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Dynamics of the effective mass and the anomalous velocity in two-dimensional lattices
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The semiclassical description of the dynamics of wave packets in periodic potentials and subject to an
applied force relies on the concepts of effective mass and anomalous transport. This picture is valid if the
force changes slowly in time and space, so that the particle described by the wave packet has time to respond
according to the properties of the lattice. We analyze the dynamical corrections to this picture when a uniform
force is suddenly applied, identifying separate corrections to the usual group and anomalous velocities. We
find approximate semianalytical expressions for generalized “dynamical” group and anomalous velocities and
the associated accelerations. We use a two-dimensional optical lattice with finite Berry curvature to illustrate
the semianalytical approximation in a regime where the dynamical corrections are significant, suggesting the
possibility of experiments to detect them; we compare the results with a full numerical solution, showing excellent
agreement for weak forces.
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I. INTRODUCTION

The bands identified by the Bloch functions of a particle
in a periodic potential have both spectral properties, such as
their curvature, and topological properties, such as their Berry
curvature. Both of these properties appear in the description
of the dynamics of a wave packet. The role of the first is
probably more well known. According to the effective-mass
theorem [1], a particle moving in the presence of a periodic
potential responds to an applied external force F with an
inverse effective-mass tensor, according to

d2

dt2
〈r̂a〉 =

〈[
1

m∗
n(k)

]ab〉
Fb. (1)

Here 〈r̂a〉 is the expectation value of the ath Cartesian
component of the wave packet position, and repeated Cartesian
components, labeled by b, are summed over. The expectation
value on the right-hand side is the average over the wave
packet of the local inverse effective-mass tensor, determined
by the curvature of the band n with which the wave packet is
associated, [

1

m∗
n(k)

]ab

= 1

�2

∂2

∂ka∂kb
[�ωn (k)], (2)

where �ωn (k) is the energy of the band as a function of wave
vector k. In the absence of time-reversal or space-inversion
symmetry, this simple picture requires an extension due to the
link between the dynamics of the particle and the topological
properties of the bands [2–5]. Under the application of
an external force, a wave packet additionally acquires an
anomalous velocity [6–11], proportional to the curl of the
applied force and the Berry curvature of the band with which
the wave packet is associated, averaged over the wave packet.

The connection between the dynamics of wave packets and
the spectral and topological properties of bands is thus central
to the usual semiclassical description of transport in solid-state
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physics. However, in statements such as those above, it is
important to be precise about what is meant by the “band
with which the wave packet is associated.” For a wave packet
prepared strictly in one band, the validity of the effective-mass
theorem and the anomalous transport relies on an adiabatic
turning on of the force [12,13] since the wave packet cannot
respond instantaneously according to the properties of the band
structure. Upon such an application of the force, the wave
packet acquires components of Bloch states of bands other than
that which defined the initial wave packet; thus, the “associated
band” has to be taken as that which mainly, but not exclusively,
constitutes the wave packet.

In contrast to such a scenario, Pfirsch and Spenke showed
that if a force is suddenly applied, a wave packet strictly in one
band responds initially as if the lattice were not present; that
is, the ratio of a component of the initial acceleration to the
same component of the force is given by the inverse of the bare
mass [14]. The response at later times is described by the usual
effective mass only on average, as the expectation value of
the acceleration oscillates about the usual semiclassical result
[14–17]. Thus, there are instances when the usual semiclassical
expressions fail. Nonetheless, for one-dimensional lattices it
has been shown theoretically (see [18] and references therein)
that for the sudden application of a force that is not too strong
it is possible to define a dynamical inverse effective mass
of a wave packet, defined as the ratio of the acceleration
to the applied force. This quantity is a function of time,
initially given by the inverse bare mass when the force is
suddenly applied and oscillating at later times around the usual
inverse effective mass as the wave packet moves through the
Brillouin zone. Recently, this dynamical inverse effective mass
has been experimentally observed in one-dimensional optical
lattices [19].

This suggests that in lattices of higher dimensionality,
where anomalous transport can arise, the breakdown of
the effective-mass theorem should also be accompanied by
corrections to the description of anomalous transport and that,
for forces suddenly applied to a wave packet initially restricted
to one band, it might be possible to identify a dynamical
anomalous velocity of the wave packet. This would capture
the fact that the anomalous velocity should initially vanish
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when the force is suddenly applied, since the wave packet
cannot immediately respond to the lattice, and then it should
eventually oscillate around the usual anomalous velocity that
arises in the standard semiclassical description.

In this article we extend the description of the dynamics of
wave packets subject to suddenly applied forces beyond the
one-dimensional case [16,18] and find that this is, indeed, so.
A semianalytical expression for the expectation value of the
velocity is derived using modified Bloch states that decouple
the bands in the presence of a uniform force neglecting
Zener tunneling [20]; these states were introduced by Adams
[7,12,21] and studied in more detail by Wannier [22]. We
identify the usual group velocity, associated with the inverse
effective-mass tensor, and the usual anomalous velocity. In
addition, we find correction terms to first order in the force,
which can be grouped in two terms with different mathematical
structure; we interpret one of these terms as an oscillation
of the group velocity and the other as an oscillation of the
anomalous velocity. Thus, we can identify both a dynamical
group velocity and a dynamical anomalous velocity of a wave
packet, each of which differs from the usual semiclassical
expression by oscillating terms. The time derivative of the sum
of these is the expectation value of the acceleration of the wave
packet. The time derivative of the dynamical group velocity is
related to the applied force by the dynamical inverse effective-
mass tensor, a generalization of the one-dimensional result
mentioned above; this tensor is symmetric. The acceleration
due to the oscillations in the dynamical anomalous velocity
gives rise to an acceleration that is proportional to the force
via an antisymmetric tensor; we refer to it as the dynamical
anomalous acceleration of the wave packet.

The formalism is illustrated in a two-dimensional example
with a tunable honeycomb optical lattice [23]; the lowest-
energy band of this potential has finite local Berry curvature
near the Dirac points. We study different trajectories in the
Brillouin zone where the oscillations associated with the
dynamical quantities mentioned above are significant. We test
the validity of our semianalytic approach with a full numerical
calculation and show that, for weak forces, our approach is
valid over time scales of the order of a Bloch period, as it is
for one dimensional lattices [18].

Our work is motivated by the recent observation of the
dynamics of the effective mass with ultracold atoms in a
one-dimensional optical lattice [19] and the availability of
optical lattices of higher dimensionality [23–26]. Since optical
lattices provide a clean and tunable periodic potential, they
are an ideal platform for observing anomalous transport
[27–30]. Furthermore, in this type of lattice the time scale
associated with the dynamical oscillations of the effective
mass and the anomalous velocity is much longer than in
typical solid-state systems, where the period of the oscillations
is expected to be of the order of femtoseconds [14,16,18]
and the additional scattering due to impurities and phonons
makes the detection of such oscillations more difficult. How-
ever, developments in time-resolved attosecond spectroscopy
[31–34] suggest that the observation of electron dynamics in
crystals in the subfemtosecond time scale is possible, opening
the possibilities for studying the dynamics of the effective mass
and the anomalous velocity presented here.

