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Scattering theory, multiparticle detection, and time
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We consider the theory of multiple-particle fragmentation processes in the light of modern multihit position-
sensitive detection. First, we give a formulation of time-independent many-body scattering theory as a direct
generalization of standard textbook two-body potential scattering but in such a way as to emphasize position
rather than momentum detection. Noteworthy is that classical asymptotic motion of fragments is shown to emerge
from this quantum-mechanical time-independent theory and enables the definition of a classical time parameter.
This in turn allows a transition to be made to a time-dependent scattering theory, even in the case where all
Hamiltonians are time independent. Such a time-dependent description is the basis of the imaging theorem,
which connects position detection to momentum detection.
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I. INTRODUCTION

The standard quantum-mechanical theory of scattering,
leading to expressions for differential cross sections, was
formulated in the 1950s and emphasizes detection of particle
momenta in the final channel. Although these theories begin
with the time-dependent Schrödinger equation (TDSE), the fi-
nal quantities in which cross sections are expressed, scattering
S, transition T , and Møller operators, are time independent and
the theory is wholly quantum mechanical. Modern detector
techniques rely more on position detection than energy or
momentum detection and, despite the quantum nature of the
theory, classical mechanics is used successfully to describe
the extraction of charged particles and their passage from
the microscopic reaction zone to the macroscopic detector.
Also, the (quantum) momenta required by the theory are
inferred from position measurements by defining classical
velocities based on time and position detection. Our aim
here is to reconcile the wholly quantum time-independent
scattering theory with the introduction of a classical time
and position-sensitive detection. We wish to confront the
question as to how these time-dependent measurements can be
interpreted and justified beginning with a quantum scattering
theory which is time independent. This is an extension of
considerations first discussed by Kemble for one particle [1].

From time-independent scattering theory we demonstrate
how a classical time set by the preparation and detection
process emerges naturally from a purely quantum theory. In
this way, we see how a time-dependent theory is justified,
how measured momenta are defined, and how the imaging
theorem (IT) relating asymptotic position and momentum
wave functions arises [2].

At the core of the analysis are three features which are not
usually found in textbooks on scattering theory. The first is
the derivation of a wholly time-independent scattering theory
for many-particle many-channel fragmentation processes as
a direct generalization of the standard textbook treatment of
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two-body single-channel potential scattering. This derivation
is based upon an old but largely neglected work of Gerjuoy [3].
However, in contrast to Gerjuoy and to standard approaches,
we derive the cross section directly in terms of a position
measurement. Crucial to our argument is the demonstration
that classical motion in the asymptotic region emerges
naturally and allows a time variable to be defined from a
time-independent theory.

The second important feature is to show that this time
variable can be identified with the classical clock time of
the detection apparatus, which leads to time-dependent ex-
pressions for quantum transition amplitudes. Time-dependent
scattering theory, involving both time-independent and explic-
itly time-dependent interaction potentials, is shown to emerge
from a time-independent theory in which the detector itself is
treated first by quantum mechanics and then allowed to become
macroscopically large and describable by time-dependent
classical mechanics.

The third feature is to point out the importance of the
IT which relates the asymptotic wave function in position
space to the momentum-space wave function at the exit of
the reaction zone, which wave function can be related to the
quantum scattering amplitude [2]. Although proved by Kemble
in 1937 [1] and rediscovered spasmodically since that time,
the importance of the IT for the interpretation of scattering
measurements has been appreciated only lately [4–6].

Once the detector time is defined from time-independent
scattering theory and macroscopic position detection, the IT
follows and shows that detection of fragments at different
times and positions conforms to the classical Newton’s equa-
tions even when the particles still obey quantum mechanics.
A scattered fragment moves macroscopically according to
Schrödinger’s or Newton’s equations since both give the same
result for the fragment’s motion. There is no need to invoke
wave-function collapse or the creation of narrow wave packets.

The establishment of a time-dependent theory is crucial
for the proof of the IT since this relies upon the notion of
wave functions propagating in time from a collision region
to a detector. Even though the collision Hamiltonian and
that of subsequent propagation may be time independent, our
derivation shows how this treatment is justified. The use of
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the IT in connection with modern multiparticle detection by
electric and magnetic field extraction is discussed in detail in
Ref. [7].

