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Semiquantum approach for fast atom diffraction: Solving the rainbow divergence
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In this work we introduce a distorted-wave method, based on the initial value representation approach of
the quantum evolution operator, in order to improve the description of rainbow effects given by the surface
eikonal (SE) model for diffraction from crystal surfaces produced by grazing scattering of fast atoms. The
proposed theory, named the surface initial value representation (SIVR) approximation, is applied to He atoms
colliding with a LiF(001) surface along low-indexed crystallographic channels. For this collision system the SIVR
approach provides a very good representation of the quantum interference structures of experimental projectile
distributions, even in the angular region around classical rainbow angles where the semiclassical SE method
diverges.
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I. INTRODUCTION

The diffraction of fast atoms from crystal surfaces under
grazing incidence conditions has been the focus of ex-
tensive experimental and theoretical research [1–14] since
its unexpected observation a few years ago [15,16]. From
the theoretical point of view, different methods have been
employed to simulate experimental data of this phenomenon,
now known as grazing-incidence fast atom diffraction (GIFAD
or FAD) [17]. They range from full quantum treatments in
terms of a wave-packet propagation [3,16,18] to semiclassical
approximations [1,4] based on the use of classical projectile
trajectories. Among these last theories we can mention the
surface eikonal (SE) approximation [4,19], which is a distorted
wave method that makes use of the eikonal wave function
to represent the elastic collision with the surface, while
the motion of the fast projectile is classically described by
considering axially channeled trajectories for different initial
positions. The SE approach includes a clear description of
the main mechanisms of the FAD process, being simpler to
evaluate than a full quantum calculation [3,18]. It has been
applied to investigate FAD patterns for different collision
systems [19–22], showing a reasonable agreement with the
experiments in all the considered cases.

In spite of the successful performance of the SE approach
for the simulation of FAD patterns, a weakness of the theory
is its deficient description of the rainbow effect, which
affects the intensity of the outermost diffraction maxima when
these maxima are close to the classical rainbow angles [22],
i.e., the extreme deflection angles of the classical projectile
distribution. Such a deficiency, widely studied in atom-surface
scattering [23], is a characteristic of the classical representation
of the collision dynamics, which introduces a singularity at
rainbow angles as a consequence of the presence of a point
of accumulation of classical trajectories (caustics), producing
cusped rainbow peaks in the angle-resolved scattering proba-
bility. Within a proper quantum treatment, which also includes
adequate semiclassical calculations, these sharp rainbow peaks
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are replaced by smooth maxima that display an exponentially
decaying behavior outside classical rainbow angles, just on
the dark side, i.e., in the region of classically forbidden
transitions [24]. The goal of this article is to develop a
semiquantum approximation for FAD, based on the initial
value representation (IVR) method by Miller [25], which can
solve the drawback of the SE model without losing the simple
description of the interference process in terms of classical
scattering trajectories.

The IVR method represents a practical way of introducing
quantum effects, such as interferences and classical forbidden
processes, in classical dynamic simulations [26]. Taking as
a starting point the Feynman path integral formulation of
quantum mechanics, the basic idea of the IVR method is
to introduce the standard Van Vleck approximation [27,28]
of the quantum evolution operator without considering any
additional assumption. That is, within the IVR model the
full quantum time evolution operator is replaced by the
Van Vleck propagator in terms of classical trajectories with
different initial conditions, which is evaluated numerically
without using the common stationary phase approximation
[26]. Precisely, this IVR strategy makes it possible to avoid the
classical rainbow divergence, incorporating an approximate
description of classically forbidden transitions in terms of
real-valued trajectories [25]. The IVR solution has been
successfully applied to different branches, providing accurate
transition probabilities for several atomic, molecular, and
nuclear processes [25,26,29–33]. In most of these cases, IVR
results are in excellent agreement with the corresponding full
quantum values.