This article is organized as follows. In Sec. II we review
the semiclassical expressions for the velocity and acceleration
of a wave packet in a lattice of arbitrary dimensionality with
an applied force. In Sec. III we show how these expressions
are violated when the force is suddenly applied and how new
dynamical quantities associated with the usual semiclassical
expressions can be introduced. In Sec. IV we illustrate the
semianalytical formulas with a two-dimensional optical lattice
studied earlier by Tarruell et al. [23] and compare the results
with a full numerical calculation. Finally, in Sec. V we present
some conclusions.

II. RESPONSE OF A WAVE PACKET IN A CRYSTAL
TO A UNIFORM FORCE

In this section we present a careful derivation of the
standard results of the semiclassical description of wave-
packet dynamics in periodic potentials. After introducing our
notation in Sec. II A, we present the modified Bloch states in
Sec. II B, showing how wave packets constructed from them,
which we call “modified Bloch state wave packets,” provide
the underpinning for the usual semiclassical expressions such
as Eq. (1). The main results of this section are Eqs. (15) and
(23), which describe the acceleration and the velocity of a
wave packet in terms of the inverse effective-mass tensor, the
group velocity, and the anomalous velocity.

A. Crystal momentum representation

Consider a particle in a periodic potential, V (r + R) =
V (r), where R is a lattice vector. In the presence of an external
uniform force F(t), the Hamiltonian for the system can be
written as

Ĥ (t) = Ĥo − F(t) · r̂, (3)

where

Ĥo ≡ p̂2

2m
+ V (r̂)

is the unperturbed Hamiltonian in terms of the momentum
operator p̂ and the bare mass m. The Bloch states that
diagonalize Ĥo,

Ĥo |ψnk〉 = �ωn (k) |ψnk〉,
have the form

ψnk(r) ≡ 〈r|ψnk〉 = 1√
(2π )D

unk(r)eik·r (4)

in real space and are labeled by a band index n and a wave
vector k. In Eq. (4), D denotes the dimensionality of the lattice
(for example, D = 2 for a two-dimensional lattice), and the
function unk(r) ≡ 〈r|unk〉 has the periodicity of the lattice,
unk(r + R) = unk(r). In the crystal momentum representation
[35], the state of the particle is written as a wave packet of
Bloch states

|�(t)〉 =
∑

n

∫
BZ

dk cn(k,t) |ψnk〉,
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where BZ denotes integration over the (first) Brillouin zone,
and the ath Cartesian component of the position operator [35]

〈ψn1k1 |r̂a|ψn2k2〉 ≡
∫

dr ψ∗
n1k1

(r)raψn2k2 (r)

= δn1n2

(
−i

∂

∂ka
2

δ(k1 − k2)

)

+ δ(k1 − k2)ξa
n1n2

(k1) (5)

is expressed in terms of the matrix elements [36]

ξa
n1n2

(k) ≡ 〈un1k|i ∂

∂ka
|un2k〉

≡
∫

Vcell

dr
Vcell

u∗
n1k(r)i

∂

∂ka
un2k(r). (6)

Note that the integration in Eq. (5) and in any matrix element
of the form 〈ψn1k1 | · |ψn2k2〉 is over all space; on the other
hand, the integration in Eq. (6) and in any matrix element of
the form 〈un1k| · |un2k〉 is over one unit cell, with volume Vcell.

Similarly, for the momentum operator we have

〈
ψn1k1 |p̂a|ψn2k2

〉 ≡
∫

dr ψ∗
n1k1

(r)
�

i

∂

∂ra
ψn2k2 (r)

= δ(k1 − k2)pa
n1n2

(k1),

where [35]

pa
n1n2

(k) ≡ δn1n2�ka + 〈un1k|p̂a|un2k〉.
For nondegenerate bands, the off-diagonal elements of Eq. (6)
are related to the momentum matrix elements by [36]

ξa
n1n2

(k) = 1

im

pa
n1n2

(k)

ωn1n2 (k)
[for ωn1 (k) �= ωn2 (k)],

where ωn1n2 (k) ≡ ωn1 (k) − ωn2 (k). The diagonal element
ξnn (k) is known as the Berry connection. Despite being
“gauge dependent” in that it depends on how the phases of
the Bloch states are set throughout the Brillouin zone, the
Berry connection has dynamical consequences through the
Berry curvature [6–8,10], which is gauge independent.
The local Berry curvature �n(k) has components given by

	l
n(k) ≡ εlab ∂

∂ka
ξb
nn(k), (7)

where εlab is the antisymmetric Levi-Civita symbol and
repeated Cartesian components are summed over.

B. Modified Bloch states, the effective-mass theorem,
and anomalous transport

For a wave packet subjected to a force F(t) [see Eq. (3)]
and described by a ket |�(t)〉, the expectation value of the
acceleration follows from Ehrenfest’s theorem,

〈â(t)〉 ≡ d2

dt2
〈�(t)|r̂|�(t)〉

= F(t)

m
+ 1

i�m
〈�(t)|[p̂,Ĥo]|�(t)〉. (8)

Suppose now we consider a force that turns on at t = 0,
F(t) = 0 for t < 0 and F(t) = F for t � 0. If, initially, the

wave packet is formed only by Bloch states from a single
band, say, band N ,

|�(0)〉 = |ψ̄N 〉 ≡
∫

BZ
dk fN (k)|ψNk〉, (9)

at t = 0 the commutator in Eq. (8) vanishes, and we have
〈â(0+)〉 = F/m. That is, the wave packet responds initially
with the inverse bare mass of the particle and not the inverse
effective-mass tensor. This is an old result [14–17]: a wave
packet formed by Bloch states from a single band does not
respond to the periodic potential of the lattice when the force is
applied, and at very early times the particle generally responds
to an applied force as if it were free. At later times the wave
packet cannot remain in only one band, as the force inevitably
couples the Bloch states of different bands, and it is through
this coupling that the lattice makes itself felt. However, we
can still define a wave packet that remains mainly in one band
and responds essentially with the properties of that band; the
amplitudes of such a wave packet in neighboring bands are
due to the interband mixing induced by the force.

In a treatment that was later shown to be correct if Zener
tunnelling is neglected [20], Wannier found that for a constant
and uniform force, F(t) = F, the interband mixing can be
captured by modified Bloch states |φnk〉 that are related to the
original Bloch states |ψnk〉 by a unitary transformation [22],

|φnk〉 ≡
∑
n′

|ψn′k〉 Un′n(k). (10)

The unitary transformation Un′n(k) can be constructed to
different orders in the force [18,22]; in the first-order approx-
imation and assuming no degeneracies [37], these modified
Bloch states take the form

|φnk〉 ≈ |ψnk〉 +
∑
n′

|ψn′k〉 �n′n(k),

where �(k) is an off-diagonal matrix with elements [18,21]

�n1n2 (k) ≡ Fbξb
n1n2

(k)

�ωn1n2 (k)
(1 − δn1n2 ).