One must make a clear distinction between time-
independent and time-dependent Hamiltonians. Only the
former are relevant for standard quantum scattering theory,
which does not involve time. Time-dependent Hamiltonians
are approximate in the sense that the time arises only when
some part of the scattering system is treated macroscopically
and classically. One example is fast heavy-ion beams where
the beam motion is not quantized but treated as obeying
Newtonian mechanics. An even more common example is
a strong laser beam where the electromagnetic field is not
quantized but considered to be a time-dependent field obeying
the classical Maxwell equations. Indeed, such an approximate
description is central to the burgeoning field of femtosecond
and attosecond spectroscopy. To account for the resulting time-
dependent potentials, an explicitly time-dependent quantum
scattering theory is employed. Time-dependent potentials
appear naturally in our derivation of time-dependent scattering
theory given below.

We begin by considering the quantum theory of scattering
and the extraction from the theory of quantities which should
allow direct comparison with experimentally detected physical
quantities. Most textbooks introduce scattering theory with
the example of so-called “potential” scattering, i.e., two-body
scattering of structureless particles interacting via a position-
dependent fixed potential. This is treated in time-independent
quantum theory. That is, the scattering states are continuum
eigenstates of a time-independent Hamiltonian. The measured
quantity is derived as a cross section implying that incident
and scattered beams of particles involve a constant time-
independent flux of macroscopically many particles.

Although one can generalize potential scattering to the
case of composite particles, again in standard texts this is
restricted to two particles in the final channel [8]. Somewhat
paradoxically, when the generalization is made to a formal
scattering theory encompassing many-particle fragmentation
of composite particles, even in the case of time-independent
Hamiltonians, the derivation usually proceeds by beginning
with the time-dependent Schrödinger equation (TDSE). How-
ever, this “time” is eliminated subsequently by defining the
relevant time-independent scattering operators (e.g., S,T or
Møller operators) through some infinite-time limiting process.
In this way, a fully time-independent formulation is achieved
[9,10]. Hence, in these standard derivations the time must
be redundant and has no physical meaning but serves only
to satisfy certain mathematical limits. Nevertheless, since the
1950s this is the approach adopted by standard textbooks such
as Goldberger and Watson [11], Newton [12], and Gottfried
and Yan [13].

However, it was shown by Gerjuoy [3], shortly after the
presentation of the now-standard theories, that indeed the
introduction of a time is unnecessary and one can derive a
wholly time-independent theory for collisions involving many
composite particles. Unfortunately, perhaps because Gerjuoy’s
formulation is rather forbidding in its notation, since it applies
to any number of composite particles in incident and final
channels, his approach has not found its way into the general
literature of scattering theory. As far as we can ascertain,

the only book in which it is used is Friedrich’s treatment of
a three-body fragmentation problem [14]. Apart from being
a natural extension of textbook time-independent two-body
scattering theory, such a many-particle theory, formulated in
coordinate space, is well suited to one aim of this paper which
is to concentrate on the detection of particles at given positions.
Hence, in this paper first we give a simple reformulation
of Gerjuoy’s theory designed specifically to show the close
parallel to the usual textbook treatment of two-body potential
scattering. Then, we give a simpler, alternative derivation of
cross sections based on a position measurement. In this way,
we circumvent the complicated outgoing flux calculations
required in Gerjuoy’s derivation of cross sections.

One very important result is to see how quantities to be
identified with final measured momenta are defined in the
asymptotic region. This aspect is hardly given attention in
the two-body case, which reduces to an effective one-body
problem. However, we show that it is precisely the asymptotic
relationship amongst the spatial coordinates of the scattered
fragments that leads naturally to the introduction of a classical
time variable. Correspondingly, the relation between time and
position allows a classical velocity and momentum to be
identified.

From the time-independent approach, by considering ini-
tially that the detector is quantized and then allowing the
detector to become macroscopically large, we demonstrate the
emergence of the time variable which leads to a TDSE for the
scattering complex. Again, we relate the time-dependent scat-
tering amplitude to a position measurement. The recognition
that time is classical is in line with Wigner’s demonstration [15]
that a clock must be macroscopic and follows from a general
proof of how the TDSE is derivable from the time-independent
Schrödinger equation (TISE) [16–18].

The time-dependent approach is essential to the stationary-
phase argument, first given by Kemble [1], used to prove
the IT. All these results indicate how the information in the
quantum wave function can be made compatible with the
assumed classical interpretation of the particle movement to
the detector. Of course, ultimately this is due to the happy
accident of nature that the exact free quantum propagator can
be derived from the action along a single trajectory for classical
motion [19,20].