In this paper we extend the IVR method to deal with FAD
processes by using the IVR time evolution operator in the
frame of a time-dependent distorted-wave formalism. The
approach proposed here, named the surface initial value rep-
resentation (SIVR) approximation, is applied to evaluate FAD
patterns for He atoms grazing impinging on a LiF(001) surface.
This collision system will be used as a benchmark of the SIVR
theory, comparing the results with available experimental data
and with values derived within the SE approach.

The article is organized as follows. The theoretical formal-
ism is derived in Sec. II. Results are presented and discussed in
Sec. III, while in Sec. IV we outline our conclusions. Atomic
units (a.u.) are used unless otherwise stated.
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II. THEORETICAL MODEL

When an atomic projectile (P ) grazingly impinges on a
crystal surface (S) with an incidence energy E, the scattering
state of the projectile, |�+

i (t)〉, satisfies the time-dependent
Schrödinger equation for the Hamiltonian:

H = − 1

2mP

∇2
�R + VSP ( �R), (1)

where �R denotes the position of the center of mass of the
incident atom, mP is the projectile mass, and VSP is the
surface-projectile interaction. The sign + in the scattering state
indicates that it satisfies outgoing asymptotic conditions for
the elastic collision process, verifying as the initial condition
that at t = 0, when the projectile is far from the surface, �+

i

tends to the state �i , where

�j ( �R,t) = (2π )−3/2 exp(i �Kj · �R − iEt), j = i(f ) (2)

is the initial (final) unperturbed wave function, with �Ki

( �Kf ) the initial (final) momentum and E = K2
i /(2mP ) =

K2
f /(2mP ).
In the Schrödinger picture of quantum mechanics, the

scattering state at a given time t can be formally expressed
in terms of the evolution operator U (t) = exp(−iH t) as

|�+
i (t)〉 = U (t) |�i(0)〉 (3)

for t � 0. A semiquantum expression of this equation can
be obtained by applying the IVR method, as summarized in
Ref. [26], to represent the evolution operator U (t). Within the
IVR approach, the scattering state of Eq. (3) becomes

|�+
i (t)〉 � ∣∣�(IV R)+

i (t)
〉 = (2πi)−3/2

∫
d
−→
R o

∫
d
−→
K o

× (JM (t))1/2 �i(
−→
R o,0) exp(iSt )| �Rt 〉, (4)

where �Rt ≡ �Rt (
−→
R o,

−→
K o) is the time-evolved position of

the incident atom at a given time t , which is obtained
by considering a classical trajectory with starting position
and momentum

−→
R o and

−→
K o, respectively. In Eq. (4) the

function St ≡ St (
−→
R o,

−→
K o) denotes the classical action along

the trajectory:

St =
∫ t

0
dt ′

[ −→P 2
t ′

2mP

− VSP ( �Rt ′)

]
, (5)

where
−→P t is the classical projectile momentum at the time t ,−→P t = mP d �Rt /dt , while the function

JM (t) = det

[
∂ �Rt (

−→
R o,

−→
K o)

∂
−→
K o

]
(6)

is a Jacobian factor (a determinant) evaluated along the
classical trajectory �Rt , which is associated with the Maslov
phase. This Jacobian factor can be expressed as JM (t) =
|JM (t)| exp(iνtπ ), where |JM (t)| is the modulus of JM (t) and
νt is an integer number that accounts for the sign of JM (t)
at a given time t . In this way, νt represents a time-dependent
Maslov index, satisfying that every time JM (t) changes its sign
along the trajectory, νt increases by 1.

In this work we use the IVR state of Eq. (4) to describe
the quantum scattering state within the framework of the
time-dependent distorted-wave formalism [34]. Hence, the
distorted-wave amplitude for the elastic transition from
the initial state �i to the final state �f can be expressed as

A
(SIVR)
if = −i

∫ +∞

0
dt

〈
�f (t)

∣∣VSP

∣∣�(IVR)+
i (t)

〉
. (7)

By replacing Eq. (4) in Eq. (7) and explicitly solving the
integration on the spatial coordinate �R, which leads to a Dirac
delta function in the coordinate space, the SIVR transition
amplitude per unit of surface area reads

A
(SIVR)
if = 1

S

∫
S

d
−→
R os

∫
d
−→
K o a

(SIVR)
if (

−→
R o,

−→
K o), (8)

where
−→
R o = −→

R os + Zôz is the starting position, at t = 0, of
the projectile trajectory, with

−→
R os and Zo the components

parallel and perpendicular, respectively, to the surface plane;
the ẑ versor oriented perpendicular to the surface, aiming
toward the vacuum region; and Zo → +∞. In Eq. (8)
the position

−→
R os is integrated on a given area S of the

surface plane; the starting momentum
−→
K o satisfies the energy

conservation, i.e., |−→K o| ≡ K0 = √
2mP E; and

a
(SIVR)
if (

−→
R o,

−→
K o) = −

∫ +∞

0
dt

|JM (t)|1/2eiνtπ/2

(2πi)9/2
VSP ( �Rt )

× exp
[
i
(
ϕ

(SIVR)
t − −→

Q · −→
R o

)]
(9)

is the SIVR transition amplitude associated with the classical
path �Rt ≡ �Rt (

−→
R o,

−→
K o), where

−→
Q = �Kf − �Ki is the projec-

tile momentum transfer and ϕ
(SIVR)
t = Et + St − �t is the

SIVR phase, with �t = �Kf · ( �Rt − −→
R o).

After some steps of algebra, the SIVR phase can be
expressed as

ϕ
(SIVR)
t =

∫ t

0
dt ′

[
1

2mP

( �Kf − −→P t ′ )
2 − VSP ( �Rt ′)

]
, (10)

which helps to reduce numerical uncertainties due to the fact
that the component of �Ki parallel to the surface is much higher
than the perpendicular one. It is interesting to note that in
Eq. (9) the Jacobian factor JM (t) goes to zero as the Maslov
index νt changes discontinuously, making the integrand be
continuous at such a point [31].

The SIVR differential probability, per unit of surface area,
for elastic scattering with final momentum �Kf in the direction
of the solid angle 	f ≡ (θf ,ϕf ) is obtained from Eq. (8) as
dP/d	f = K2

f |A(SIVR)
if |2, where θf and ϕf are the final polar

and azimuthal angles, respectively, with ϕf measured with
respect to the x̂ axis along the incidence direction in the surface
plane. A schematic depiction of the process and the angular
coordinates is displayed in Fig. 1.

III. RESULTS

We apply the SIVR method to 4He atoms elastically
scattered from a LiF(001) surface under axial surface chan-
neling conditions. This collision system has been widely
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FIG. 1. (Color online) Sketch of the angular coordinates for the
FAD process.

investigated with FAD [1–4,18–20,35] and will be considered
as a benchmark for the theory.

The SIVR transition amplitude was obtained from Eq. (8)
employing the Monte Carlo technique to evaluate the �Ros and−→
K o integrals. The integration on �Ros was done using random
values obtained from a Gaussian distribution, while the integral
on

−→
K 0 was solved making use of the change of variables−→

K 0 = K0(cos θo cos ϕo, cos θo sin ϕo, − sin θo), with θo and
ϕo varying uniformly around the incidence direction, in a
range determined from the uncertainty principle. That is, the
θo and ϕo variables were integrated in the angular ranges
�θo � ±10(Kisdz)−1 and �ϕo � ±5(Kisdy)−1, respectively,
around the incidence direction, where Kis = Ki cos θi is the
initial momentum parallel to the surface, θi is the glancing
incidence angle, and dy and dz are the lattice parameters in the
directions ŷ and ẑ, respectively, both of them perpendicular to
the incidence channel (̂x axis). More than 4 × 105 values of
�Ros and

−→
K o were used in the calculation of A

(SIVR)
if for each

incidence condition, determined by the initial momentum �Ki .
It involved the sum of the a

(SIVR)
if amplitudes corresponding

to different values of �Ros and
−→
K o that lead to the same final

momentum �Kf . This was done using a grid of 100 × 100
points for the angles θf and ϕf . Every transition amplitude
a

(SIVR)
if was evaluated numerically along the classical trajectory
�Rt (

−→
R o,

−→
K o) from Eq. (9). In such a calculation, the evaluation

of the determinant JM (t) represents the numerical bottleneck.
A key quantity to describe the experimental FAD patterns

is the potential VSP , which is here determined from a pair-
wise additive hypothesis by adding individual contributions
corresponding to the interaction of the projectile with the
different solid ions. Within this model, successfully employed
in FAD from insulator surfaces [20,21], the surface-projectile
potential takes into account the static and polarization contri-
butions. The static potential, derived by assuming that the
electronic densities of the particles remain frozen during
the collision, was evaluated as the sum of the electrostatic,
kinetic, and exchange potentials [36]. While in previous
articles [20,21] only local electronic density contributions
were considered, in this paper we incorporate no local terms
to evaluate the kinetic and exchange potentials, as given by
the Lee-Lee-Parr [37] and Becke [38] models, respectively.

FIG. 2. (Color online) Angular projectile distribution, as a func-
tion of the deflection angle �, for 4He atoms scattered from
LiF(001) along the [100] direction with the glancing incidence angle
θi = 0.71 deg. Two different impact energies are considered: (a)
E= 7.3 keV and (b) E = 8.6 keV. Solid red line, SIVR results
for the supernumerary rainbow mechanism, derived by integrating
the starting position �Ros over a reduced unit cell; shadow gray line,
experimental data from Ref. [1]; vertical arrows, positions of the
classical rainbow angles ±�rb.

In turn, the polarization potential, due to the rearrangement
of the projectile electron density induced by the presence
of target ions, was derived as in Ref. [21]. In addition, in
the calculation of the static and polarization contributions
we have considered a surface rumpling, with a displacement
distance extracted from the ab initio calculation of Ref. [19].
Details of the surface-potential calculation will be published
elsewhere [39].

As our main interest lies in analyzing the performance
of the SIVR approach to describe rainbow effects, first we
focus on the mechanism of supernumerary rainbows, which
is associated with the SIVR amplitude derived from Eq. (8)
by considering an area S equal to only one reduced unit cell
[1,19,21]. In Fig. 2 we compare SIVR projectile distributions
for a reduced unit cell with experimental data from Ref. [1] for
incidence along the [100] channel with two different impact
energies. The SIVR spectra, as a function of the deflection
angle � defined as � = arctan(ϕf /θf ), present well-defined
peaks, which can be identified as supernumerary rainbow
maxima [1]. The positions and relative intensities of such peaks
are in quite good agreement with the experimental data, even
the rainbow maximum which presents the highest intensity. In
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FIG. 3. (Color online) Similar to Fig. 2 for 4He atoms scattered
from LiF(001) along the [110] channel. The incidence energy and
angle are E = 7.5 keV and θi = 0.67 deg, respectively. The
experimental data were extracted from Ref. [19].

contrast with previous SE calculations [4,19], within the SIVR
approximation the rainbow peak is described as a smoothed
maximum that takes into account the decreasing intensity
on the dark side of the classical rainbow angle �rb [24].
The angle �rb corresponds to the largest deflection suffered
for projectiles moving along classical trajectories with initial
momentum �Ki , so that projectile paths ending with deflections
� larger than �rb are classically forbidden. Notice that despite
the fact that no convolution was introduced in the SIVR spectra
of Fig. 2 the SIVR probability displays a smooth behavior in
the whole angular range, with a gentle change of slope as a
function of �, in accord with the experimental distribution.
Theoretical spectra are expected to be symmetric with respect
to the incidence direction, which corresponds to the deflection
angle � = 0, while the experimental data are affected by
experimental uncertainties that partially break such a mirror
symmetry.