As a result of this construction, a wave packet formed only by
modified Bloch states associated with band N ,

|φ̄N (0)〉 =
∫

BZ
dk b̄N (k) |φNk〉 ,

evolves in time moving through the Brillouin zone without
mixing with other modified Bloch states from neighboring
bands. To first order in the force, we find [18,22]

|φ̄N (t)〉 =
∫

BZ
dk b̄N (κ)e−iγN (κ,t)|φNk〉, (11)

where κ ≡ k − Ft/� and

γn(k,t) ≡
∫ t

0

[
ωn

(
k + 1

�
Ft ′

)
− 1

�
F · ξnn

(
k + 1

�
Ft ′

)]
dt ′.

We refer to the wave packet |φ̄N (t)〉 as a MBS wave packet,
where MBS stands for modified Bloch state. This type of wave
packet satisfies the effective-mass theorem at all times. This
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can be shown by using the matrix elements [18]

Fa
n1n2

(k) ≡ i
∑
n′

1,n
′
2

U
†
n1n

′
1
(k)pa

n′
1n

′
2
(k)ωn′

1n
′
2

(k) Un′
2n2 (k)

to rewrite Eq. (8) for |φ̄N (t)〉 as

d2

dt2
〈φ̄N (t)|r̂a|φ̄N (t)〉 = Fa

m
+

∫
BZ

dk |b̄N (κ)|2Fa
NN (k). (12)

To first order in the force, we can write

Fa
NN (k) ≈ 1

m

∑
n�=N

pa
Nn(k)pb

nN (k) + pb
Nn(k)pa

nN (k)

�ωNn (k)
Fb, (13)

and the sum rule for the local inverse effective-mass
tensor [36],

m

[
1

m∗
N (k)

]ab

− δab

= 1

m

∑
n�=N

pa
Nn(k)pb

nN (k) + pb
Nn(k)pa

nN (k)

�ωNn(k)
, (14)

reduces Eq. (12) to

d2

dt2
〈φ̄N (t)|r̂a|φ̄N (t)〉 =

∫
BZ

dk |b̄N (κ)|2
[

1

m∗
N (k)

]ab

F b,

(15)

in accordance with the effective-mass theorem, Eq. (1). Note
that, compared with Eq. (2), the sum rule in Eq. (14) reveals
the truly multiband nature of the local inverse effective-mass
tensor [38], which is reflected in the use of modified Bloch
states to construct a wave packet that responds with the
effective mass at all times.

We can follow the same strategy for the expectation value
of the velocity. We find

〈v̂(t)〉 ≡ d

dt
〈�(t)|r̂|�(t)〉 = 1

m
〈�(t)|p̂|�(t)〉 (16)

[see Eq. (8)]. In the particular case of a MBS wave packet,
|�(t)〉 = |φ̄N (t)〉, Eq. (16) becomes

d

dt
〈φ̄N (t)|r̂a|φ̄N (t)〉 =

∫
BZ

dk |b̄N (κ)|2 1

m
Pa

NN (k), (17)

where Pa
n1n2

(k) are the transformed momentum matrix
elements,

Pa
n1n2

(k) ≡
∑
n′

1,n
′
2

U
†
n1n

′
1
(k)pa

n′
1n

′
2
(k)Un′

2n2 (k).

Analogous to Eq. (13), the diagonal elements Pa
NN (k) have a

simple form to first order in the force,

1

m
Pa

NN (k) ≈ v
g,a

N (k) + 1

�
Jab

NN (k)Fb. (18)

The first term in this expression corresponds to the local group
velocity [36],

v
g,a

N (k) ≡ pa
NN (k)

m
= 1

�

∂

∂ka
[�ωN (k)], (19)

given by the gradient of the band energy; this term is directly
related to the local inverse effective-mass tensor since

d

dt

∫
BZ

dk |b̄N (κ)|2 v
g,a

N (k)

= −
∫

BZ
dk

(
∂

∂kb
|b̄N (κ)|2

)
1

�2

∂

∂ka
(�ωN (k))Fb

=
∫

BZ
dk |b̄N (κ)|2

[
1

m∗
n(k)

]ab

F b. (20)

The contribution from the first term on the right-hand side of
Eq. (18) to Eq. (17) is not surprising; as a wave packet simply
moves through the Brillouin zone at a pace proportional to the
force, it acquires the group velocity [see Eq. (19)] associated
with the band energy. The second term on the right-hand side
of Eq. (18), on the other hand, has a completely different
structure given by the antisymmetric tensor

Jab
NN (k) ≡

∑
n�=N

2 Im
[
ξa
Nn(k)ξb

nN (k)
]
. (21)

As a result of the sum rule [36]

εalb	l
N (k) =

∑
n�=N

2 Im
[
ξa
Nn(k)ξb

nN (k)
]
,

the second term on the right-hand side of Eq. (18) becomes
the local anomalous velocity [7],

v
an,a
N (k) ≡ 1

�
εalb	l

N (k)Fb, (22)

a first-order correction to the velocity associated with the local
Berry curvature, Eq. (7). Thus, we can rewrite Eq. (17) as

d

dt
〈φ̄N (t)|r̂a|φ̄N (t)〉 =

∫
BZ

dk |b̄N (κ)|2[vg,a

N (k) + v
an,a
N (k)

]
,

(23)

including both the group velocity and the anomalous velocity
of the wave packet [9]. These velocities are periodic in time
as the wave packet traverses the Brillouin zone and returns
to its starting point in reciprocal space; the period of this
motion in reciprocal space is the Bloch period τB [39]. The
anomalous transport correction to the usual effective-mass
behavior is only important for potentials that break space-
inversion symmetry or time-reversal symmetry, where the local
Berry curvature is different from zero [40]. Note that if we
calculate the time derivative of Eq. (23) and keep terms linear
in the force, we get the same result as Eq. (15) since the time
derivative of the anomalous velocity does not contribute to
first order in the force, while the time derivative of the group
velocity contributes the acceleration described by the usual
inverse effective-mass tensor [see Eq. (20)].

III. DYNAMICS OF THE EFFECTIVE MASS
AND THE ANOMALOUS VELOCITY

We can employ the modified Bloch states to describe
the motion of a wave packet that originally consists of a
superposition of the usual Bloch states from band N , as in
Eq. (9), when a force is applied. Were the force increased
adiabatically from zero to F, the wave packet would acquire
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the particular composition required to move according to
Eqs. (15) and (23) [12,13]. But if the force is applied
instantaneously, for t > 0, we can seek an expansion of the ket
|�(t)〉 as a superposition of MBS wave packets [see Eq. (11)],
with coefficients chosen so that at t = 0 the state yields Eq. (9).
To linear order in the force, which is the order to which we
have constructed |φnk〉, this can be easily done; to zeroth order
|�(t)〉 will just be the appropriate |φ̄N (t)〉, and to first order
there will be contributions from other |φ̄n(t)〉 with n �= N [18].
In this scenario we will see that there is a transition from the
bare-mass response to the semiclassical dynamics described by
the local inverse effective-mass tensor, Eq. (2), and the local
anomalous velocity, Eq. (22); the transition is characterized
by oscillations of the acceleration and the velocity around the
values predicted by Eqs. (15) and (23). We now establish those
dynamics.