The logical development of the paper is as follows. In
Sec. II, we present many-particle scattering theory as a direct
generalization of simple two-body potential scattering. In
particular, we define a many-particle scattering amplitude and
a measurement probability as a function of detector position.
This theory is completely quantum mechanical and time
independent. In Sec. III, we show how the asymptotic behavior
of the time-independent wave function leads naturally to the
definition of classical velocity and thereby a time parameter.
This allows further a definition of fixed asymptotic momenta to
be made in terms of asymptotic quantum spatial coordinates.
In turn, this leads to the concept of particle flux in terms of
velocity and the formulation of a differential cross section.

Having identified a classical time parameter, in Sec. IV we
consider the transition to a time-dependent scattering theory by
deriving time from the interaction of the quantum scattering
complex with a classical detector. Then, the ensuing time-
dependent form of the scattering wave function is used to
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prove the many-particle form of the IT, relating the spatial
wave function to its momentum-space Fourier transform. The
conclusions are summarized in Sec. V.

II. TIME-INDEPENDENT SCATTERING THEORY

A. Two-particle case

Since we wish to generalize the simplest two-particle
potential scattering theory, first of all we remind ourselves
of the salient points of its derivation presented in many
textbooks. Specific equations can then be related to their
n-body counterparts. We consider the elastic collision of two
particles of reduced mass μ. For a total Hamiltonian which
is the sum of kinetic energy operator H0 and potential energy
operator V , i.e., H = H0 + V the full Green operator at total
energy E is defined by G+ = (E − H + iε)−1, where ε is a
positive infinitesimal, and satisfies the equations

G+ = G+
0 + G+

0 V G+ = G+
0 + G+V G+

0 , (1)

where G+
0 = (E − H0 + iε)−1 is the free-particle Green op-

erator.
In the standard textbook approach, one considers the

scattering state �+
i (r), where r is the coordinate of relative

motion, as a continuum eigenstate of H at fixed energy E and
so defined as

�+
i (r) ≡ ψi(r) + �sc(r)

= ψi(r) +
∫

G+
0 (r,r ′)V (r ′)�+

i (r ′) d r ′, (2)

where ψi(r) is taken to be a plane-wave eigenstate with
momentum ki of the operator H0 only. In coordinate repre-
sentation one has

G+
0 (r,r ′) = − μ

�2

1

2π

eiki |r−r ′|

|r − r ′| , (3)

where the initial conserved energy is E = �
2k2

i /2μ. The
asymptotic r → ∞ form of the Green function is

G+
0 ∼ −

√
2π

μ

�2

eiki r

r

e−iki r̂·r ′

(2π )3/2
. (4)

It is usual to define the “momentum” �k ≡ �ki r̂ , where r̂ is the
direction of r . Hence, k = ki . We emphasize that �k, although
in standard texts assumed tacitly to represent final measured
momentum, is introduced here as a mathematical construct
and it is not clear yet that it can be associated with a classical
momentum. Indeed it is defined in terms of r , a quantum
variable which has little to do with a time measurement
defining a classical velocity and hence a momentum.

To comply with our many-particle coordinates to be
introduced later, we can also assume that the scattering center
is infinitely massive so that r is the laboratory-fixed coordinate
and μ the mass of a single scattered particle. In the following,
we will refer to this as “the one-body case.” However, simply
replacing μ by a two-body reduced mass and interpreting r as
a relative coordinate gives the two-body scattering case usually
considered.

B. Scattering amplitude and detection
probability in the one-body case

The asymptotic form of the full scattering wave function is,
with ki = k,

lim
r→∞ �+

i (r) = ψi(r) − μ

2π�2

eikr

r

∫
e−ik·r ′

V (r ′)�+
i (r ′) d r ′.

(5)

Comparison with the asymptotic form of an incident wave plus
scattered outgoing spherical wave multiplied by a scattering
amplitude, i.e.,

lim
r→∞ �+

i (r) = ψi(r) + f (k)
eikr

r
, (6)

gives the scattering amplitude in the form

f (k) = −
√

2π
μ

�2

∫
e−ik·r ′

(2π )3/2
V (r ′) �

(+)
i (r ′) d r ′

= −
√

2π
μ

�2
〈k|V |�(+)

i 〉, (7)

where we use the notation 〈k| for the bra-vector of the plane-
wave state. The asymptotic scattered wave can now be written

lim
r→∞ �sc(r) = f (k)

eikr

r
. (8)

The probability amplitude of a particular outcome of a
measurement is given as the projection of the final state on
the total scattered state. If we consider an ideal position
detector (infinite position resolution) placed at position R, then
detection implies projection on the wave function δ(r − R).
Hence, the probability amplitude for detection is given by
〈R|�sc〉 = �sc(R) for asymptotically large R, that is,

�sc(R) = f (k)
eikR

R
, (9)

where now k ≡ k R̂. Then, the detection probability P of
particles scattered into a small volume d R = R2dR d� at the
face of a distant detector plate is given by

dP = |�sc(R)|2d R (10)

or

dP

d�dR
= |f (k)|2 (11)

for the differential probability of scattering [21]. Here, d�

is the solid angle subtended by d R at the origin defined
by the scattering center. We note that this is still fully
time independent. Further we remark, although historically
not viewed in this way, a theory in which this differential
expression is calculated can be confronted directly with
experiment. In elastic scattering, it is sufficient to measure
the position of the outgoing particle. Thereby, one measures
the modulus squared of f (k) = f (k R̂), that is, a function
dependent on position. This quantity is provided by the theory
through the transition-matrix element 〈k|V |�+

i 〉.
In standard treatments, next one proceeds to define a scat-

tering cross section in terms of the scattering amplitude. This is
done by comparing incident and outgoing probability currents
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in terms of particle velocities. These classical elements are
simply inferred from the time-independent wave function
�+

i (r) via a construct involving Re(�+∗
i ∇�+

i ). This step,
although yielding the correct cross section, we find logically
unjustified and therefore we defer derivation of a cross section
until after we have defined classical velocity and time through
the asymptotic r → ∞ limit.

C. General n-body case

In the above, we have considered the case of potential
scattering of two structureless particles. Now, we wish to
consider the general case of the scattering of many particles
possessing internal structure leading possibly to a different
number of composite particles in the final channel. Unfor-
tunately, then of necessity the notation becomes excessively
complicated. To make the analysis more transparent and in
particular to connect to the two-body case, we will introduce
simplifications, however, such as not to impinge seriously
on the generality of the theory. To this end, we make two
restrictions. First, we limit discussion to only two composite
particles in the initial channel. Almost all directly observable
collisions in the laboratory are of this type. Three-body
collisions are important, for example in plasmas, but their
effect is usually incorporated in numerical simulations rather
than the collision itself being studied in an experiment.

Second, we will treat the collisions as those of structureless
particles in both initial and final channels. This simplifies
the notation. The correct inclusion of internal structure is
discussed in Appendix A and requires only multiplying the
continuum wave function of the particle by its internal wave
function and concomitant suitable modification of the energy
of the particle. In addition, for rearrangement collisions the
potentials operating in initial and final channels must be
modified.

In the two-body elastic scattering case of the preceding
section, it is simpler to split off the center-of-mass motion and
discuss in terms of the three-dimensional relative coordinate r .
Then, one has an effective one-body problem. For three or more
particles, however, the definition of internal coordinates is not
unique. For this reason, the general case will be analyzed in
terms of laboratory coordinates and the transformation to a par-
ticular choice of internal coordinates deferred to Appendix A.

We consider then a collision of two composite particles
which fragment into n structureless particles in the final
scattering state. In the following, it is important to distinguish
three 3n-dimensional vectors. In the laboratory frame, we
denote the coordinates of the n particles with masses mj by
the 3n-dimensional position vector R = (r1,r2, . . . ,rn) and
hyperradius R = (r2

1 + r2
2 + · · · + r2

n)1/2. Later, we use R =
(R1,R2, . . . ,Rn) to denote the collective position coordinates
of n detectors. We define also mass-weighted position coordi-
nates Rj ≡ √

mj/m rj and a corresponding 3n-dimensional
vector R = (R1,R2, . . . ,Rn) that defines a mass-weighted
hyperradius R according to

mR2 =
∑

j

mj r
2
j , (12)

where m is an arbitrary scaling mass and can be chosen to
define appropriate units.

As in Sec. II A, the key element in calculating the scattering
amplitude is the free Green function. This Green function re-
lates the probability amplitude in the coordinate representation
of locating the scattered particles in the configuration R given
they started out at R′ just outside the reaction volume. For n

particles of mass mj and total kinetic energy EK ≡ Ef − Ef ,
where Ef is the total energy and Ef the total binding energy
of the n fragments, the free Green function is given as [14]

G+
0 (R,R′; EK) = −i

m

2�2

( K
2π

)α
H (1)

α (K|R − R′|)
|R − R′|α , (13)

where α = (3n − 2)/2, H (1)
α = Jα + iNα is a Hankel function.

The effective wave number K is defined as K ≡ √
2mEK/�.

Now, we consider the limit R � R′, which for detection of
all particles at asymptotically large distance from the reaction
center specifically requires Rj � R′

j for all j . In this limit,
the asymptotic behavior of G+

0 is given by

G+
0 (EK) ∼ −

√
2π

m

�2
(−iK)(3n−3)/2 eiKR

R(3n−1)/2

e−iKR̂·R′

(2π )3n/2
.

(14)

Equation (14) is the generalization of Eq. (4) for the one-
particle case and reduces to it for n = 1 with R → r and
m → μ. Exactly as in the one-particle case, in Eq. (14) we
define a generalized “momentum” �K ≡ �KR̂.

D. Scattering amplitude and detection
probability in the n-body case

In the general case where rearrangement of the collision
partners or fragmentation takes place we have to distinguish
interactions in initial and final channels. The scattering state
derived from the initial state |ψi〉 is written

|�+
i 〉 = |ψi〉 + G+Vi |ψi〉 ≡ |ψi〉 + |�sc〉, (15)

where G+ is the full Green function defined by the total Hamil-
tonian which is decomposed according to the channel, i.e.,

H = Hi + Vi = Hf + Vf , (16)

such that |ψi〉 and |ψf 〉 are eigenstates of Hi and Hf ,
respectively.

We require the asymptotic behavior of �sc(R) =
〈R |G+Vi |ψi〉 on a large sphere of radius R in R space.
We use the formal expansion

G+ = G+
f + G+

f Vf G+ (17)

and identify G+
f ≡ G+

0 the Green operator for n free particles
in the final channel. Then, with Eq. (14) we can calculate the
scattered wave as

lim
R→∞

�sc(R)

= lim
R→∞

〈R |G+Vi |ψi〉

= lim
R→∞

∫
〈R|G+

0 |R′〉〈R′|(1 + Vf G+)Vi |ψi〉 dR′

= −
√

2π
m

�2
(−iK)(3n−3)/2 eiKR

R(3n−1)/2
〈�−

f |Vi |ψi〉, (18)
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where we have defined the incoming-wave exact scattering
state as

〈�−
f | = 〈K|(1 + G−Vf ) (19)

with 〈K| the plane-wave state defined by

〈K|R′〉 ≡ e−iK·R′

(2π )3n/2
. (20)

The matrix element 〈�−
f |Vi |ψi〉 in Eq. (18) is referred to

as the post form of the transition-matrix element. This can
be replaced by the equivalent prior form 〈K|Vf |�+

i 〉, as we
show in Appendix B. Then, defining the n-particle scattering
amplitude

f (K) = −
√

2π
m

�2
(−iK)(3n−3)/2 〈K|Vf |�+

i 〉, (21)

we rewrite Eq. (18) as

lim
R→∞

�sc(R) = f (K)
eiKR

R(3n−1)/2
. (22)

Equations (21) and (22) are the general n-body forms corre-
sponding to Eq. (9) for the effective one-particle case.

The probability of detection at the 3n-dimensional position
R is given as

dP = |�sc(R)|2dR. (23)

Transforming to the volume element in hyperspherical coor-
dinates dR = R3n−1dR d�R (given below explicitly for the
laboratory coordinates R) and substituting Eq. (22), one has

dP

d�RdR = |f (K)|2 . (24)

This is form-identical with the one-particle expression
(11). As in the one-particle case, since K ≡ KR/R =
(K/R)(R1,R2, . . . ,Rn), this expression describes the prob-
ability that a fragmentation event leads to particle detection
at the given positions. However, note that in hyperspherical
coordinates, the d�R must include not only the product of n

angular elements d r̂j , but also n additional hyperangles, which
we will define following Gerjuoy [3] in terms of coordinate
length ratios (see Sec. III B).

III. PARTICLE MOMENTA

A. Definition of time

To reiterate the development so far, we have presented
a fully time-independent scattering theory for multiparticle
fragmentation, where the scattering wave function is an
energy eigenfunction and occupies the whole of space. The
probability of detecting particles at a set of detector positions
is proportional to the modulus squared of this wave function.

At this stage, to connect directly to measured quantities, we
will introduce one-particle momenta �kj but which are defined
in terms of the laboratory position coordinates of all particles.
To this end, one notes that the plane-wave state e−iK·R′

of
Eq. (20), which derives from the asymptotic form of the Green
function (14), defines an asymptotic wave vector kj of the j th

scattered particle according to

K · R′ =
∑

j

K j · R j
′

=
∑

j

K
R

mj

m
rj · r ′

j ≡
∑

j

kj · r ′
j (25)

since Rj ≡ √
mj/m rj , so that the plane-wave factor in

Eq. (14) can be expressed as

〈K|R′〉 ≡ e−iK·R′

(2π )3n/2
=

n∏
j=1

e−ikj ·r ′
j

(2π )3/2
≡ 〈K | R′ 〉, (26)

introducing the 3n-dimensional wave vector K =
(k1,k2, . . . ,kn). Then, K is the corresponding 3n-dimensional
vector with (reciprocal) mass-weighted elements
Kj ≡ √

m/mj kj .
That is, in terms of the spatial direction r̂j of the j th particle

and its relative distance rj /R from the reaction volume, we
have defined, from Eq. (25), the one-particle wave vectors

kj ≡ mj

m

rj

R K r̂j (27)

which correspond to the effective wave vector k = ki r̂ of the
n = 1 case. These wave vectors can also be written

�kj =
(

2EK∑
i mir

2
i

)1/2

mj rj (28)

since R =
√∑

i mir
2
i /m and K = √

2mEK/�. Evidently,

∑
j

�
2k2

j

2mj

= �
2K2

2m
= EK. (29)

Nevertheless, these one-particle “momenta” �kj are a mathe-
matical construct defined in terms of all the quantum position
variables. That is, the kj being functions of (rj /R) cannot be
taken as constants so that the condition in Eq. (29) appears at
the moment as a sum rule.

To emphasize once again, we have considered strictly a
position detection of all particles so any and all actual momenta
from the full spectrum defined by the scattering amplitude
(21) will be detected and counted. There are no issues
with the uncertainty principle. However, the question arises
as to how well-defined constant momenta can be inferred.
Remarkably, as intimated by Gerjuoy [3] and Friedrich [14],
the fully quantum time-independent treatment of asymptotic
free motion does lead to well-defined momenta independent of
the position of their measurement. Furthermore, it also leads
to the definition of a variable with the dimensions of time that
can be associated with a classical clock.

One sees readily how this comes about. From Eq. (27), one
has

rj

�kj/mj

= R
�K/m

=
(∑

i mir
2
i

2EK

)1/2

. (30)

Now, we introduce “velocities” vj ≡ �kj /mj and V ≡ �K/m

with V = √
2EK/m to give the identity

rj

vj

= R
V =

(∑
i mir

2
i

2EK

)1/2

(31)
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for each and every j = 1, . . . ,n. Clearly, this can only be true
in general, as the rj and therefore R vary, if each side of the
equation is equal to a constant. This constant has the physical
dimensions of time and so we introduce a time variable

t ≡
(∑

i mir
2
i

2EK

)1/2

= R
V = mR

�K . (32)

Then, the validity of Eq. (31) is assured at all times by the
conditions rj = vj t where the vj are constants. Hence, each
time value defines a different set of positions {rj (t)} but such
that all ratios rj /ri = vj/vi are constants in time. Now, the
sum rule of Eq. (29) corresponds to conservation of energy.
Since we have shown that each quantum coordinate obeys
a linear classical time dependence, a general measurement
would involve a set of detectors at positions {Rj } = {vj tj }
registering particles of different velocities at different times.
In short, to determine velocities the position “hits” on the
detector have to be accompanied by measurement of the time
of flight from the interaction zone to the detector. We elaborate
in Sec. IV.

We stress that the standard approach is simply to associate,
without proof, the particle quantum momenta, defined in
terms of position coordinates, with classical momenta and
hence with measured classical velocities. Our demonstration
that the quantum position variables defining the quantum
momenta asymptotically vary linearly with a parameter of the
dimensions of time provides the proof for this association.

Here, we are using laboratory coordinates for each emitted
particle. In Appendix A, we show that the cross section is
transformed readily to the more usual center-of-mass and
relative coordinates. It is interesting that, in the two-body
case presented in most textbooks, the implicit dependence
of defined momenta on particle distances is not evident and
the necessity to introduce a time via r = vt is not apparent.
This is because for two bodies only the effective one-body
motion in relative coordinate r ≡ ra − rb with reduced mass
μ is relevant. Then, for the final momentum �k, