent in the present case. For the 30-cycle pulse,
the corresponding ionization probabilities are 0.409 and 0.404,
respectively.

IV. CONCLUSION AND SUMMARY

In summary, we have studied atomic hydrogen exposed to
ultrashort intense 13 nm laser light in the nondipole regime.
We have solved the time-dependent Schrödinger equation
from first principles in three dimensions. Three separate
laser-atom interactions have been considered: the electric
dipole approximation, the first-order nondipole correction to
the dipole approximation, and finally, the interaction including
both first- and second-order nondipole corrections. Among
all nondipole corrections considered, the radiation pressure
caused by the addition of the homogeneous magnetic field
component to the laser field is found to be the most important
one. Its contribution is manifested as a characteristic lobe
in the photoelectron angular distribution [23]. Also, the
kinetic energy distributions of the ionized electrons show that
the magnetic field component has a tendency to suppress
rescattering events between the outgoing electron and the
nucleus. A more detailed analysis reveals that most electrons
emitted due to nondipole ionization dynamics are emitted
with extremely low kinetic energy and that the previously
discovered nondipole lobe in the angular distributions com-
prises such low-energy electrons. We find that, while the
second-order (spatial) nondipole corrections bring additional
complexity and numerical difficulties to the problem, they
contribute very little to the ionization dynamics in the present
case. The small effect observed is characterized by a tiny
shift in the photoelectron kinetic energy distribution, where
the spatial dependencies included in the fields cause emission
of slightly less energetic electrons. It is further found that the
shift becomes more salient for longer pulse durations.
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APPENDIX

Expanding a (general) one-electron wave function in hydro-
genic radial wave functions for the radial part and spherical
harmonics for the angular parts, cf. Eq. (16), the matrix
elements of the corresponding Hamiltonian Ĥ are formally
given by

〈ψklm|Ĥ |ψk′l′m′ 〉 = 〈RklYlm|Ĥ |Rk′l′Yl′m′ 〉

=
〈
ukl

r
Ylm

∣∣∣∣Ĥ
∣∣∣∣uk′l′

r
Yl′m′

〉
, (A1)

where ukl(r) = rRkl(r) is the reduced radial wave function.
In deriving the matrix elements of the Hamiltonians (5)–(7),
we have made use of the following relations for the spherical
harmonics:

sin θ cos φYlm = −almYl−1,m−1 + al,−mYl−1,m+1

+ al+1,−m+1Yl+1,m−1 − al+1,m+1Yl+1,m+1

(A2)

cos θYlm = bl+1,mYl+1,m + blmYl−1,m (A3)

sin θ
∂

∂θ
Ylm = lbl+1,mYl+1,m − (l + 1)blmYl−1,m

alm =
√

(l + m)(l + m − 1)

4(2l − 1)(2l + 1)
(A4)

blm =
√

l2 − m2

(2l − 1)(2l + 1)
.

Then,

∂

∂z

(
ukl

r
Ylm

)
=

(
cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ

)(
ukl

r
Ylm

)

=
(

1

r

dukl

dr
− l + 1

r2
ukl

)
bl+1,mYl+1,m

+
(

1

r

dukl

dr
+ l

r2
ukl

)
blmYl−1,m, (A5)

and the nonzero matrix elements of the pz operator becomes

〈ψklm|pz|ψk′l′m′ 〉 = −i

〈
ukl

r
Ylm

∣∣∣∣ ∂

∂z

∣∣∣∣uk′l′

r
Yl′m′

〉

= −i

〈
ukl

r
Ylm

∣∣∣∣
(

1

r

duk′l′

dr
− l′ + 1

r2
uk′l′

)
bl′+1,m′Yl′+1,m′ +

(
1

r

duk′l′

dr
+ l′

r2
uk′l′

)
bl′m′Yl′−1,m′

〉

= −iblmδl′,l−1δm′,m

∫ ∞

0
ukl

(
duk′,l−1

dr
− l

uk′,l−1

r

)
dr − ibl+1,mδl′,l+1δm′,m

×
∫ ∞

0
ukl

(
duk′,l+1

dr
+ (l + 1)

uk′,l+1

r

)
dr. (A6)
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Using Eq. (A2), the nonzero matrix elements of the leading first-order nondipole correction, i.e., the x term in the nondipole
Hamiltonians (6) and (7), take the form