Following [18], the ket for t � 0 is

|�(t)〉 =
∑

n

∫
BZ

dk bn(k,t) |φnk〉 , (24)

where to first order in the force

bN (k,t) = fN (κ)e−iγN (κ,t), (25)

bn(k,t) = −fN (κ)�nN (κ)e−iγn(κ,t). (26)

The expectation value of the velocity,

〈v̂a(t)〉 = 1

m

∑
n1,n2

∫
BZ

dk b∗
n1

(k,t)bn2 (k,t)Pa
n1n2

(k),

can be split into three terms,

〈v̂a(t)〉 ≈
∫

BZ
dk |fN (κ)|2[vg,a

N (k) + v
an,a
N (k) + Va

N (k,t)
]
.

(27)

This approximate expression for the wave-packet velocity is
expected to be accurate for forces such that �nN (k) is small
[18,21,22]; roughly, this requirement means that the energy
drop over one unit cell associated with the force should be
small compared with the energy gap between the starting band
N and its closest neighboring band. The first two contributions
in Eq. (27) involve the usual group velocity from Eq. (19) and
the anomalous velocity from Eq. (22). In the additional term,
Va

N (k,t) can be written as

Va
N (k,t) = −1

�
J ab

N (k,t)Fb,

where the tensor

J ab
N (k,t) ≡

∑
n�=N

ωnN (k)

ωnN (κ)
2 Im

[
ξa
Nn(k)ξb

nN (κ)e−iγnN (κ,t)
]

(28)

is a time-dependent generalization of Eq. (21) with
γn1n2 (k,t) ≡ γn1 (k,t) − γn2 (k,t). We will see that Va

N (k,t)
describes oscillations of 〈v̂a(t)〉 about the result given by
Eq. (23). At t = 0, J ab

N (k,t) reduces to the antisymmetric
tensor Jab

NN (k), but for t > 0, it does not have definite
symmetry. Nevertheless, we can still decompose J ab

N (k,t)

uniquely into symmetric and antisymmetric parts,

J ab
N (k,t) = J̄ ab

N (k,t) + J̆ ab
N (k,t), (29)

where

J̄ ab
N (k,t) ≡ 1

2

[
J ab

N (k,t) + J ba
N (k,t)

]
, (30)

J̆ ab
N (k,t) ≡ 1

2

[
J ab

N (k,t) − J ba
N (k,t)

]
. (31)

The antisymmetric part, Eq. (31), can also be expressed in
terms of the axial vector �N (k,t) with components

�l
N (k,t) ≡ − 1

2εlabJ̆ ab
N (k,t), (32)

so that

J̆ ab
N (k,t) = εalb�l

N (k,t).

Defining

X
±,ab
Nn (k,t) ≡ ξa

Nn(k)ξb
nN (κ)e−iγnN (κ,t)

± ξa
Nn(κ)e−iγNn(κ,t)ξb

nN (k),

Eqs. (30) and (32) become

J̄ ab
N (k,t) =

∑
n�=N

Im
[
X

−,ab
Nn (k,t)

]ωnN (k)

ωnN (κ)
(33)

and

�l
N (k,t) = −1

2
εlab

∑
n�=N

Im
[
X

+,ab
Nn (k,t)

] ωnN (k)

ωnN (κ)
, (34)

respectively.
With this formal decomposition in hand, we link some of

the dynamical oscillations described byVa
N (k,t) with the group

velocity and some with the anomalous velocity by rewriting
Eq. (27) for 〈v̂a(t)〉 as

〈v̂a(t)〉 ≈ V g,a(t) + V an,a(t), (35)

where we identify the dynamical group velocity Vg(t) of the
wave packet, with components

V g,a(t) ≡
∫

BZ
dk |fN (κ)|2

(
v

g,a

N (k) − 1

�
J̄ ab

N (k,t)Fb

)
, (36)

and the dynamical anomalous velocity Van(t) of the wave
packet, with components

V an,a(t) ≡
∫

BZ
dk |fN (κ)|2

(
v

an,a
N (k) − 1

�
J̆ ab

N (k,t)Fb

)
. (37)

The leading terms in parentheses in the integrands in Eqs. (36)
and (37) are the contributions that would be expected from a
MBS wave packet associated with band N [see Eq. (23)]; the
other terms in parentheses give oscillatory corrections. Note
that Eq. (37) can be written as

V an,a(t) = 1

�
εalb	l

N (t)Fb, (38)

where

�N (t) ≡
∫

BZ
dk |fN (κ)|2[�N (k) − �N (k,t)]

can be interpreted as the dynamical Berry curvature “seen” by
the wave packet as it moves through the Brillouin zone.
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The identification of the term involving J̄ ab
N (k,t) with the

group velocity of the wave packet is justified by the fact that
the time derivative of Vg(t),

Ag(t) ≡ d

dt
Vg(t),

is found to have components

Ag,a(t) =
[

1

M∗(t)

]ab

F b,

where we have introduced a dynamical inverse effective-mass
tensor,[

1

M∗(t)

]ab

≡
∫

BZ
dk |fN (κ)|2

([
1

m∗
N (k)

]ab

− 1

m
K̄ab

N (k,t)

)
,

(39)

and where the tensor

K̄ab
N (k,t) ≡ −m

�

∑
n�=N

Re
[
X

+,ab
Nn (k,t)

] [ωnN (k)]2

ωnN (κ)
(40)

is symmetric with respect to its Cartesian components in the
same way as the local inverse effective-mass tensor [Eq. (2)],
leading to a dynamical inverse effective-mass tensor that
is symmetric. The first contribution in parentheses in the
integrand of Eq. (39) gives the result that would be expected
for a MBS wave packet [see Eq. (15)]; the term involving
K̄ab

N (k,t) describes oscillatory corrections. The time derivative
of the expectation value of the velocity written in the form of
Eq. (35),

〈â(t)〉 = d

dt
〈v̂(t)〉 = Ag(t) + Aan(t), (41)

includes a dynamical anomalous acceleration Aan(t), which is
the time derivative of Van(t). This dynamical anomalous ac-
celeration is perpendicular to the force, and it has components

Aan,a(t) =
∫

BZ
dk |fN (κ)|2

(
− 1

m
K̆ab

N (k,t)

)
Fb,

given by the antisymmetric tensor

K̆ab
N (k,t) ≡ εalb�l

N (k,t), (42)

where

�l
N (k,t) ≡ m

2�
εlab

∑
n�=N

Re
[
X

−,ab
Nn (k,t)

] [ωnN (k)]2

ωnN (κ)

are the components of an axial vector. Unlike the dynamical
inverse effective-mass tensor and the acceleration it describes,
to first order in the force the dynamical anomalous acceleration
contains only oscillatory terms [see the discussion after
Eq. (23)]. Note that the acceleration in Eq. (41) can also be
derived directly from Ehrenfest’s theorem using Eq. (8) with
the wave packet given by Eq. (24).