Similar agreement between the SIVR and experimental
distributions is also observed for incidence along the [110]
channel, as shown in Fig. 3. For this impact direction,
the position and relative intensity of the rainbow peak are
properly reproduced by the SIVR approach. However, there is
a slight shift in the positions of the internal maxima, which
might be associated with a failure of the surface-projectile
interaction model for this channel. As discussed in previous
articles [3,20,35], FAD patterns are extremely sensitive to
the corrugation of the surface potential across the incidence
direction. Small differences in the potential can strongly
modify the positions of supernumerary rainbow maxima,
particularly, the internal ones, and this effect is more evident
for incidence along the [110] channel [20].

With the aim of comparing the SIVR approach with the
previous SE theory [4,19,20], in Fig. 4 we display angular pro-
jectile distributions obtained with the SIVR and SE methods,
both of them including the supernumerary rainbow mechanism
only, that is, derived by integrating �Ros on a reduced unit
cell. In the case of the semiclassical SE approximation, to
study the role of the Maslov phase in this new context, we
have considered two versions: one incorporating the Maslov
phase [19] and the other without it [4,20]. Within the SE

FIG. 4. (Color online) Similar to Fig. 2(b) considering different
theoretical descriptions of the supernumerary rainbow mechanism.
Solid red line, SIVR approximation; dashed green line, SE approach;
dash-dotted blue line, SE approach without including the Maslov
correction term, as explained in the text. All the theories were
evaluated integrating the starting position �Ros over a reduced unit
cell.

approximation, the Maslov phase represents a correction term
φ

(SE)
M = νoπ/2 that was added to the phase of the eikonal

scattering state in order to take into account the phase change
suffered by the wave as it passes through a focus, with νo

the Maslov index defined as in Ref. [41]. From Fig. 4 we
observe that, like other semiclassical theories [1,40,42], both
versions of the SE approach produce an abrupt increase of
the probability at classical rainbow angles ±�rb, with null
probability outside this angular range, on the dark side of
the rainbow angle. This deficiency is completely solved by
the SIVR method, which gives rise to smooth rainbow peaks
with softened decaying intensities for deflection angles larger
than �rb. The most important point to remark about the
SIVR method is that the numerical integration on the starting
momentum

−→
K 0, included in Eq. (8), regularizes the divergence

of the transition amplitude close to �rb, in such a way that
forbidden trajectories as well as the so-called Airy behavior of
the quantum transition amplitude are automatically taken into
account [26].

Moreover, from Fig. 4 we found that the experimental po-
sitions of supernumerary rainbow maxima are well described
by the SE approach without the Maslov correction term [4,20].
But the agreement deteriorates when the Maslov phase φ

(SE)
M

is added to the SE theory, turning the central minimum into
a maximum, in contrast with the experiment. In contrast,
the present SIVR approximation does incorporate a similar
Maslov phase φM (t) = νtπ/2 as a function of time along the
classical trajectory. But this phase emerges naturally, together
with the factor |JM (t)|, in the derivation of Eq. (9), becoming
in fact essential to obtain proper projectile distributions within
the SIVR method. Therefore, the present results seem to
indicate that the incorporation of φ

(SE)
M in the SE approach

is unbalanced, in a certain manner, and it would be better to
disregard it.
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So far we have described the mechanism of supernumerary
rainbows only, but as it happens for most of the diffrac-
tion phenomena FAD patterns have two different origins—
supernumerary rainbows and Bragg diffraction [1]. Both
mechanisms are included in the SIVR description and can be
analyzed separately by means of the standard factoring of the
transition amplitude in terms of the product of a form factor and
a structure factor [21,23] as follows. In Eq. (8) the integration
region on the surface plane, S, is in principle determined by
the size of the initial wave packet of incident projectiles [43].
By considering this area as composed by n identical reduced
unit cells, each of them centered on a different site �Xsj of
the crystal surface, we can express the corresponding SIVR
transition amplitude as

A
(SIVR)
if,n = A

(SIVR)
if,1 Sn( �Qs), (11)

where A
(SIVR)
if,1 is derived from Eq. (8) by evaluating the �Ros

integral over one reduced unit cell, while the function

Sn( �Qs) = 1

n

n∑
j=1

exp[−i �Qs · �Xsj ] (12)

takes into account the crystallographic structure of the surface,
with �Qs the component of �Q parallel to the surface plane.
Each factor in Eq. (11) describes a different mechanism.
The factor A

