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The main limitation of most ultracold chemistry studies to date is the lack of an analysis of reaction products.
Here, we discuss a generally tractable, rigorous theoretical framework for computing statistical product-state
distributions for ultracold reactions in external fields. We show that fields have two main effects on the products
of a statistical reaction, by (1) modifying the product energy levels and thus potentially reshaping the product
distributions and/or (2) adding or removing product states by changing the reaction exothermicity. By analyzing
these effects and the strength of the formalism to distinguish between different reaction mechanisms in benchmark
reactions involving 40K and 87Rb species, we argue that statistical predictions will help understanding product
formation and control, and lead developments to realize the full potential of ultracold chemistry.
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I. INTRODUCTION

Recent advances in producing and trapping species at
temperatures below 1 mK have made ultracold chemistry a
reality. For the first time, reactions can be explored in the
fully quantum regime where resonances, tunneling, quantum
degeneracy, and other nonclassical effects dominate the re-
action dynamics. In addition, external fields may be used to
favor or disfavor typical and exotic reaction mechanisms, thus
allowing their scrutiny with unprecedented detail, to “tailor”
interactions and study the consequences of confinement upon
reactivity. Fields can also be used to trap the ultracold
species, drastically enhancing interrogation times and making
it possible to probe the effects of the weakest interactions.
Since 2010, pioneering experiments at JILA, Colorado, started
addressing many of these issues in reactions involving mixed
ultracold samples of K, Rb, and KRb [1–3] by inferring
reaction rates through the measurement of reactants losses.

Despite all key findings at JILA, and being commonly
acknowledged as one of the most important applications for
ultracold species [4,5], low-temperature chemical reactions are
most often considered for their role as obstacles to the stability
of quantum gases [6–9]. This seems natural, since the main
current experimental focus is on the production of ultracold
molecules which reactions obstruct. Nevertheless, the problem
of reaction rates and their dependence on external fields
has attracted much interest; Quéméner, Bohn, and cowork-
ers [2,3,10,11]; Idziaszek, Julienne, and coworkers [12–14];
and Gao [15,16] developed quantum models to interpret the
rates measured at JILA, and discussed “universal” features in
ultracold reactions.

Yet, the study of a chemical reaction goes necessarily
beyond a description of its rate into that of its products: The
question of product-state distributions and state-to-state cross
sections is among the biggest experimental and theoretical
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challenges in the field, with the potential to bring ultracold
physics into the realm of chemistry [5]. Product distributions
are far more sensitive than reaction rates to finer details
of the dynamics, and would provide an integral view and
deeper understanding of the underlying physics. In addition,
even if neutral products are quite difficult to detect, ionic
products may be more easily monitored in experiments on
ultracold ion-neutral [17] or Penning-ionization reactions [18],
and aid understanding radiative molecular formation, charge
transfer, and several other mechanisms. The issue seems
especially timely, for the first product distributions were very
recently measured for the closely related process of three-body
recombination in an ultracold atomic gas [19].

A theory that accounts for external fields is essential as
these are ubiquitous in ultracold experiments: fields are used
for trapping the (ultra)cold species and/or controlling their
interactions. In principle, a full description of low-temperature
reactions can be derived from the quantum formalism for
chemical reactions in electromagnetic fields developed by
Tscherbul and Krems [20]. However, such rigorous quantum-
mechanical calculations are not currently tractable for most
cases of experimental interest. This is partly due to the huge
number of rovibrational states involved in low-temperature
collisions of relatively heavy species [21,22]. There is, how-
ever, a more fundamental reason for this: Ultracold reactions
span the most widely different energy, length, and time
scales explored in chemistry to date, and hence pose an
unprecedented challenge to chemical collision theory.

Nonetheless, Mayle et al. [21,22] have shown that total
reaction rates, and answers to a number of important questions
regarding the statistics of global properties of such processes
may still be inferred using arguments from Rice-Ramsperger-
Kassel-Marcus theory, the random matrix theory of nuclear
scattering, and multichannel quantum defect theory. The first
empirical indication of such statistical behavior was recently
reported for ultracold collisions of Er atoms [23].