At the initial time, Eqs. (33) and (34) reduce to

J̄ ab
N (k,0) = 0, �l

N (k,0) = 	l
N (k),

so

V g,a(0) =
∫

BZ
dk |fN (k)|2 v

g,a

N (k), V an,a(0) = 0, (43)

consistent with the initial behavior found using Ehrenfest’s
theorem for the initial state [Eq. (9)]; initially, the Berry
curvature “seen” by the wave packet vanishes, and there
is no anomalous velocity. For t > 0, the wave packet’s
velocity acquires dynamical oscillations around the usual
group velocity, in a way similar to that for the earlier results
found for one-dimensional lattices [18]. Since at the initial time

K̄ab
N (k,0) = m

[
1

m∗
N (k)

]ab

− δab, K̆ab
N (k,0) = 0

[see Eqs. (14), (40), and (42)], the dynamical inverse
effective-mass tensor is initially given by the inverse bare mass,

[
1

M∗(0)

]ab

= δab

m
, Aan,a(0) = 0. (44)

Hence, the particle initially responds with the bare mass
[14,15,18]; afterwards, the dynamical inverse effective-mass
tensor acquires oscillations about the usual inverse
effective-mass tensor. In addition, the anomalous transport
described by Van(t) has its own dynamics; rather than just
the Berry curvature, it is governed by the dynamical Berry
curvature 	l

N (t), which contains its own oscillatory terms.

IV. EXAMPLE

We now apply the semianalytical expressions for the
dynamics of wave packets to a two-dimensional optical lattice.
We begin with the band structure and local Berry curvature of
the lattice we consider (Sec. IV A). A wave packet built in the
first band with a Gaussian envelope function is then set along
different trajectories in the Brillouin zone; its dynamics are
calculated through the semianalytical approach (Sec. IV B).
Finally, this result is compared with a full numerical solution
(Sec. IV C).

A. Two-dimensional optical lattice

We consider the optical lattice described by Tarruell
et al. [23], created by the interference of three retroreflected
laser beams, which leads to a potential

V (x,y)

= −VX̄

2
cos[K (x + y) + θ ] − VX

2
cos[K (x + y)]

− VY

2
cos[K (x − y)] −

√
VXVY [cos(Kx) + cos(Ky)]

− 1

2
(VX̄ + VX + VY ), (45)

where VX, VY , and VX̄ are proportional to the intensities of
each of the laser beams and the phase θ is controlled by a small
detuning between lasers associated with VX and VX̄ [41]. We
use values of VX = 0.25ER , VY = 1.0ER , and VX̄ = 3.5ER ,
where

ER ≡ �
2K2

2m
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FIG. 1. (Color online) Honeycomb lattice given by Eq. (45) for
VX = 0.25ER , VY = 1.0ER , VX̄ = 3.5ER , and θ = 1.02π . The x and
y axes give the position in units of the lattice constant. The color plot
shows the value of the potential in units of the recoil energy ER . Two
lattice vectors are also shown with black arrows.

is a recoil energy. In addition to ER , another important physical
quantity is the recoil velocity

vR ≡ �K

m
,

which will be used in the velocity plots discussed in Secs. IV B
and IV C. The lattice vectors in real space are in the x̂ and
ŷ directions and have magnitude a = λ/

√
2, where λ is the

wavelength of all three lasers; for the experiments described
by Tarruell et al. [23], λ = 1064 nm. The reciprocal lattice
vectors are in the x̂ and ŷ directions with magnitude

K = 2π

a
,

which is also the linear dimension of the Brillouin zone.
The potential resembles a squeezed honeycomb lattice and
is shown in Fig. 1; we also show the energy spectrum for
the two lowest bands of this potential in Fig. 2. In the next
section we will study the motion of a wave packet in the
lowest band of this potential; Figs. 3 and 4 illustrate the Berry
curvature and energy dispersion of this band, which determine
the wave-packet dynamics in the usual semiclassical picture.

When θ is set to π , the lattice satisfies space-inversion
symmetry, and the two lowest-energy bands intersect each

EG = 0.042ER

kx
ky

hωn(k)

FIG. 2. (Color online) Energy spectrum of the first two bands.
When θ = 1.02π , a band gap with a size of EG = 0.042ER is opened
at the two Dirac points, where the two bands meet when θ = π .
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FIG. 3. (Color online) Local Berry curvature of the lowest band
(n = 1). The x and y axes give the location in the Brillouin zone,
while the color denotes the value of the local Berry curvature.

other at two Dirac points. In this case, the local Berry curvature
is zero everywhere except at the two Dirac points, where it is
singular [42]. However, tuning θ to values slightly different
from π breaks space-inversion symmetry, opens up a band
gap (see Fig. 2), and results in a more well-behaved local
Berry curvature (see Fig. 3). It is for this reason that we take
θ = 1.02π . Although the local Berry curvature is no longer
singular, the region of significant local Berry curvature is still
very localized. This allows for a great degree of control of the
amount of Berry curvature affecting the wave packet.
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α
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R

FIG. 4. (Color online) Two paths, α and β, in the first energy band
(n = 1). The direction of the energy gradient, which is proportional
to the local group velocity, is shown with the vector field. Both paths
pass through at least one of the Dirac points, shown with black dots.
For the diagonal path, α, which is highly symmetric, the local group
velocity is always aligned with the path; for the horizontal path, β, this
is not so. Three trajectories with different starting points (indicated by
black diamonds) are discussed here. In the first one, the wave packet
is prepared at point P and travels along α in the direction indicated
by the arrow. In the second one, the wave packet is prepared at Q and
takes the same path. In the last trajectory, the wave packet starts at R
and travels along β. The inset magnifies the region near P and R to
clarify the difference between the two.
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The results shown in Figs. 2–4 are found by numerical
diagonalization of the unperturbed Hamiltonian. We combine
this method with the approach described by Lax [36] to
construct Berry connections and Bloch functions periodic in k,
which are used for the semianalytical approximation discussed
next.

B. Semianalytical approximation

For the envelope function in Eq. (9) we will use a Gaussian
with a spread σ = 0.05K ,

fN (k) = 1√
πσ

exp

(
− (k − k0)2

2σ 2

)
, (46)

where k0 is the mean of the envelope function. Initially, the
wave packet is entirely in the first band, that is, N = 1. To
study the evolution of the wave packet, a force of magnitude
F = F̃K ER will be applied, where F̃ = 1/2000 is a dimen-
sionless parameter. With the application of a constant force,
the wave packet travels in a straight line through the Brillouin
zone. As described in Fig. 4, we will consider three trajectories
that pass through at least one of the Dirac points where the band
gap is the smallest and local Berry curvature the strongest. This
allows the wave packet to exhibit more noticeable oscillations
associated with the dynamical inverse effective-mass tensor
and the dynamical anomalous velocity.

It is natural to decompose the full expression for the
expectation value of the velocity of the wave packet in the
same manner as Eq. (27),

〈v̂(t)〉 ≈ 〈vg(t)〉 + 〈van(t)〉 + 〈vosc(t)〉, (47)

where each of the three terms is an integration of v
g,a

N (k),
v

an,a
N (k), and Va

N (k,t) over the wave packet, respectively. In
our first example we start with a wave packet at point P and a
force in the direction of path α (see Fig. 4). The decomposition
above is shown in Fig. 5. The dashed line corresponds to
〈vg(t)〉 + 〈van(t)〉, where both the group velocity and the
anomalous velocity are taken into account. The solid line
gives the full expression for 〈v̂(t)〉, with the oscillation term
included. As expected from the discussion in Sec. III, at
t = 0, the full expression for the velocity coincides with
the prediction by just the group velocity. For t > 0, the
velocity oscillates around the sum of the group and anomalous
velocities. Within a tenth of the Bloch period these oscillations
decay, but they reappear near the end of the Bloch oscillation.

Because of the high symmetry of path α, the group velocity
in this example is directed entirely along the direction of the
force. This offers the closest analogy to a one-dimensional
lattice [18]. To further explore this analogy, we decompose the
dynamical oscillation term 〈vosc(t)〉 into components parallel
and orthogonal to the applied force [〈vosc

‖ (t)〉 and 〈vosc
⊥ (t)〉,

respectively; see Fig. 6].
The local anomalous velocity is derived from the cross

product of the local Berry curvature with the force, and
therefore, it is orthogonal to the force; similarly, the oscil-
lating term associated with the anomalous velocity is also
perpendicular to the force. Thus, the whole contribution to the
parallel component of the dynamical oscillation of the velocity
comes from oscillations of the group velocity. Interestingly, the
converse is not true. Even though for this trajectory the group
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FIG. 5. (Color online) Expectation value of the velocity from the
semianalytical approximation, Eq. (47), without the oscillating term
〈vosc(t)〉 (dashed lines) and including it (solid lines). In this example
the force points in the (x̂ − ŷ)/

√
2 direction with F̃ = 1/2000; the

wave packet moves through the Brillouin zone starting at point P and
following path α (see Fig. 4). The red curves correspond to 〈v‖(t)〉, the
component of the velocity parallel to the force, while the green curves
correspond to 〈v⊥(t)〉, the component of the velocity perpendicular to
the force [(x̂ + ŷ)/

√
2 direction]. Note that 〈vg(t)〉 and 〈van(t)〉 only

contribute to the parallel and perpendicular directions, respectively.
(a) and (b) Results over one Bloch period, τB = �K/F . (c) and
(d) Initial behavior of the velocity, showing the oscillations due
to 〈vosc(t)〉.

velocity is strictly parallel to the force so that the acceleration
predicted simply by the inverse effective-mass tensor would
be in that direction, the dynamical oscillation associated with
the group velocity is not confined to this direction for t > 0.
In fact, the dynamical oscillations in both Vg(t) and Van(t)
[see Eqs. (36) and (37)] contribute in the direction orthogonal
to the force (see Fig. 6). Thus, even for highly symmetric paths,
there can be oscillations of the velocity perpendicular to the
force that are associated with the group velocity, so the strict
analogy to motion in a one-dimensional lattice breaks down.

Both the group velocity and anomalous velocity are periodic
because they depend only on properties of the band structure,
which is periodic. However, the last term of Eq. (47), which is
associated with Va

N (k,t), is also dependent on the dynamics of
the wave packet itself. As such, the full expression for velocity
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FIG. 6. (Color online) Decomposition of the oscillating term
〈vosc(t)〉 (solid lines) into group velocity and anomalous velocity
contributions for the example shown in Fig. 5; the curve in (a)
corresponds to the parallel component of the velocity, and the
curves in (b) correspond to the perpendicular components. In the
direction parallel to the force, only the dynamical oscillations from
Vg

N (t) contribute. However, in the perpendicular direction both the
dynamical oscillations from Vg

N (t) (dotted line) and the dynamical
oscillations from Van

N (t) (dashed line) contribute; the latter has a more
significant contribution in the time range shown here.

does not exhibit periodicity. This dependence on the dynamics
of the wave packet is even more evident when we change
the starting point of the trajectory; for example, in Fig. 7 we
choose Q to be the starting point, but we keep the force in
the same direction so that the wave packet moves along path
α (see Fig. 4). In this case the wave packet “experiences” the
least amount of Berry curvature at the beginning (see Figs. 3
and 7). We see that the group and anomalous velocities are
shifted as expected due to the new starting point; the dynamical
oscillations in Vg(t) and Van(t), on the other hand, have

v t

v t

0 0.2 0.4 0.6 0.8 1

0.2

0.1

0.0

0.1

0.2

0.02

0.01

0

0.01

0.02

v
t

v R

v
t

v R

t τB

FIG. 7. (Color online) Expectation value of the velocity from the
semianalytical approximation for the same parameters as in Fig. 5,
but using Q as the starting point for the wave packet (see Fig. 4);
the red (dark gray) curve corresponds to the parallel component
of the velocity, and the green (light gray) curve corresponds to the
perpendicular component of the velocity.
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FIG. 8. (Color online) Expectation value of the velocity from
the semianalytical approximation, Eq. (47), without the oscillating
term 〈vosc(t)〉 (dashed lines) and including it (solid lines). In this
example the force points in the x̂ direction with F̃ = 1/2000; the
wave packet moves through the Brillouin zone starting at point R and
following path β (see Fig. 4). The red (dark gray) curves correspond
to 〈v‖(t)〉, the component of the velocity parallel to the force, while
the green (light gray) curves correspond to 〈v⊥(t)〉, the component of
the velocity perpendicular to the force (ŷ direction). For reference,
the component of the group velocity perpendicular to the force is
plotted with dotted green lines. (a) Results over one Bloch period,
τB = √

2�K/F . (b) and (c) Initial behavior of the velocity, showing
the oscillations due to 〈vosc(t)〉.

virtually vanished. From this observation, we conclude that
the dynamical oscillations depend on the starting point of the
wave packet, even when following the same path.

For the last example, shown in Figs. 8 and 9, we present a
more general path without the symmetries of path α. Starting
at point R, we direct the force parallel to path β (see Fig. 4).
Unlike in path α, here the group velocity does not point
exclusively along the direction of the force. The initial behavior
shown in Fig. 8 is similar to what was seen in the first example.
The velocity starts at the group velocity [dashed line for
〈v‖(t)〉 and dotted line for 〈v⊥(t)〉] and oscillates about the
combination of the group and anomalous velocities (dashed
lines). Despite not being strictly periodic, the dynamical
oscillations of the velocity of the wave packet in path α

were repetitive, at least qualitatively; we observed dynamical
oscillations of similar amplitude and frequency at the start
and the end of the Bloch oscillation. This is no longer true in
the present example. After the initial dynamical oscillations
of the velocity, no more revivals are seen near the end of the
first Bloch oscillation; even during the second Bloch period,
the dynamical oscillations are completely absent (see Fig. 11).
This lack of revivals can be described as a form of dephasing.
The tensor J ab

N (k,t), which is responsible for the oscillations,
contains a phase γnN (κ,t) [see Eq. (28)]. This tensor is
integrated over the wave packet as it moves through the
Brillouin zone. In general, the phase in J ab

