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Positronium-atom scattering at low energies
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A pseudopotential for positronium-atom interaction, based on electron-atom and positron-atom phase shifts, is
constructed, and the phase shifts for Ps-Kr and Ps-Ar scattering are calculated. This approach allows us to extend
the Ps-atom cross sections, obtained previously in the impulse approximation [I. I. Fabrikant and G. F. Gribakin,
Phys. Rev. Lett. 112, 243201 (2014)], to energies below the Ps ionization threshold. Although experimental data
are not available in this low-energy region, our results describe well the tendency of the measured cross sections
to drop with decreasing velocity at v < 1 a.u. Our results show that the effect of the Ps-atom van der Waals
interaction is weak compared to the polarization interaction in electron-atom and positron-atom scattering. As
a result, the Ps scattering length for both Ar and Kr is positive, and the Ramsauer-Townsend minimum is not
observed for Ps scattering from these targets. This makes Ps scattering quite different from electron scattering
in the low-energy region, in contrast to the intermediate energy range from the Ps ionization threshold up to
v ∼ 2 a.u., where the two are similar.
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I. INTRODUCTION

Recently observed similarities between the positronium
scattering and the electron scattering from a number of
atoms and molecules [1–3] in the intermediate energy range
suggest that both processes are largely controlled by the same
interactions. When plotted as a function of the projectile
velocity, the electron and Ps cross sections are very close
and even show similar resonancelike features. This similarity
was explained recently [4] using the impulse approximation.
It was shown that above the Ps ionization threshold, the
Ps-A interaction is mainly controlled by the e−-A scattering
amplitude, and the e−-A exchange contributes mostly to this
amplitude in the intermediate energy range. It is clear, however,
that at higher energies, the role of the exchange interaction
becomes less significant, and the similarity between Ps-A
and e−-A scattering should gradually disappear. On the other
hand, at lower energies, long-range interactions between the
projectile and the target play a significant role, and they are
substantially different for e−-A and Ps-A interactions. In the
former case, it is the polarization potential decreasing as r−4

at large distances r , and in the latter case, the van der Waals
interaction decreasing as r−6.

The impulse approximation for Ps-A scattering [4] produces
very large cross sections below the ionization threshold
because of the dominance of the e+-A scattering amplitude.
This growth of the Ps cross section is unphysical, since the
large e+-A amplitude is due to the effects of positron-atom
polarization and virtual Ps formation, both of which are
absent in Ps-A scattering. Since the impulse approximation
breaks down at energies below the ionization threshold, alter-
native methods and approximations, such as close coupling
and static exchange, should be used in this energy range.
Blackwood et al. [5] performed close-coupling calculations
of Ps scattering from noble-gas atoms. These calculations
allowed for the distortion and breakup of Ps, but kept the
target “frozen,” i.e., they neglected any excitations of the target.

Virtual target excitations are known to be very important in
low-energy electron- and positron-atom collisions, where they
can be described in terms of the polarization interaction. For
low-energy Ps-atom collisions, they give rise to the van der
Waals interaction, which can be incorporated by extending the
close-coupling calculations to include the virtual excitations
of the target. Such calculations have been performed for Ps
collisions with the hydrogen atom [6,7] and would be an
ultimate goal in the problem of Ps-atom collisions. How-
ever, they are very challenging computationally for complex
atoms.

In this paper, we develop an alternative low-energy method
based on the use of the electron and positron scattering phase
shifts, similar to the impulse approximation. It involves con-
structing model potentials that reproduce these phase shifts,
and then adding them to describe the Ps-atom interaction.
While this procedure is straightforward for positron scattering,
the situation with electrons is more complicated. Due to
the Pauli exclusion principle, the effective potential for the
electron depends on its orbital angular momentum l, i.e., it
becomes a pseudopotential [8]. When such a pseudopotential
is averaged over the electron density distribution in the Ps
atom, it becomes a nonlocal operator.

Another difficulty is related to inclusion of the long-
range interaction. Accurate low-energy electron and positron
scattering phase shifts contain contributions of the atomic
polarization potential. This potential is attractive for both elec-
trons and positrons and behaves as −α/2r4 at large distances,
where α is the atomic dipole polarizability. (We use atomic
units throughout.) An effective Ps-A potential including such
contributions would behave as −α/r4, which is physically
incorrect, as the dominant long-range Ps-A interaction is
the van der Waals interaction −C6/R

6. The latter potential
results from the many-body Ps atom, rather than single-particle
(i.e., electron-atom or positron-atom) dynamics. It can be
obtained by including the two-body polarization potential (see,
e.g., [9]) in the Hamiltonian, which gives the total polarization
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interaction at large distances as

Vpol(re,rp) = − α

2r4
e

− α

2r4
p

+ α re · rp

r3
e r3

p

, (1)

where re and rp are the electron and positron position vectors,
respectively, relative to the target. Averaging of this potential
over the electron and positron density distribution in Ps does
lead to an effective van der Waals interaction [10].