(SIVR)
if,1 is related to supernumerary rainbows and

carries information on the shape of the interaction potential
across the incidence channel, while the factor Sn( �Qs) is
associated with the Bragg diffraction and provides information
on the spacing between surface atoms only. As the component
of the momentum transfer along the incidence channel is
negligible, we can approximate Sn( �Qs) ≈ Sn(Qtr), where
Qtr = Kf cos θf sin ϕf is the component of the transferred
momentum transversal to the incidence channel on the surface
plane. For scattering along the [110] channel this function
reads

S[110]
n (Qtr) = sin(ntrβ)

ntr sin β
, (13)

while for incidence along the [100] channel it reads

S[100]
n (Qtr) = (

n2
tr + 1

)−1
[
n2

tr
sin(ntrβ)

ntr sin β
+ cos(ntrβ)

cos β

]
, (14)

where ntr is the number of reduced unit cells along the
transverse direction (fixed as an odd number) and β = Qtr d/2,
with d the spatial lattice periodicity of the channel. Hence, in
both directions Sn(Qtr) gives rise to Bragg maxima placed at

Qtrd = m2π, (15)

with m an integer number. The width of these diffraction peaks
is affected by the number of reduced unit cells reached by the
incident wave packet; i.e., the larger ntr is, the narrower the
Bragg peaks are.

To visualize the above behavior, in Fig. 5 we display the
SIVR distribution obtained from Eq. (8) by integrating �Ros

on an area S formed by three reduced unit cells. In this case,
the SIVR spectrum presents Bragg maxima as superimposed
structures to the supernumerary contribution. Resolved Bragg
peaks can be observed in experimental projectile distributions

FIG. 5. (Color online) Similar to Fig. 2(a) comparing the contri-
butions of the different mechanisms. Dashed red line, SIVR results
derived from Eq. (8) by integrating the starting position

−→
R os over a

reduced unit cell (supernumerary rainbow contribution); solid blue
line, similar by using an extended integration area, as explained in
the text; dotted vertical lines, theoretical peak positions based on the
Bragg condition [Eq. (15)].

for low values of the perpendicular energy E⊥ = E sin2 θi ,
associated with the motion normal to the surface plane [19].
But for higher perpendicular energies, like the ones considered
in Figs. 2 and 3, discrete Bragg peaks originated from the
interference of trajectories from different reduced unit cells
are not present in the experimental distributions due to the
limits in spatial resolution of the detector [21]. Therefore,
only supernumerary rainbow contributions are visible in the
experimental spectra of such figures.

IV. CONCLUSIONS

We have developed a semiquantum approximation based on
the IVR method of Miller [25] to deal with FAD from crystal
surfaces. The proposed approach—the SIVR approximation—
solves the rainbow singularities originated by the classical
description of the projectile dynamics in the previous SE
model, preserving a simple semiquantum picture of the main
mechanisms of the process. In order to test the reliability of the
SIVR method, we have applied it to keV He atoms colliding
under grazing incidence with a LiF(001) surface, for which
there are available experimental data. The surface potential
was derived from a pairwise additive model, including non-
local kinetics and exchange contributions, polarization, and
rumpling. From the comparison of calculated angular spectra
with experimental projectile distributions for two different
low-indexed crystallographic directions of the LiF surface
we conclude that the SIVR approach provides a very good
representation of the FAD patterns in the whole angular
range, without requiring the use of convolutions to smooth
the theoretical curves. Therefore, the SIVR method might be
considered as an attractive alternative to quantum wave-packet
propagations, offering a realistic description of FAD patterns,
even around classical rainbow angles.
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We also found that the use of the Maslov correction term
in the SE approximation might be inadequate, while in the
SIVR approximation the Maslov phase emerges as a function
of the projectile position along the classical trajectory, playing
an essential role.
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