In this paper, we set up a theoretical framework
for calculating statistical product-state distributions and
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state-to-state cross sections for ultracold reactions in external
fields, by connecting traditional statistical theories [24,25] and
ultracold collision theory [26]. We show that such product
distributions may be used as benchmarks for the founding
assumptions of the theory, and hence provide fundamental tests
for the statistical arguments of Mayle et al. [21,22]. Moreover,
they allow us to critically evaluate possible departures from
statistical behavior, both qualitatively and quantitatively, being
thus a powerful tool to rationalize any kind of reaction.

II. THEORY

A. Statistical formalism in external fields

We consider a reactive collision between two species, Mα
1

and Mα
2 , which yields two products, Mβ

1 and Mβ

2 , in the
presence of an external field. Here, α and β loosely refer
to reactants and products; in what follows, α is also used to
represent the set of quantum numbers needed to specify the
internal states of the reactants, while β is its analogous for the
products.

Product-state distributions are obtained from the reaction
cross section σr, with the probability density associated to
an observable X, P(X) = 1

σr

∂σr
∂X

[27]. In general, the only
conserved quantity in an external field is the projection of
the total angular momentum on the field axis, M , and the total
reaction cross section can be obtained by adding all contribu-
tions from state-to-state cross sections, σr = ∑

Mαβ σM
α→β . The

rigorous quantum-mechanical expression for the state-to-state
cross section from reactant state α to product state β at a given
M , energy E, and field strength F is [20]

σM
α→β(E,F ) = π�

2gα

2μα(E − Eα)

×
∑

LαMLα

∑
LβMLβ

∣∣SM
αLαMLα ;βLβMLβ

(E,F )
∣∣2

, (1)

where gα is a degeneracy factor that equals 2 if the reactants
are indistinguishable and 1 otherwise, μα is the reactants’
reduced mass, Eα (Eβ) is the species energy in state α (β), and
Lα (Lβ) is the space-fixed orbital angular momentum of the
reactants (products) with projection MLα

(MLβ
) on the field

axis. The sums over the absolute squares of S-matrix elements
define the transition probability P M

α→β from state α to β. Our
model becomes statistical, for we assume that reaction always
proceeds through complex formation, whose dynamics renders
the reactant and product channels statistically independent.
Following Hauser and Feshbach [24], or Miller [25],

P M
α→β ≈ pM

α pM
β

/∑
γ

pM
γ , (2)

where the explicit dependence on E and F has been omitted, as
in what follows. The pM quantities are capture probabilities,
i.e., the probability of complex formation, for a given M ,
when the species collide in a specific state. The sum in the
denominator runs over all energetically accessible reactant
and product channels; hence, the ratio pM

β /
∑

γ pM
γ is the

fraction of collision complexes that dissociate into product
state β. Equation (2) is statistical, for all capture probabilities
are considered uncorrelated, and is seen to satisfy the principle

of detailed balance. In a further approximation, our reasoning
may be extended to include inelastic processes, thus treating
all quenching events statistically—although nonreactive scat-
tering is less likely to involve complex formation.

A distinctive feature of ultracold experiments is the possi-
bility to fully control the reactants’ initial states; thus, we fix
α in what follows. The statistical state-to-state reaction cross
section may be written as

σα→β,r = π�
2gα

2μα(E − Eα)

∑
M

pM
α

pM
β∑

γ pM
γ

, (3)

from which the total reaction cross section σα,r is found by
summing over all possible product states β, and the related
total reaction rate kα,r ≡ [2(E − Eα)/μα]1/2σα,r. Quantities
for a specific temperature are obtained by averaging over
the corresponding Boltzmann distribution. If reaction occurs,
the probability density corresponding to an observable X

in the products reads

Pα(X) =
(∑

M

pM
α

∑
β pM

β∑
γ pM

γ

)−1
⎛
⎝∑

M

pM
α

∑
β

∂pM
β

∂X∑
γ pM

γ

⎞
⎠ , (4)

where the first term in parentheses acts like a proportionality
constant. The form of this distribution is readily visual-
ized by recognizing that the sum over partial derivatives∑

β(∂pM
β /∂X) = δ(X)

∑{X}
β pM

β , where δ(X) is a Dirac δ

function and the sum includes only product states compatible
with the value X. Contributions from different M values
combine with different relative weights that approach the
capture probabilities in the entrance channels if many product
states are available.