Alternatively, one can construct the positron-atom and
electron-atom pseudopotentials using static (static-exchange)
phase shifts for the positron (electron), i.e., neglecting the
polarization. The Ps-atom van der Waals interaction can then
be added, e.g., in the form

VW (R) = −C6

R6
{1 − exp[−(R/Rc)8]}, (2)

where C6 is the van der Waals constant and Rc is a cutoff
radius. The C6 values for Ps-atom pairs are known, e.g.,
from the London formula [11], which gives C6 = 152 a.u.
for Kr and C6 = 104.5 a.u. for Ar. (These values are close
to the estimates obtained in Ref. [12].) In contrast, the
cutoff parameter Rc cannot be determined rigorously, but the
phase shifts and cross sections are sensitive to its choice. A
similar problem is encountered when using the polarization
interaction (1), which also requires a cutoff at small distances.
In the present calculations, the radius Rc is set by requiring
that the cross sections given by the pseudopotential method
merge smoothly with the elastic cross section calculated in the
impulse approximation above the Ps ionization threshold [4].

The rest of the article is organized as follows. First we
discuss the construction of the pseudopotentials for e+ and e−
scattering from the static (static-exchange) phase shifts, and
the derivation of the pseudopotential for Ps-atom scattering.
We then present the results for Ps-Kr and Ps-Ar scattering
and discuss the low-energy behavior of the cross sections. For
both atoms, the scattering length is positive, which implies
effective repulsion at low energies and rules out the existence
of the Ramsauer-Townsend minimum.

II. THEORY

A. Pseudopotentials

We choose the positron-atom pseudopotential in the form

Vp(r) = Zp

r
e−αpr , (3)

which represents the static e+-A repulsion, and where Zp and
αp are fitting parameters. They are obtained by fitting the s-,
p-, and d-wave scattering phase shifts in the potential (3) to the
positron scattering phase shifts in the static field of the ground-
state atom calculated in the Hartee-Fock approximation (see
Sec. II B). The parameter Zp plays the role of an effective
nuclear charge. It can be different from the actual nuclear
charge, since a low-energy positron does not penetrate deep
into the atom.

The effective static-exchange potential for the electron is
chosen as

Ve(r) = −Ze

r
e−αer + B

rn
e−βr , (4)

where the second term represents repulsion due to the Pauli ex-
clusion principle. This effect depends on the orbitals occupied
in the atomic ground state, hence it is l dependent. We also
found that in general the ab initio static-exchange (Hartree-
Fock) phase shifts cannot be reproduced using Ze = Zp.
Therefore, we regard all parameters in Eq. (4) as l dependent.
Formally this means that the effective electron-atom potential
is a nonlocal operator with the kernel

Ve(r,r′) = 1

r2
δ(r − r ′)

∑
lm

Vl(r)Y ∗
lm(r̂)Ylm(r̂′), (5)

where Vl(r) are potentials given by Eq. (4). It is convenient to
rewrite this expression as

Ve(r,r′) = −Vp(r)δ(r − r′)

+ 1

r2
δ(r − r ′)

∑
lm

vl(r)Y ∗
lm(r̂)Ylm(r̂′), (6)

where

vl(r) = Vl(r) + Vp(r). (7)

Since the “direct” part of the potential Vl(r) is close in
magnitude, but opposite in sign to Vp(r), vl(r) represents
mainly the exchange interaction between the electron and the
atom.

The Ps-atom pseudopotential can be now written as

VPs(re,r′
e,rp,r′

p) = Vp(rp)δ(rp − r′
p) − Vp(re)δ(re − r′

e)

+ 1

r2
e

δ(re − r ′
e)

∑
lm

vl(re)Y ∗
lm(r̂e)Ylm(r̂′

e).

(8)

In the static approximation, we average this potential over
the electron and positron density distribution in Ps given by
|�(ρ)|2, where �(ρ) is the Ps ground-state wave function and
ρ is the relative e−-e+ coordinate. The relations between re,
rp and ρ are

re = R + ρ/2, rp = R − ρ/2,

where R is the position of the Ps center of mass relative to the
target.

The average of the local part of the pseudopotential (8)
reduces to the integral

∫
[Vp(R − ρ/2) − Vp(R + ρ/2)]|�(ρ)|2dρ, (9)

which vanishes because the integrand is parity odd. This
corresponds to a well-known fact that the static potential for the
Ps-A interaction is zero. The remaining nonlocal part in Eq. (8)
contains a strong repulsive core, and to make the calculations
more tractable, it is convenient to represent vl(re) as

vl(re) = vloc(re) + ul(re),
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where the l-independent part vloc(re) contains the major
repulsive contribution, and ul(re) accounts for the remaining
l-dependent part. The averaging procedure is then reduced to
averaging of the Ps pseudopotential,

ṼPs(re,r′
e) = vloc(re)δ(re − r′

e)

+ 1

r2
e

δ(re − r ′
e)

∑
lm

ul(re)Y ∗
lm(r̂e)Ylm(r̂′

e). (10)

The average of the local part of this potential gives the local
Ps-atom potential,

vav(R) =
∫

vloc(R + ρ/2)|�(ρ)|2dρ, (11)

while averaging the nonlocal part [second term in
Eq. (10)] gives a nonlocal contribution to the Ps-A

interaction,

V (R,R′) =
∑
lm

∫
1

r2
δ(r − r ′)ul(r)Y ∗

lm(r̂)Ylm(r̂′)|�(ρ)|2dρ,

(12)

where r = R + ρ/2 and r′ = R′ + ρ/2.
In performing these integrations, it is more convenient to

switch to the integration variable r. Since the result depends
only on the absolute magnitude of the vectors R and R′, and
on the angle between them, the integration in Eq. (12) can be
performed in the coordinate system with the polar axis along
the vector

s = R′ − R.

We then have

V (R,R′) = 8
∑

l

2l + 1

4π

∫
1

r2
δ(r − r ′)ul(r)Pl(cos θrr′)|�[2(r − R)]|2dr, (13)

where r′ = r + s and θrr′ is the angle between r and r′.
Integration over the polar angle θ in this coordinate system

eliminates the δ function (which ensures r = r ′) and fixes the
angles:

cos θ = − s

2r
, cos θrr′ = r + s cos θ

|r + s| = 1 − s2

2r2
.

It also introduces a factor 1/s since

d(r − |r + s|)
d cos θ

= −s

for cos θ = −s/2r .
The Ps ground-state density is expanded in spherical

harmonics as

|�(2|r − R|)|2 = 1

8π
e−2|r−R|

= 1

8π

∞∑
l′=0

Fl′(r,R)(2l′ + 1)Pl′ (cos θrR), (14)

where the expression for Fl(r,R) is given in Appendix A (see
also Appendix B in Ref. [13]).

The Legendre polynomial Pl′ (cos θrR) is the only part of
expansion (14) which depends on the azimuthal angle φ in the
integrand of Eq. (13) (θrr′ does not depend on φ). Therefore
we can perform integration over φ as

∫ 2π

0
Pl′(cos θrR)dφ = 2πPl′ (cos θ )Pl′ (cos θR),

where

cos θR = R′ cos 	 − R

s
,

and 	 is the angle between R and R′.

Thus, we obtain the nonlocal part of the Ps-atom potential
as

V (R,R′) = 1

2πs

∑
l l′

(2l + 1)(2l′ + 1)Pl′ (cos θR)

×
∫ ∞

0
Pl

(
1 − s2

2r2

)
Pl′

(
− s

2r

)
Fl′(r,R)ul(r)dr.

(15)

It is convenient to expand this expression in Legendre
polynomials,

V (R,R′) = 1

RR′

∞∑
L=0

2L + 1

4π
VL(R,R′)PL(cos 	),

where

VL(R,R′) = 2πRR′
∫ π

0
V (R,R′)PL(cos 	) sin 	d	.

Similarly, for the local part of the interaction potential, given
by Eq. (11), we obtain

vav(R) = 4
∫ ∞

0
vloc(r)F0(r,R)r2dr.

Substitution of the local and nonlocal potentials in the
Schrödinger equation for the Ps-A system yields a set of radial
equations:

1

2m

d2fL

dR2
+

[
E − vav(R) − L(L + 1)

2mR2

]
fL(R)

−
∫

VL(R,R′)fL(R′)dR′ = 0, (16)

where m = 2 a.u. is the Ps mass, and fL(R) is the radial part
of the Ps center-of-mass wave function for the orbital angular
momentum L.
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FIG. 1. (Color online) Positron scattering phase shifts for Ar
obtained using the static potential of the Hartree-Fock atom.

The sums in Eq. (15) converge fast. With a proper choice of
vloc(re), the sum over l can be truncated at lmax = 2. Increasing
lmax to 4 has almost no effect on the phase shifts in the velocity
range up to 2 a.u. The sum over l′ converges if l′max � 6.

B. Fitting parameters

The values of the parameters of the pseudopotentials in
Eqs. (3) and (4) were determined by fitting the positron-atom
and electron-atom scattering phase shifts obtained in the
static potential of the atom calculated in the Hartree-Fock
approximation [14].

As mentioned in Sec. II A, for the positron, the same
pseudopotential can be used for all partial waves. The static-
field scattering phase shifts for the positron on Ar are shown
in Fig. 1, and the corresponding sets of parameters for Ar and
Kr are given in Table I. For positron velocities up to 2 a.u.,
the pseudopotential phase shifts are within 1% of the actual
static-field phase shifts and are indistinguishable from them
on the scale of the plot.

TABLE I. Parameters of the positron and electron pseudopoten-
tials, given by Eqs. (3) and (4), for Ar and Kr.

System l Z αp,e B n β

e+-Ar 0–4 18.06 1.95
e−-Ar 0 4.297 0.618 14.72 3 0.248

1 10.0 2.368 15.24 3 0.504
2 9.780 1.230 0
3 12.48 1.544 0
4 15.13 1.714 0

e+-Kr 0–4 20.79 1.760
e−-Kr 0 20.79 1.760 56.84 6 0

1 20.79 1.760 97.80 6 0
2 18.25 1.317 0
3 14.80 1.409 0
4 16.98 1.544 0

FIG. 2. (Color online) Electron scattering phase shifts (modulo
π ) for Ar obtained using the static-exchange (i.e., Hartee-Fock)
atomic potential (solid black lines), and the pseudopotential (3)
(dashed red lines), with parameters listed in Table I.

For the electron, the pseudopotential is optimized separately
for each partial wave by fitting the Hartree-Fock scattering
phase shifts. The corresponding sets of parameters for Ar and
Kr are given in Table I, and the phase shifts for Ar are shown
in Fig. 2 for l = 0–2. The pseudopotential for the s wave
gives the phase shifts that are almost indistinguishable from
the Hartree-Fock, and the fitted phase shifts for the p and d

waves are also quite accurate. The behavior of the positron and
electron phase shifts and the quality of the pseudopotential fits
for Kr are similar to those shown for Ar. For both atoms, the d

wave displays a broad resonance at the electron velocity v ∼ 1
a.u. (see Fig. 2).

III. RESULTS AND DISCUSSION

In this section, we present the Ps-atom scattering phase
shifts calculated from Eq. (16) which contains the static Ps
pseudopotential, and with the inclusion of the van der Waals
interaction (2). We also use these phase shifts to compute
the Ps-atom elastic scattering cross section, and compare our
results with experiment and other theories.

A. Ps-Kr scattering phase shifts

Figure 3 shows the phase shifts for Ps with the orbital
angular momentum L = 0, 1, and 2, scattered from Kr.
Adding the van der Waals interaction (with Rc = 3.0 a.u.; see
Sec. III C) produces relatively small positive corrections for the
s and p waves, while for the d wave the correction is relatively
large. In particular, due to the van der Waals potential, the
phase shift acquires a characteristic rise, δ2 ∝ k4, at low Ps
momenta k [see Eq. (B6)].

Our calculations show that for L = 0 and 1, the nonlocal
effects related to the second term on the right-hand side of
Eq. (10) are small, but for L = 2 they are significant. This can
be seen from Fig. 4, which compares the full (nonlocal) d-wave
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FIG. 3. (Color online) Ps-Kr scattering phase shifts for L = 0, 1
and 2. For each partial wave, the lower curve (solid black) is for
the static pseudopotential and the upper curve (dashed red) includes
the effect of the van der Waals interaction with C6 = 152 a.u. and
Rc = 3.0 a.u.

phase shift with those obtained using two choices of the local
potential, namely, vloc(r) = v1(r) and vloc(r) = v2(r), where
vl(r) is defined by Eq. (7). The choice of vloc = v2 leads to a
shape resonance due to the combination of the van der Waals
interaction and the centrifugal barrier. The resonance becomes
very pronounced at smaller Rc. However, for vloc = v1, the
resonance is not visible, and the result obtained with the full
potential (i.e., including the local and nonlocal terms) confirms
that the nonlocal effects suppress the resonance behavior of the
Ps d wave. This suppression leads to a better agreement with
the static-exchange calculations of Blackwood et al. [5] (see

FIG. 4. (Color online) Ps-Kr scattering phase shifts for L = 2.
Shown are the results obtained with the full pseudopotential (i.e.,
with nonlocal effects) and its local approximations vloc(r) = vl(r) for
l = 1 and 2. The van der Waals interaction is included in all cases.
Solid black lines: Rc = 3.0 a.u.; red dashed line: Rc = 3.5 a.u.

below). A trace of this resonance is a weak minimum in the
L = 2 partial cross section (see Sec. III C below).

Analysis of the Ps s-wave phase shift at low momenta (δ0 �
−Ak) yields the value of the scattering length A. In the static
approximation, we find A = 3.32 a.u., and when the van der
Waals interaction is included, we obtain A = 2.35 a.u. (for
Rc = 3.0) or A = 2.50 a.u. (for Rc = 3.5). These values can
be compared with those of Mitroy and Bromley [15], i.e., A =
3.18 a.u. in the static approximation and A = 1.98 a.u. with the
van der Waals interaction included. Note that because of the
uncertainty in the van der Waals interaction effect in Ref. [15],
the corresponding scattering length varies between 1.22 and
2.26 a.u., with A = 1.98 a.u. being their best prediction.

B. Effect of the van der Waals interaction on the
scattering length

As seen from the s-wave phase shift in Fig. 3, the effect
of the van der Waals interaction is not very significant.
It does not change the sign of the scattering length (the
way atomic polarization does for the electron and positron
scattering), and there is no Ramsauer-Townsend minimum
in the cross section. To understand this qualitatively and
semiquantitatively, consider a model potential with a hard
repulsive core of radius R0 and a van der Waals “tail,”

V (R) =
{+∞, R < R0

−C6/R
6, R > R0

. (17)

Here the repulsive core mimics the exchange interaction
between the electron and the atom. The s-wave radial
Schrödinger equation for k = 0 at R > R0 is

d2f0

dR2
+ 2mC6

R6
f0(R) = 0.

Its solution (up to a normalization constant) is

f0(R) = R1/2[J−1/4(x0)J1/4(x) − J1/4(x0)J−1/4(x)], (18)

where

x =
√

mC6/2

R2
, x0 =

√
mC6/2

R2
0

, (19)

and Jν is the Bessel function. The scattering length, obtained
from the asymptotic behavior of Eq. (18) at R → ∞, f0(R) ∝
R − A, is

A =
(

mC6

8

)1/4
�(3/4)

�(5/4)

J−1/4(x0)

J1/4(x0)

= R0

(
1 − 2x2

0

15
− 22 x4

0

1575
− 844 x6

0

482625
+ · · ·

)
. (20)

Here the factor (mC6/8)1/4�(3/4)/�(5/4) is similar to the
mean atom-atom scattering length determined by the long-
range part of the van der Waals interaction (see Ref. [16]).

Figure 5 shows the scattering length (20) as a function
of R0 for three values of the van der Waals constant, C6 =
104.5, 152, and 234 a.u., corresponding to Ps-Ar, Ps-Kr, and
Ps-Xe interactions. The scattering length becomes negative
only for unrealistically small values of R0. As an estimate,
we can assume that R0 equals the scattering length in the
static approximation. For Kr, this gives R0 = 3.32 a.u. Using
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FIG. 5. (Color online) Dependence of the scattering length, given
by Eq. (20), for the van der Waals potential (17) on the radius of the
repulsive core. The three curves correspond to C6 = 104.5, 152, and
234 a.u., for Ps-Ar, Ps-Kr, and Ps-Xe, respectively. Open circles show
the estimates of A from Table II.

this value in Eq. (20), we see that the van der Waals force
reduces the scattering length to A = 2.67 a.u., in good accord
with the calculations (Sec. III A). Therefore, the effect of the
van der Waals interaction is not as drastic as the effect of
the polarization interaction in e−-Kr (or e+-Kr) scattering,
where it makes the scattering length negative. Obviously this is
due to the shorter range of the van der Waals force as compared
to the polarization force.

Alternatively, one can estimate R0 using the mean radius of
the outer atomic orbital 〈r〉, e.g., as

R0 = γ 〈r〉, (21)

where γ ∼ 1 is a dimensionless factor. For Kr, 〈r〉 = 1.95 a.u.
[17], and in order to obtain the correct scattering length, A =
2.35 a.u. (for Rc = 3.0), we should choose γ = 1.61, which
leads to R0 = 3.14 a.u., close to our previous estimate of R0 =
3.32 a.u.

We can use this simple model to estimate the Ps scattering
lengths for other atoms. Table II lists the values of 〈r〉 from
Ref. [17] and the corresponding values of the model scattering
length (20) for Ar, Kr, and Xe, obtained using γ = 1.61. Also
shown are the results of the scattering calculations of this work
and of Mitroy et al. [9,15].

TABLE II. Mean atomic radii 〈r〉, core radii R0, and Ps-atom
scattering lengths A for Ar, Kr, and Xe. All values are in a.u.

System C6 〈r〉 R0 Aa Ab Ac

Ar 104.5 1.66 2.67 1.73 2.14–2.33 1.30–1.98
Kr 152 1.95 3.14 2.35 2.35–2.50 1.22–2.26
Xe 234 2.39 3.85 3.23 1.50–2.60

aScattering length from Eq. (20), obtained using Eq. (21) with
γ = 1.61.
bPresent scattering calculations.
cValues obtained by Mitroy et al. [9,15].

FIG. 6. (Color online) Ps-Kr elastic scattering cross sections.
Solid black curve “IA” is the result of the impulse approximation [4];
solid black curve “static” is the present static-field calculation (i.e.,
C6 = 0); dashed red curve is the present calculation with the static
and van der Waals interaction (C6 = 152 a.u., Rc = 3.0 a.u.); dotted
blue curve is the same for Rc = 3.5 a.u.; dot-dashed magenta curve
is the static-exchange calculations of Blackwood et al. [5].

Although the model result for Xe looks somewhat overesti-
mated, the model correctly predicts the trend of the scattering
length A to increase with the atomic number Z. Although
the van der Waals interaction (which makes A smaller) grows
with Z, the increase of the atomic radius, i.e., the effect of
the static repulsion, is stronger. [This can be seen from the
expression for x0, given by Eq. (19), which is proportional
to C

1/2
6 but inversely proportional to R2

0.] This is opposite to
what is observed in electron-atom scattering where the effect
of the polarization attraction takes over the effect of the core
radius, and the scattering length decreases with the growth of
Z. (The analog of the parameter x0 in this case is proportional
to

√
α/R0; see Ref. [16].)

These observations have an important consequence for
the comparison of e−-A scattering with Ps-A scattering. The
observed similarities [1] at energies above the Ps ionization
threshold are explained in terms of the impulse approxima-
tion [4]. On the other hand, in the region below the ionization
threshold, where the impulse approximation fails, no similarity
exists. In this energy range, scattering is controlled by different
long-range interactions, the strong polarization interaction for
the electrons, and the relatively weak van der Waals interaction
in the case of Ps.

C. Ps-Kr scattering cross section

Figure 6 shows the elastic Ps-Kr cross sections in the
velocity range from threshold to 2 a.u. Higher partial waves
(L > 4), up to L = 10, were included by solving the radial
equation in the local approximation with inclusion of the
van der Waals interaction. The van der Waals interaction was
included with two choices of the cutoff parameter: Rc = 3.0
and 3.5 a.u. The figure also shows the cross section obtained by
Blackwood et al. [5] using the static-exchange approximation,
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i.e., without inclusion of virtual excitations in the target or
projectile. These results can be compared with our static
calculations. Figure 6 shows that the two theories are very
close at low velocities, but the present static-field cross section
decreases faster with the increasing velocity, compared to that
of Blackwood et al. However, after inclusion of the van der
Waals interaction, our cross section increases significantly
at v > 0.6 a.u., and merges with the result of the impulse
approximation for Rc = 3.0 a.u. We therefore choose this
value of Rc for comparison with the experiment (see below).

At low velocities (below the Ps ionization threshold, v =
0.5 a.u.), the van der Waals interaction leads to a significant
reduction of the elastic cross section. This effect is due to
the decrease in the scattering length and a general increase of
the low-l phase shifts (i.e., decrease in absolute magnitude), as
seen in Fig. 3. The van der Waals interaction also results in two
features in the cross section: a local maximum at v = 0.22 a.u.
and a local minimum at v = 0.67 a.u. (for Rc = 3.0 a.u.). The
former is due to the s-wave contribution and is caused by the
long-range attractive interaction. To understand this, it is useful
to discuss a similar effect in the low-energy electron-atom
scattering which is controlled by the polarization interaction.
According to the modified effective-range theory of O’Malley
et al. [18], at low energies the s-wave phase shift behaves as

tan δ0 = −Ak − πk2α/3 + O(k3 ln k), (22)

where α is the atomic polarizability. Here the characteristic
quadratic part of the polarization contribution to the phase
shift [second term in Eq. (22)] is negative (although the
total contribution of the attractive polarization potential is
positive). As a result, for a negative scattering length A,
the phase shift passes through zero at small k > 0, leading
to the Ramsauer-Townsend effect. In contrast, for A > 0,
the phase shift decreases faster than linear, which gives rise
to a maximum in the partial cross section. For example, a
maximum is observed in electron scattering from Ne [19],
for which the scattering length is small and positive. (Note
that although the maximum in the total cross section for Ne is
observed at about E = 25 eV, the s-wave contribution peaks at
E = 6.7 eV, still quite a large energy compared to the position
of a typical Ramsauer-Townsend minimum.) One could call
this phenomenon the “anti-Ramsauer” effect, although we are
not aware of the use of such term in the literature.

A similar situation occurs in Ps-atom scattering, although
now the additional contribution to the phase shift comes from
the van der Waals interaction. As shown in Appendix B, the
modified effective-range expansion of the s-wave scattering
phase shift reads as

tan δ0 = −Ak − Bk3 + 2mC6πk4/15 + O(k5), (23)

where B = 1
2 r0A

2, and r0 is the effective range [20]. The
coefficient B depends on both the short-range and the long-
range (van der Waals) interactions. If B > 0, the major
correction to the −Ak behavior is negative, since the k4 term
is relatively small at low energies. Our calculations show that
this is indeed the case, although the expansion (23) is valid
only at very low energies. Hence, a weak anti-Ramsauer effect
is observed. Naturally, the effect is small compared to that
observed in electron-atom scattering because of the relative

FIG. 7. (Color online) Ps-Kr total scattering cross sections. Solid
black curve is the total cross section in the impulse approximation [4];
dashed red curves present elastic and total cross sections obtained
with C6 = 152 a.u., Rc = 3.0 a.u. Solid squares are experimental
data from Ref. [1].

weakness of the van der Waals interaction compared to the
polarization interaction.

The minimum at v = 0.67 a.u. observed in Fig. 6 for
Rc = 3.0 a.u. is due to the d-wave shape resonance, which
is quite pronounced in the e−-Kr scattering [21]. However, in
Ps-Kr scattering, this resonance is suppressed, as discussed in
Sec. III A and seen in Figs. 3 and 4. Due to a strong background
contribution, this resonance appears as a window.

To compare with the experimental Ps-atom total scattering
cross section, the Ps ionization cross section should be added
to the elastic cross section. Indeed, Ps ionization contributes
significantly at velocities v > 0.5 a.u. As in the impulse-
approximation calculations [4], the ionization cross sections
are taken from Ref. [22]. Figure 7 shows the elastic and
total cross section computed in the present work together
with the results of the impulse approximation and experiment.
Although the experimental data [1] are not available at low
velocities, the data point at v = 0.63 a.u. indicates that the
cross section should slightly decrease towards lower velocities.
This trend is confirmed by our results. The peaking of the
experimental cross section at v ≈ 0.9 a.u. is also in agreement
with our results. In addition, our calculation predicts a weak
local maximum at v = 0.23 a.u. and a local minimum at
v = 0.56 a.u. Both of these predictions call for experimental
verification.

D. Ps-Ar scattering

Figure 8 shows the s-, p-, and d-wave phase shifts for
Ps-Ar scattering. All of the main features here are the same
as in the Ps-Kr scattering. However, tan δ0 follows the linear
−Ak behavior much more closely. This results in a decrease
of the s-wave cross section, according to

σ0 � 4π
A2

1 + A(A − r0)k2
,
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FIG. 8. (Color online) Ps-Ar scattering phase shifts. For each L,
the lower curve (solid black) was calculated using the static-field
pseudopotential, while the upper (dashed red) also includes the effect
of the van der Waals interaction with C6 = 104.52 a.u. and Rc =
3.0 a.u.

where r0 is, in fact, quite small. At the same time, the p-wave
contribution increases rather sharply from threshold, leading
to a local maximum in the total cross section at v = 0.22 a.u.
in the static approximation (C6 = 0), and an even more
pronounced local maximum at v = 0.26 a.u. when the van der
Waals interaction is included. The total elastic cross sections
are shown in Fig. 9.

The local maximum in the total cross section is controlled
by the local part of the Ps-Ar pseudopotential for L = 0 and

FIG. 9. (Color online) Ps-Ar elastic scattering cross sections.
Solid black curve “IA” is the result of the impulse approximation [4];
solid black curve “static” is the present static calculation (C6 = 0);
dashed red curve is the calculation with the static and van der Waals
potential (C6 = 104.5 a.u., Rc = 2.5 a.u.); dotted blue curve is the
same for Rc = 3.0 a.u.; dot-dashed magenta curve is close-coupling
calculations of Blackwood et al. [5].

FIG. 10. (Color online) Ps-Ar total scattering cross sections.
Solid black curve “IA” is the result of the impulse approximation [4];
dashed red curve is the present elastic cross section obtained with
C6 = 104.5 a.u., Rc = 2.5 a.u., augmented by the ionization cross
sections of Starrett et al. [22]; dotted blue curve is the same for Rc =
3.0 a.u. Open circles: experiment [23]; solid squares: experiment [1].

L = 1. Since this potential is very sensitive to the partial
cancellation of the attractive part due to the e−-Ar interaction
and the repulsive part due to the e+-Ar interaction, the
position and the magnitude of the maximum is subject to
uncertainties. It is possible that effects not included in the
present calculations, e.g., short-range correlations, can change
the position and shape of the maximum or even eliminate it
completely. We note that the close-coupling calculations of
Blackwood et al. [5], which allow for the virtual excitations
of the Ps, but keep the target atom frozen, do not exhibit
a low-energy maximum at all. However, they do show a
local maximum at v = 1.1 a.u., which in our calculation is
due to the d-wave contribution. Overall, Fig. 9 shows that
there is a reasonable agreement with calculations [5] for
v = 0.4–1.2 a.u. One can also see that the effect of the van
der Waals potential for Ar is smaller than it is for Kr (Fig. 6),
and the cross section is not as sensitive to the choice of Rc

(which can be related to the smaller C6 value for Ar). For
a more detailed comparison between the present calculation
and that of Blackwood et al. [5], information on partial cross
sections would be needed.

The Ps-Ar scattering length in the static approximation
is A = 3.19 a.u., whereas the value calculated by Mitroy
and Ivanov [9] is 2.85 a.u. After adding the van der Waals
interaction, we obtain A = 2.33 a.u. for Rc = 3.0 a.u., and
A = 2.14 a.u. for Rc = 2.5 a.u. The corresponding value
obtained by Mitroy and Ivanov varies between 1.30 and
1.98 a.u. Comparing with the Ps scattering lengths obtained
for Kr (Sec. III A), we see that the values for both atoms are
quite close. While the Ar-Kr system has a smaller C6 value,
the Ar atom has a smaller radius, and the two effects largely
compensate for each other (see Fig. 5 and Table II).

As seen in Fig. 9, the choice of Rc = 3.0 a.u. matches better
with the impulse approximation results at higher velocity.
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However, the smaller value of Rc = 2.5 a.u. leads to a better
agreement with the experiment. Figure 10 shows the total cross
sections for Ps-Ar scattering obtained for each of these cutoff
radii. Whereas both theoretical curves describe well the overall
behavior of the measured cross sections [23] at v > 0.5 a.u.,
the cross section obtained with Rc = 2.5 a.u. agrees better with
the measured absolute values. This value also appears to be
more physical, as it is smaller than the optimal cutoff radius
of Rc = 3.0 a.u. found for Kr.

IV. CONCLUSION

The pseudopotential model developed in the present paper
describes Ps scattering from noble-gas atoms (Ar and Kr)
at energies below the ionization threshold and matches the
impulse-approximation results above the ionization threshold.
Although experimental data are not available in the low-
energy region, our results describe well the trend seen in the
experimental cross sections to drop with decreasing velocity
below v ≈ 1 a.u. In addition, our calculations predict zero-
energy cross sections (or scattering lengths) which are in
accord with stochastic variational calculations [9,15].

Analysis of the scattering phase shifts shows that the static
Ps-atom interaction is repulsive. This repulsion arises from
the electron Pauli exclusion from closed-shell atoms (while
the pure electrostatic interaction is zero for the truly neutral
Ps atom). The phase shifts also indicate that the role of
correlations represented by the van der Waals interaction at
low energies is relatively small.

Because of the relative weakness of the van der Waals in-
teraction compared to the polarization interaction in electron-
atom scattering, the scattering lengths for both Ar and Kr are
positive, and the Ramsauer-Townsend minimum is not ob-
served for these targets. The overall picture of Ps-A scattering
is quite different from the e−-A scattering in the low-energy
region. This is in stark contrast to the intermediate energy range
from the Ps ionization threshold up to v ∼ 2 a.u. Here the Ps-A
scattering is mostly controlled by the electron-atom exchange,
which makes its cross section very similar to that for e−-A
scattering. In the low-energy region, where the long-range
interaction is important (especially for the electrons), this
similarity disappears.

Although the van der Waals interaction in Ps-A scattering
does not produce the Ramsauer-Townsend minimum, it can
lead to more subtle features in the cross sections, such
as low-energy maxima. However, these features are subject
to uncertainties because of a delicate balance between the
repulsive and attractive components of the Ps-A interaction.
They can also be affected by other effects such as short-range
correlations, which are not included explicitly in the present
calculation. The uncertainty can be resolved by performing
accurate measurements of Ps-A scattering at low energies and
by new fully correlated calculations for this interesting and
challenging system.
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APPENDIX A: EXPANSION OF THE PS GROUND-STATE
DENSITY

We start with a known expression for the free-particle
Green’s function (see, e.g., [24]),

eikr12

r12
= ik

∞∑
l=0

(2l + 1)h(1)
l (x>)jl(x<)Pl(cos θ12),

where x> = kr>, x< = kr<, and jl , h
(1)
l are the spherical

Bessel and Hankel functions.
To switch to the decaying exponent, we make a substitution

k = iκ and arrive at the following expansion:

e−κr12 =
∞∑
l=0

(2l + 1)Fl(r1,r2)Pl(cos θ12), (A1)

where

Fl(r1,r2) = d

dκ

[
κh

(1)
l (iκr>)jl(iκr<)

]
.