N (k,t) accumulated
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FIG. 9. (Color online) Decomposition of the oscillating term
〈vosc(t)〉 (solid lines) into its group velocity and anomalous velocity
contributions for the example shown in Fig. 8; the curve in (a)
corresponds to the parallel component of the velocity, and the
curves in (b) correspond to the perpendicular components of the
velocity. In the direction parallel to the force, only the dynamical
oscillations from Vg

N (t) contribute. However, in the perpendicular
direction, both the dynamical oscillations from Vg

N (t) (dotted line)
and the dynamical oscillations from Van

N (t) (dashed line) contribute;
in contrast to the behavior in Fig. 6, the two types of oscillations make
similar contributions to 〈vosc(t)〉.

by each k component of the wave packet can be different even
after a full Bloch period, and we expect to observe dephasing.
For the central path α, however, the k components of the
wave packet trace pairs of parallel paths that are reflections
of each other along the diagonal and acquire the same phase;
therefore, with respect to the dephasing, the motion for path α

is essentially the same as in the one-dimensional case, where
revivals are observed [18]. This kind of symmetry is not seen
for a wave packet moving along the central path β, which
explains why the oscillations decay in this case.

C. Comparison with full numerical solutions

In order to verify the validity of the semianalytical results
presented in Sec. IV B, we compare them with full numerical
solutions of the time-dependent Schrödinger equation for the
Hamiltonian (3), with a force suddenly applied at t = 0 and
left constant afterwards. For the full numerical calculation we
use the split-step-operator method [43]. As usual, the kinetic-
energy term of the Hamiltonian is treated in Fourier space, the
potential-energy term (including the applied force) is treated
in real space, and we switch back and forth between the two
spaces with a fast-Fourier-transform implementation [44]. The
expectation value of the velocity is calculated from the Fourier
components of the wave packet.

In Figs. 10 and 11 we compare the expectation value
of the velocity for paths α and β in the Brillouin zone
presented in Figs. 5 and 8 with full numerical calculations
over two Bloch periods. Note the excellent agreement between
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FIG. 10. (Color online) Comparison between the expectation
value of the velocity shown in Fig. 5 for path α in the Brillouin zone
(solid lines) and a full numerical calculation (dots and crosses). The
red lines and black dots correspond to the components of the velocity
parallel to the force; the green lines and black crosses correspond to
the components of the velocity perpendicular to the force. (a) and (b)
Results over two Bloch periods. (c) and (d) Initial behavior of the
velocity, showing the oscillations due to 〈vosc(t)〉 [see Eq. (47)].

the two approaches over short and long time scales. The
force used in these examples is small enough to guarantee
that the semianalytical expression (27) predicts correctly
the oscillations associated with the dynamics of the effective
mass and anomalous transport. Furthermore, the presence of
revivals for path α (see Fig. 10) and their absence for path β

(see Fig. 11) are confirmed by the full numerical calculation.
We can also illustrate the evolution of the wave packet in

real space using the results from the time propagation with the
split-step-operator method. In Fig. 12 we show snapshots of
the wave packet in the two situations considered in Figs. 10
and 11 for different times within one Bloch period. In both
cases the initial wave packets are the same, but over time the
trajectory (dashed line in Fig. 12) and dispersion of the wave
packets evolve differently. Due to the symmetry of path α (see
Fig. 4), the group velocity is always parallel or antiparallel
to the force, resulting in an oscillation along that direction
[see Figs. 12(a)–12(e)]. On the other hand, for path β, the wave
packet traces a more complicated trajectory in real space, and
it does not return to its starting point [see Figs. 12(f)–12(j)].
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FIG. 11. (Color online) Comparison between the expectation
value of the velocity shown in Fig. 8 for path β in the Brillouin zone
(solid lines) and a full numerical calculation (dots and crosses). The
red lines and black dots correspond to the components of the velocity
parallel to the force; the green lines and black crosses correspond to
the components of the velocity perpendicular to the force. (a) Results
over two Bloch periods. (b) and (c) Initial behavior of the velocity,
showing more clearly the oscillations due to 〈vosc(t)〉 [see Eq. (47)].

The anomalous velocity and the dynamical corrections modify
the real-space trajectories described by the group velocity
alone, but this change is small compared with the scale of

the trajectories shown in Fig. 12 over one Bloch period.
With respect to the dispersion of the wave packet, the spread
is more pronounced for path β than for path α [compare
Figs. 12(c) and 12(h)], and the shape of the wave packet
remains more symmetric around its center for path α [compare
Figs. 12(c)–12(e) and 12(h)–12(j)].

The ultimate breakdown of the semianalytical expression
(27) is associated with Zener tunnelling, the probability
of which increases for larger forces. Wannier’s method of
decoupling the bands in the presence of an applied force [22]
cannot describe Zener tunneling even if higher orders of his
power expansion are considered [20]. Accordingly, the picture
presented in Sec. II is valid only for wave packets mainly in
one band with small amplitudes over neighboring bands, which
is the typical requirement in the semiclassical description of
transport. The start of the breakdown of the semianalytical
approximation is shown in Fig. 13 for path α (see Fig. 4) and
a force twice as large as the one used so far. In this case
the most significant difference between the semianalytical
approximation and the full numerical calculation appears in
the component of the velocity parallel to the force, as the
semianalytical result overestimates the amplitude of the Bloch
oscillation of the usual group velocity. This deviation occurs
early in the evolution of the expectation value of the velocity
since the starting point of the trajectory in the Brillouin zone
is near one of the Dirac points, where the first two bands are
close and Zener tunneling is more probable. Nevertheless, note
that Eq. (27) is still a good approximation, as it agrees at least
qualitatively with the full numerical calculation.

In the semianalytical approximation the wave packet |�(t)〉
is a superposition of a main MBS wave packet associated with

FIG. 12. (Color online) Time evolution of the absolute value of the wave packet in real space calculated using the split-step-operator
method for (a)–(e) path α and (f)–(j) path β in the Brillouin zone. The parameters are the same as the ones used in Figs. 10 and 11. The black
dots mark the expectation value of the position for the snapshot time, and the dashed line shows the trajectory starting at t = 0. The horizontal
and vertical axes show the position in units of the lattice constant.
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FIG. 13. (Color online) Comparison between the semianalytical
approximation (solid lines) and the full numerical calculation (dots
and crosses) for the same parameters as in Fig. 5, but doubling
the force (F̃ = 1/1000). The red lines and black dots correspond
to the components of the velocity parallel to the force; the green
lines and black crosses correspond to the components of the velocity
perpendicular to the force. (a) and (b) Results over two Bloch periods.
(c) and (d) Initial behavior of the velocity, showing the oscillations
due to 〈vosc(t)〉 [see Eq. (47)].

band N [see Eq. (25)] and MBS wave packets with smaller
amplitudes associated with neighboring bands, n �= N [see
Eq. (26)]. This suggests that the initial wave packet in real
space will split into a main wave packet associated with band
N and small ones associated with n �= N ; these wave packets
will move differently according to the properties of the band to
which they correspond. The presence of this splitting is con-
firmed by the full numerical calculation, as illustrated in Fig. 14
for the parameters used in Fig. 13. The snapshots in Fig. 14
show a main wave packet associated with band N = 1 and a
small wave packet associated with the next band, n = 2, which
moves in the direction opposite that of the main wave packet.

Even though the semianalytical approximation predicts
the splitting of the initial wave packet, it cannot describe
correctly the amplitude and shape of the small wave packet
for strong forces, such as the one used in Fig. 14. The failure
of the semianalytical approach in this example is shown in
Fig. 15, where we compare the wave packets calculated using
this approximation and the results from the full numerical

FIG. 14. (Color online) Snapshots of the absolute value of the
wave packet for the parameters used in Fig. 13 calculated from the
time evolution using the split-step-operator method. At t = 0.1τB , a
wavelet starts to form, and afterwards it moves towards the lower right
corner of the real-space window. The black and red (gray) dots mark
the expectation value of the position for the snapshot time, calculated
from the full numerical and semianalytical calculations, respectively.
In (b)–(d) the smaller frames show the absolute value of the wave
packet amplified ten times. The horizontal and vertical axes show the
position in units of the lattice constant.

calculation. Note that the main wave packet is essentially the
same in the two approaches [compare Figs. 15(a) and 15(b)],
but the semianalytical result predicts a small wave packet with
a different shape and underestimates its amplitude [compare
Figs. 15(c) and 15(d)]. Consequently, the expectation value of
the position differs in the two calculations, which can be seen
in Figs. 14 and 15, where the expectation value of the position
calculated with the semianalytical approximation [red (gray)
dots] is shifted in the direction of the small wave packet
for the full numerical calculation (black dots). The incorrect
description of the small wave packet by the semianalytical
approximation is responsible for the overestimation of the
group velocity calculated with this method in Fig. 13. As
the applied force is increased, Zener tunneling becomes more
important, and the amplitudes of the wave packets associated
with the neighboring bands, n �= N , increase; consequently,
the weight of these amplitudes modifies more significantly
the expectation values of position and velocity predicted
by the main wave packet alone. Since the semianalytical
approximation cannot predict correctly the contribution of
these wave packets, the dynamics calculated with this approach
become less accurate.

V. CONCLUSION

We have discussed the dynamics of a wave packet in
a periodic potential prepared in one band and subject to
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FIG. 15. (Color online) Detailed view of the wave packet shown
in Fig. 14(c). The black and red (gray) dots (and the dashed lines)
mark the expectation value of the position calculated from the
full numerical and semianalytical calculations, respectively. The
horizontal and vertical axes show the position in units of the lattice
constant. (a) and (b) Main wave packet from the full numerical and
semianalytical calculations, respectively. (c) and (d) Small wave
packet from the full numerical and semianalytical calculations,
respectively.

the sudden application of a uniform force, which remains
constant afterwards. We have found that the usual semiclassical
description, involving the inverse effective-mass tensor and
the anomalous velocity, requires corrections. When the force
is suddenly applied, the particle responds initially as if
it were free; its acceleration is characterized by the bare
mass [see Eq. (44)], and there is no anomalous velocity
[see Eq. (43)]. However, it is possible to define dynamical
quantities associated with the inverse effective-mass tensor
[see Eq. (39)] and the anomalous velocity [see Eq. (38)]. These
quantities initially take the values that would characterize a free
particle; at later times they oscillate about the usual expressions
for these quantities as the wave packet moves through the
Brillouin zone. The total velocity of the wave packet, Eq. (35),
includes a dynamical group velocity, which is associated
with the dynamical inverse effective-mass tensor, and the
aforementioned dynamical anomalous velocity. Even for cases
when the usual inverse effective-mass tensor predicts an
acceleration parallel to the applied force (for example, in path
α in Fig. 4), the dynamical inverse effective-mass tensor allows
for oscillations of the velocity parallel and perpendicular
to the force (see Fig. 6). In addition to the acceleration
described by the dynamical inverse effective-mass tensor, there
is a dynamical anomalous acceleration associated with the
dynamical anomalous velocity [see Eq. (41)]; both of these
dynamical anomalous quantities are always perpendicular to
the applied force.

We have derived semianalytic expressions for all of these
dynamical quantities and have calculated them for a particle
subject to a suddenly applied force in a two-dimensional
optical lattice [23]. Besides exhibiting aspects of wave-packet
motion involving the topology of the bands, which do not
arise in one-dimensional lattices, the wave-packet motion in
the two-dimensional lattice shows interesting features in the
interplay between the Bloch oscillations and the dynamics
of the group and anomalous velocities. In one-dimensional
lattices it was shown that the initial dynamical oscillations have
revivals after a Bloch period as a result of the cyclic path of the
wave packet in the Brillouin zone [18]. In the two-dimensional
lattice considered here, we showed that not every cyclic path
in the Brillouin zone leads to revivals after one Bloch period
(see Fig. 11); these revivals only occur for paths where the
symmetry of the band structure allows each k component of
the wave packet to accumulate similar phases over a Bloch
period (see Fig. 10). This behavior shows that, while the group
velocity and the Berry curvature have a periodicity given by
the Bloch period, the dynamical oscillations discussed here
do not display such periodicity. Revivals are still possible in
the two-dimensional lattice for some paths, but the dynamical
oscillations are still not periodic over one Bloch period. Fur-
thermore, these oscillations depend on the starting location on
the chosen path in the Brillouin zone (compare Figs. 5 and 7).

The results from the semianalytical approximation were
confirmed by a full numerical solution of the dynamics of the
wave packet. The agreement breaks down for strong forces
due to the limitations of the modified Bloch states to decouple
completely the bands in the presence of an applied force [20].
In real space the wave packet splits into a main wave packet,
associated with the original initial band, and a small wave
packet, associated with the next neighboring band (see Fig. 14);
the semianalytical approximation fails to capture correctly the
amplitude and shape of the small wave packet, affecting the
expectation values of position and velocity calculated with this
method (see Fig. 15). However, since the main wave packet is
well described by the semianalytical approximation, we find
that even for a strong force the prediction of the dynamical
oscillations given by this approximation is at least qualitatively
correct (see Fig. 13).

Two-dimensional optical lattices are readily available,
suggesting that the dynamics described here can be observed
experimentally in this type of system; this would generalize
and extend the recent experimental study of these dynamics
in a one-dimensional optical lattice [19]. For the application
of a force to be “sudden,” the time scale of its appearance
must be short compared with the time associated with the
energy difference between the band of the initial wave packet
and the nearest neighboring band. In solid-state systems the
time scales and the difficulties in controlling the properties of
the lattice have prohibited the observation of the dynamical
inverse effective-mass tensor, even though some deviations
from the usual effective-mass behavior have been attributed
to its dynamical oscillations [31]; nonetheless, attosecond
science is pushing the time scales for which carrier dynamics
in solids can be observed to the subfemtosecond regime
[32–34]. We believe that these developments, combined with
the growing interest in topological properties of periodic
potentials and their dynamical consequences [10,30,45–47],
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make the oscillations discussed here an interesting phe-
nomenon to study experimentally in both optical lattices and
solid-state systems.
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