Equations (3) and (4) provide detailed statistical predictions
for the observables of a chemical reaction in an external
field. In the ultracold regime, kinetic energies in the entrance
and elastic (and possibly inelastic) channels are extremely
low; hence, a quantum-mechanical description is crucial
for calculating the corresponding capture probabilities. By
comparison, the kinetic energies available to the products are
much larger and a simpler (semi)classical description should
be appropriate. The issue of capture in the ultracold entrance
channels has received much attention in the last few years,
mainly to describe the loss rates measured at JILA; various
models have been proposed [1–3,10,12,14,15,28,29] that are
valid under specific conditions. In addition, we have extended
time-independent [30,31] and time-dependent methods [32],
and a variety of semiclassical and classical models, to make
it possible to evaluate capture probabilities in external fields
also for reactions at higher temperatures [33]. The statistical
formalism is quite flexible as capture models may be chosen
among all of the above, or new models developed, depending
on the conditions of the experiment and desired level of
sophistication.

B. Implementation details

The calculations for Eqs. (3) and (4) are performed in two
main steps, which are described below.

First, quantum states are defined for all reactants and prod-
ucts by diagonalizing the Hamiltonians of the corresponding
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isolated species. For each species Mγ

k , every such state
is associated an energy Eγ,k and projection of the total
angular momentum mγ,k . Quantum numbers and/or labels are
additionally associated to each state from the eigenfunction(s)
with the largest contribution in the chosen basis—which are
later used to produce quantum-state and/or label distributions.
In addition, effective electric dipole moments are obtained for
each state from the expectation value of the electric dipole
operator.

Secondly, for each projection of the total angular momen-
tum M , a capture probability pM

γ is calculated for every
combination of reactants and products states that satisfies
the following: (1) it corresponds to an asymptotically open
channel, E � Eγ,1 + Eγ,2; and (2) the projection of the total
angular momentum is conserved, M = mα,1 + mα,2 + MLα

=
mβ,1 + mβ,2 + MLβ

. The latter involves completing the def-
inition of channels by adding an orbital angular momentum
Lγ , and associated projections MLγ

= −Lγ , . . . ,Lγ , to each
combination of reactants and products states. In the case
where only magnetic fields are present, an additional constraint
is imposed based on the conservation of the total parity—
calculated for each channel by multiplying the parities of the
individual species (computed in the first step) and (−1)Lγ . The
capture models are chosen on the basis of the physical context
and open channels are added until convergence is achieved.
This whole step is repeated until convergence is achieved with
respect to M .

III. RESULTS AND DISCUSSION

To illustrate our formalism, we focus on benchmark
ultracold exoergic reactions involving 40K, 87Rb, and their
diatomic combinations. Reactive collisions between these
species are barrierless, with exothermicities 	E ranging from
about 10 to 200 cm−1, and proceeding through wells up to
8000 cm−1 deep [7,34]. Such large energy differences are
usually an indication of strong interactions among internal
degrees of freedom (DOFs) of the intermediate complex.
Strong interactions, a large number of states associated to the
intermediate complex, and relatively few open exit channels
most often lead to long-lived intermediates and statistical
behavior. These are also the conditions for ergodic dynamics
in classical phase space, recently studied by Croft and Bohn
in ultracold molecular collisions [35].

Quantum states are computed with the Hamiltonians and
parameters in Refs. [36–38]. Capture probabilities in the
entrance channels are evaluated with a Wentzel-Kramers-
Brillouin (WKB) tunneling model for reactions in magnetic
fields, and the adiabatic variant of the quantum threshold
model (QTM) [10] for those in electric fields. A semiclas-
sical model based on phase-space theory (PST) [39–42],
suitable to account for long-range dispersion interactions (cf.
Refs. [43–47]), is used for capture probabilities from the prod-
ucts. In general, capture in barrierless reactions is dominated
by long-range interactions, which are accounted for by the
chosen models. Nevertheless, if necessary, short-range effects
can be included in the statistical formalism by calculating cap-
ture probabilities using, e.g., a quantum-mechanical [30,32] or
quasiclassical approach [48]; such studies require a detailed
knowledge of the interaction potentials, which usually involve

computationally expensive ab initio calculations. Further
details are described in the Appendix.

A. Global properties

We first consider global properties, and remark an important
consequence of summing over β in Eq. (3): In the common case
where many more product than reactant states are available,∑

β pM
β /

∑
γ pM

γ → 1, and global quantities depend exclu-
sively on the capture probabilities for the entrance channels.
Such observables thus provide a “one-sided” description of
the process and its governing dynamics, and contain no
information on how (or even which) products are formed in
the reaction.

In cases with many more product than reactant states,
statistical predictions will be similar to those based on the
“universal” assumption [12]—in which the wave function
is considered to be fully absorbed once the short-range
chemical region is reached. However, statistical and universal
predictions are not necessarily indistinguishable. For instance,
ultracold isotopic-substitution reactions would have very small
exothermicities and only a few available product states; thus,
global statistical and universal predictions could differ. More-
over, the requirement for universality implies nothing about
the intermediate dynamics; universal product distributions (not
derivable from the “universal” methodology at present) would
not necessarily agree with statistical predictions: The statistical
assumption imposes a more stringent constraint, namely, that
capture probabilities in the entrance and product channels are
statistically independent.
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FIG. 1. (Color online) Experimental and statistical rates for ul-
tracold reactions between ground-state 40K87Rb molecules in (a)
magnetic, Fm, and (b) electric, Fe, fields (dKRb

eff ∝ Fe).
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Figure 1 shows experimental and statistical rates for ultra-
cold reactions between two ground-state 40K87Rb molecules
in magnetic and electric fields. Following our previous dis-
cussion, the statistical predictions correspond to those of the
WKB and QTM models [1,2,12] chosen to evaluate capture
probabilities in the entrance channel(s). The agreement be-
tween experimental and statistical predictions is hence a con-
sequence of the success of these models to account for quantum
effects in reactions of undistinguishable fermions such as
40K87Rb. Because of Fermi statistics, such collisions can only
occur with odd partial waves (Lα = 1,3, . . .) and capture in
the ultracold channels occurs via tunneling through dynamical
barriers [1–3]. These barriers can be reshaped with applied
electric fields, which induce long-range anisotropic dipolar
interactions and lead to different tunneling probabilities for
different M (MLα

) values [2,3,10]. As shown in Fig. 1, field
effects may induce striking order-of-magnitude variations in
ultracold reaction rates.

It is important to note that quantitative agreement between
theoretical and experimental rates, although a necessary
condition, is not conclusive evidence on the statistical nature
of a reaction. Within capture theory, capture in the entrance
channels determines the rates in any case with many more
product than reactant channels, which is common in ultracold
experiments. In any case, Eq. (4) shows that the key factors that
determine product-state distributions are the relative capture
probabilities at different M .

B. Statistical product distributions

Given the striking effect of external fields on ultracold
reaction rates, it is of great interest to assess what effects
fields can have on statistical product distributions. We focus
on translational energy and rotational distributions for their
practical interest, although the formalism can be applied to
any observable of interest. In particular, translational energy
distributions are likely to play an important role in the initial
efforts to measure the products of ultracold reactions. At
present, reaction experiments have low yields due to the limited
number of reactants; thus, translational distributions can be
very valuable because they may provide information on the
combined effect of various DOFs and do not require measuring
products in nearly unpopulated states.

1. Control of statistical products

Figure 2 shows statistical translational energy distributions
for the products of the ultracold reaction 40K + 87Rb2 →
40K87Rb + 87Rb at relatively low or high values of an electric
field, with reactants in their ground states. We focus on the
behavior within 30 cm−1 of the maximum available kinetic
energy and neglect nuclear spins to keep a manageable
number of product states. The smooth curves are obtained
by convoluting the calculated distributions (sharp peaks) with
an “apparatus” function (i.e., Gaussian convolution), and
are included to emphasize their overall shape. The factors
determining the form of field-free statistical distributions have
been previously studied [49]. The results in Fig. 2 indicate
the degree of control over the qualitative form of product
distributions that may be attained if fields act directly on
the product energy levels. There are two main effects: (1) a
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FIG. 2. (Color online) Statistical translational energy distribu-
tions for the ultracold reaction between ground-state 40K and 87Rb2

(red, solid) at (a) low and (b) high electric fields. The distributions
for a free rotor (green, dashed) and pendular states (blue, dotted) are
shown for comparison.

change of the spectrum of product states, which leads to a
change of the shape of the distribution; and (2) a change of the
reaction exothermicity. Such effects highlight the importance
of accounting for fields when assessing the statistical nature
of a reaction, given that statistical behavior may have different
signatures at different field strengths.