It is convenient now to introduce the following real functions:

ĥl(x) = −ilh
(1)
l (ix), ĵl(x) = iljl(ix),

which are related to the modified Bessel function Kl+1/2(x)
and Il+1/2(x). Explicit expressions for the first few of these
functions are

ĥ0(x) = e−x

x
, ĥ1(x) = e−x

x

(
1 + 1

x

)
,

ĥ2(x) = e−x

x

(
1 + 3

x
+ 3

x2

)
,

ĵ0(x) = sinh x

x
, ĵ1(x) = 1

x

(
sinh x

x
− cosh x

)
,

ĵ2(x) = sinh x

x

(
1 + 3

x2

)
− 3 cosh x

x2
.

The recurrence relations for these functions are

zl+1(x) = 2l + 1

x
zl(x) + zl−1(x),

dzl(x)

dx
= − l + 1

x
zl(x) − zl−1(x),

where zl stands for either ĵl or ĥl . Using these, we obtain

F0(x1,x2) = −ĥ0(x>)ĵ0(x<) + x>ĥ1(x>)ĵ0(x<)

+ x<ĥ0(x>)ĵ1(x<),

and

Fl(x1,x2) = (−1)l[(2l + 1)ĥl(x>)ĵl(x<) + x>ĥl−1(x>)ĵl(x<)

+ x<ĥl(x>)ĵl−1(x<)], l � 1.

In practice, expansion (A1) converges well by summing up to
lmax = 30 if, for high l, asymptotic expansions for ĥl and ĵl

are used.
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APPENDIX B: MODIFIED EFFECTIVE-RANGE
EXPANSION FOR THE VAN DER WAALS POTENTIAL

We are interested in the behavior of the s-wave scattering
phase shift δ0. According to the effective-range theory for
short-range potentials, it is given by the effective-range
expansion [25]

k cot δ0 = − 1

A
+ 1

2
r0k

2 + O(k4), (B1)

where A is the scattering length and r0 is the effective range.
Note that in the presence of a weakly bound state, r0 > 0 [20],
but generally this is not true. For small momenta and phase
shifts, it is more convenient to rewrite Eq. (B1) as

tan δ0 = −Ak − Bk3 + O(k5), (B2)

where B = 1
2A2r0. More generally, k cot δ0 in Eq. (B1) can be

expanded in even powers of k, and tan δ0 in Eq. (B2) in odd
powers of k.

In the presence of the long-range interaction −Cn/rn, the
first “anomalous” term in the expansion (B2) is proportional
to kn−2 [20]. This term can be calculated in the Born
approximation according to the prescription given by Landau
and Lifshitz [20]. Consider the case n = 6 (van der Waals
interaction). The corresponding correction �f to the scattering
amplitude is

�f (q) = 2mC6q
3
∫ ∞

qRc

sin ξ

ξ 5
dξ,

where q = 2k sin θ/2 is the momentum transfer, θ is the
scattering angle, and Rc is a cutoff radius similar to that
introduced in Eq. (2). Integrating several times by parts and
expanding the result in powers of kRc at small kRc gives

�f (q) ≈ 2mC6

(
1

3R3
c

− q2

6Rc

+ πq3

48

)
.

Expanding this amplitude in partial waves, we obtain, for the
correction to the s-wave phase shift,

�δ0 = c1k + c2k
3 + 2πmC6k

4

15
, (B3)

where

c1 = 2mC6

3R3
c

, c2 = −2mC6

Rc

.

The first two terms in the Eq. (B3) expression are of the
same type as those in the effective-range expansion (B2),
while the last term is “anomalous,” caused by the power-law
behavior of the potential. Therefore, the modified effective-
range expansion can be written as

tan δ0 = −A′k − B ′k3 + 2πmC6k
4

15
+ O(k5), (B4)

where we have introduced the new parameters A′, B ′ > 0 to
emphasize that they are different from those in Eq. (B2).

One might ask if this derivation is rigorous enough because
of the use of the Born approximation. In fact, the expansion
in Eq. (B4) can be derived from a more rigorous modified
effective-range theory [26] for the −Cn/rn potential. This
theory shows that the first anomalous correction to the
effective-range expansion of the phase shift can be obtained
from the analytical continuation of the integral [26],

�δL = πmCnk
n−2

∫ ∞

0

[JL+1/2(x)]2

xn−1
dx, (B5)

which converges for L > (n − 3)/2, to any physical value of L,
e.g., L = 0 for the s-wave scattering. [In (B5), Jν is the Bessel
function.] For n = 6, one obtains (see also Refs. [20,27])

�δL = 6πmCk4

(2L + 5)(2L + 3)(2L + 1)(2L − 1)(2L − 3)
, (B6)

which means that the lowest-order correction in the effective-
range expansion for L = 0 is

�δ0 = 2πmC6k
4

15
,

in agreement with Eq. (B3).
For a short-range potential, the low-energy behavior of the

higher partial-wave phase shifts is δL ∝ k2L+1. This means that
for 2L + 1 > 4, i.e., L � 2, the anomalous correction (B6) is,
in fact, the leading term in the low-k expansion. This explains
the behavior of the d-wave phase shifts seen in Figs. 3 and 8
when the van der Waals interaction is included.
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