〈ψklm|x|ψk′l′m′ 〉 =
〈
ukl

r
Ylm

∣∣∣∣r sin θ cos φ

∣∣∣∣uk′l′

r
Yl′m′

〉

= −al+1,m+1δl′,l+1δm′,m+1

∫ ∞

0
rukluk′,l+1dr + al+1,−m+1δl′,l+1δm′,m−1

∫ ∞

0
rukluk′,l+1dr

+ al,−mδl′,l−1δm′,m+1

∫ ∞

0
rukluk′,l−1dr − almδl′,l−1δm′,m−1

∫ ∞

0
rukluk′,l−1dr. (A7)

Applying the relation (A2) two times, the nonzero elements of the x2 operator in Eq. (7) are given by

〈ψklm|x2|ψk′l′m′ 〉 =
〈
ukl

r
Ylm

∣∣∣∣r2 sin2 θ cos2 φ

∣∣∣∣uk′l′

r
Yl′m′

〉

= al+2,m+2al+1,m+1δl′,l+2δm′,m+2

∫ ∞

0
r2ukluk′,l+2dr

− (al+2,mal+1,−m+1 + al+2,−mal+1,m+1)δl′,l+2δm′,m

∫ ∞

0
r2ukluk′,l+2dr

+ al+2,−m+2al+1,−m+1δl′,l+2δm′,m−2

∫ ∞

0
r2ukluk′,l+2dr

− (al,m+2al,−m + al+1,−m−1al+1,m+1)δl′,lδm′,m+2

∫ ∞

0
r2ukluk′ldr

+ (almalm + al,−mal,−m + al+1,−m+1al+1,−m+1

+ al+1,m+1al+1,m+1)δl′,lδm′,m

∫ ∞

0
r2ukluk′ldr

− (al,−m+2alm + al+1,m−1al+1,−m+1)δl′,lδm′,m−2

∫ ∞

0
r2ukluk′ldr

+ al−1,−m−1al,−mδl′,l−2δm′,m+2

∫ ∞

0
r2ukluk′,l−2dr

− (al−1,−m+1alm + al−1,m+1al,−m)δl′,l−2δm′,m

∫ ∞

0
r2ukluk′,l−2dr

+ al−1,m−1almδl′,l−2δm′,m−2

∫ ∞

0
r2ukluk′,l−2dr. (A8)

Finally, using Eqs. (A2) and (A5) the nonzero matrix elements of the xpz operator are calculated as

〈ψklm|xpz|ψk′l′m′ 〉 = −i

〈
uklYlm

∣∣∣∣x
∣∣∣∣
(

1

r

duk′l′

dr
− l′ + 1

r2
uk′l′

)
bl′+1,m′Yl′+1,m′ +

(
1

r

duk′l′

dr
+ l′

r2
uk′l′

)
bl′m′Yl′−1,m′

〉

= ial+1,m+1bl+1,m+1δl′,lδm′,m+1

∫ ∞

0
ukl

(
r
duk′l

dr
− (l + 1)uk′l

)
dr − ial,−mbl,m+1δl′,lδm′,m+1

×
∫ ∞

0
ukl

(
r
duk′l

dr
+ luk′l

)
dr − ial+1,−m+1bl+2,m−1δl′,l+2δm′,m−1

∫ ∞

0
ukl

(
r
duk′,l+2

dr
+ (l + 2)uk′,l+2

)
dr

+ ial+1,m+1bl+2,m+1δl′,l+2δm′,m+1

∫ ∞

0
ukl

(
r
duk′,l+2

dr
+ (l + 2)uk′,l+2

)
dr

+ ialmbl−1,m−1δl′,l−2δm′,m−1

∫ ∞

0
ukl

(
r
duk′,l−2

dr
− (l − 1)uk′,l−2

)
dr − ial,−mbl−1,m+1δl′,l−2δm′,m+1

×
∫ ∞

0
ukl

(
r
duk′,l−2

dr
− (l − 1)uk′,l−2

)
dr − ial+1,−m+1bl+1,m−1δl′,lδm′,m−1

×
∫ ∞

0
ukl

(
r
duk′l

dr
− (l + 1)uk′l

)
dr + ialmbl,m−1δl′,lδm′,m−1

∫ ∞

0
ukl

(
r
duk′l

dr
+ luk′l

)
dr. (A9)
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