Qualitative changes in statistical product distributions are
mainly due to the modification of the product energy levels.
For the K+Rb2 reaction, such changes are most noticeable
on a reduced energy range where rotational states are clearly
resolved—which is why we restrict Fig. 2 to v = 0 states,
even if KRb(v = 0–2) products are energetically available. A
similarly striking qualitative effect on vibrational distributions
would require impractically high electric fields due to the
relatively low electric dipole moment of KRb; this is also
why the fields needed for the strongest effects in the rotational
states are very high. In general, the key factor determining the
energy levels of a polar diatomic rotor is deffFe/B [50], where
deff is the effective dipole moment, Fe is the applied electric
field, and B is the rotational constant. In principle, it is thus
possible to tune the rotational distribution of such a product
between those of a free rotor and pendular states simply by
tuning the electric field.

Figure 3 shows statistical translational energy distribu-
tions for the prototypical reaction between two ground-state
40K87Rb molecules. Calculations include up to hyperfine
terms. Vibrational excitation of the products is prevented
because the exothermicity of the KRb+KRb reaction is low, of
about 10 cm−1. In this case, products are nonpolar species and
the field acts on the reactant states only. The main effect of the
field is hence to shift the distributions by changing the reaction
exothermicity, while preserving their qualitative behavior. In
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general, the exothermicity 	Eα ≈ maxβ (Eα − Eβ)—given
that E ≈ Eα—may be increased or decreased with the
applied field depending on whether reactants collide in a
low-field-seeking or high-field-seeking state, which may in
principle be used to fully suppress a reaction [34].

Both Figs. 2 and 3 show the control that is feasible on
the statistical product distributions of prototypical reactions
using electric fields. The effect of magnetic fields is different
in two ways. First, large Zeeman splittings in paramagnetic
species often require very high magnetic fields, and the effects
on reaction exothermicities and energy levels will be less
pronounced than for polar species in electric fields. Secondly,
magnetic fields lift all degeneracies and preserve total parity
in the reaction, which may be used to restrict the product
states that become available from specific initial reactant states.
Effects due to this second feature will be most pronounced in
cases where very few product states are energetically available.

2. Reaction mechanisms

So far, we assumed that interactions in the intermediate
complex mix all DOFs considered, leading to a microcanonical
distribution of all internal states. There exists, however, the
possibility that some DOFs are much less involved and act
as “spectators,” being adiabatically conserved during the re-
action [51–53]. Such behavior would have a distinct signature
in the calculated product distributions. Therefore, statistical
distributions can aid distinguishing between different reaction
mechanisms. Our formalism can be readily modified to explore
these cases by restricting the sums to product states that fulfill
the necessary constraints—also needed to account for the
conservation of quantities other than M .

For instance, Mayle et al. [21] estimated nuclear spin-
changing probabilities for typical ultracold reactions and pre-
dicted that hyperfine states are likely to change (be preserved)
in processes involving heavier (lighter) species. Figure 4 shows
predicted rotational distributions for the products of the reac-
tion of two ground-state 40K87Rb molecules in an electric field,
where the qualitative differences between different schemes
are clearly demonstrated. The oscillating pattern predicted
if hyperfine DOFs are “active” during the reaction arises
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FIG. 4. (Color online) Statistical rotational distributions for the
products 40K2 (red) and 87Rb2 (green) of the ultracold reaction
between two ground-state 40K87Rb molecules in an electric field.
Solid or dashed lines correspond to the case where nuclear spins are
conserved or relaxed in the reaction.

because the products are homonuclear 
+
g -state molecules

and exchange symmetry only allows even (odd) values of
the total nuclear spin for even (odd) rotational states. A
smooth distribution is predicted if nuclear spins are spectators.
Both distributions extend to the same maximum rotational
number, fixed by the total available energy. Statistical tests
using predicted curves as prior distributions may be used to
assess the involvement of different DOFs in a reaction, and its
variation with varying conditions.

IV. SUMMARY AND CONCLUSIONS

We have discussed a rigorous statistical formalism for
determining state-to-state cross sections and product distri-
butions in external fields. We show that external control of
product distributions is possible, although limited, even for
statistical reactions where the ultracold entrance channels
are most “disconnected” from the products. We demonstrate
how statistical predictions can be used to distinguish between
different reaction mechanisms.

Product detection in ultracold reaction experiments is still
very challenging. Current traps for neutrals are very shallow,
which makes in-trap measurements impractical, while out-
of-trap detection is demanding because reactions have low
yields due to the limited number of reactants. Several leading
experimental groups are trying to achieve the higher densities
of reactants that will be needed and developing new routes
for product detection [19]. On the other hand, ionic products
from ion-neutral or Penning-ionization reactions may be kept
for long times using very deep traps and detected with highly
efficient techniques.

A thorough understanding of the physics driving ultracold
reactions is ultimately conditioned by the advances that
make possible the measurement of product-state distributions.
For instance, information on the intermediate dynamics in
ground-state collisions between reactive species (KRb, LiCs,
etc.) may be useful in understanding and predicting the
dynamics of similar intermediates in inelastic collisions
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between nonreactive species (RbCs, NaRb, etc.). In addition,
experiments may explore reactions in mixed samples of
homonuclear dimers such as Rb2+Cs2 → 2RbCs in an
attempt to better understand the inverse processes. All these
considerations add to the relevance of alkali-metal dimers
that are considered as less topical mostly because of their
ground-state reactivity at ultracold temperatures [6,8].
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APPENDIX: CALCULATION DETAILS

This Appendix describes the calculation of quantum states
and capture probabilities required for applying Eqs. (3) and (4)
to the study of 40K + 87Rb2 → KRb + Rb and 40K87Rb +
40K87Rb → K2 + Rb2 reactions.

1. Quantum states

The Hamiltonian for the isolated alkali atoms, 40K(2S)
and 87Rb(2S), is in general split into hyperfine and Zeeman
contributions Ĥ = Ĥhf + ĤZ. Ĥhf = a ı̂ · ŝ, with a the atomic
hyperfine coupling constant, and ı̂ and ŝ the nuclear and
electronic spin operators. ĤZ = gSμBŝ · F̂m − giμN ı̂ · F̂m,
where gS ≈ 2 and gi are the electron and nuclear g factors,
μB and μN are the Bohr and nuclear magnetons, and F̂m is
the external magnetic field operator. The matrix elements for
this Hamiltonian are taken from the literature (cf. Ref. [54]).
Quantum states are calculated from the diagonalization of the
resulting Hamiltonian matrix for a specific value of the external
fields, using NIST recommended parameters [36].

The quantum states for 40K2(1
+
g ), 87Rb2(1
+

g ), and
40K87Rb(1
+), in their vibrational ground states, are computed
using the formalism in Refs. [37,38]. In general, the molecular
Hamiltonian is split into rotational, hyperfine, Zeeman, and
Stark terms as Ĥ = Ĥrot + Ĥhf + ĤZ + ĤS, which read

Ĥrot = Bn̂2 − Dn̂2n̂2,

Ĥhf =
2∑

k=1

V̂k : Q̂k +
2∑

k=1

ckn̂ · ı̂k + c3 ı̂1 · T · ı̂2 + c4 ı̂1 · ı̂2,

ĤZ = −grμNn̂ · F̂m −
2∑

k=1

gkμN ı̂k · F̂m(1 − σk),

ĤS = −d̂ · F̂e. (A1)

Here, n̂ is the operator of the rotational angular momentum,
while ı̂k (k = 1,2) are those of the nuclear spins of the individ-
ual atoms. B and D are the rotational and centrifugal distortion
constants (we neglect the latter, following Refs. [37,38]). The
first term in the hyperfine Hamiltonian corresponds to the
interaction of the electric quadrupole moment of each nucleus,
Qk , with the electric-field gradient it experiences, Vk . The other
three hyperfine terms correspond to the nuclear-spin rotation
for each nucleus (with associated coupling constants c1 and
c2) and the tensor (c3) and scalar (c4) interactions between the
nuclear spins. T is a tensor describing the angular dependence
of the direct spin-spin interaction and the anisotropic part of the
indirect spin-spin interaction [55]. The Zeeman Hamiltonian
involves a rotation term with rotation g factor gr, and nuclear
terms including the isotropic part of the nuclear shielding
tensor, σ . The Stark Hamiltonian is only relevant for KRb,
and involves the electric dipole moment d̂ and electric field
F̂e operators. All matrix elements are given in the Appendices
of Refs. [37,38]; the molecular parameters for 40K2 and 87Rb2

are reported in Table I of Ref. [38], while those for 40K87Rb
are in Table V of Ref. [37].

Only 40K2(1
+
g , v = 0) and 87Rb2(1
+

g , v = 0) products
are populated in the KRb+KRb reaction, with a zero-field
exothermicity of −10.355 cm−1 [1]. The zero-field exother-
micity of the 40K + 87Rb2 reaction is −214.617 cm−1 [1], and
does not exceed −220 cm−1 for the electric fields considered.
Hence, only vibrational states v = 0–2 of the KRb products
are energetically accessible [56]. For the latter reaction, we
neglect the couplings between states corresponding to different
vibrational manifolds and the variation of molecular constants
with the vibrational state v. Different vibrational states are
assigned a vibrational energy of Evib = �w(v + 1

2 ), with
w = 75.85 cm−1 for KRb [56].

2. Capture probabilities

Three different capture models were used in the calcu-
lations, two quantum models for the capture of ultracold
reactants—(1) a WKB approximation for collisions in mag-
netic fields and (2) the adiabatic variant of QTM by Quéméner
and Bohn [10] for collisions in electric fields—and one for
the capture of products: (3) a semiclassical model based on
PST [39–42].

In our calculations, we approximate the capture proba-
bilities for the ultracold reactants by the tunneling proba-
bility through dynamical barriers in the entrance channels.
All dispersion coefficients are taken from ab initio data
[57,58].

a. WKB capture model

The capture probability is calculated using the WKB ex-
pression for the transmission probability through a centrifugal
barrier:

pM
γ (E,Fm) = exp

{
−2

�

∫ Rmax

Rmin

√
2μγ

[
Lγ (Lγ + 1)�2

2μγ R2
− C6,γ

R6
− (E − Eγ )

]
dR

}
, (A2)
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where Rmin and Rmax are the classical turning points (zeroes
of the factor within square brackets), which are determined
numerically. μγ and C6,γ are the relevant reduced mass and
long-range dispersion coefficient, while Lγ is the orbital
angular quantum number. The dependence of this probability
with the applied magnetic field, Fm, arises from that of Eγ

(and thus of Rmin and Rmax).

b. QTM capture model

The model was developed by Quéméner and Bohn [10]
to account for the strong effect of the electric dipole-dipole
interaction on the dynamical barriers. The capture probability
is calculated from their model for the transition probability,
Eq. (14) in Ref. [10]:

pM
γ (E,Fe) = q

(
E − Eγ

Vb,γ

)Lγ +1/2

, (A3)

where q ≈ 2/3 is a correction factor and Vb,γ is the height
of the dynamical barrier [2,10]. In this case, the dependence
on the electric field Fe arises from that of Vb,γ . The barrier
height is obtained from the diagonalization of the long-range
interaction including the electric dipole-dipole term. In the
orbital angular momentum basis, the matrix elements read

〈Lγ MLγ
|V (R)|L′

γ MLγ
〉

= δLγ ,L′
γ

[
�

2Lγ (Lγ + 1)

2μγ R2
− C6,γ

R6

]
− C3,γ

R3
, (A4)

with

C3,γ = 2d
γ

eff,1d
γ

eff,2(−1)MLγ [(2Lγ + 1)(2L′
γ + 1)]1/2

×
(

Lγ 2 L′
γ

0 0 0

)(
Lγ 2 L′

γ

−MLγ
0 MLγ

)
, (A5)

where d
γ

eff,k (k = 1,2) are the effective electric dipole moments
for each species and (:::) represents a Wigner 3-j symbol. The
barrier height Vb,γ is the smallest eigenvalue of the matrix
defined by Eq. (A4), which is diagonalized for each MLγ

(M)
using Lγ = 1,3, . . . ,9.

c. PST capture model

This model is used for capture in the product channels only,
where the kinetic energy is relatively large and the effect of
a few near-threshold states below dynamical barriers may be
neglected. The capture probabilities are computed as

pM
γ (E,F ) =

{
1, if E − Eγ � Vb,γ

0, otherwise , (A6)

where the height of the centrifugal barrier is

Vb,γ =
√

[Lγ (Lγ + 1)�2]3

54μ3
γ C6,γ

. (A7)

pM
γ dependence on the field(s) arises from that of Eγ .
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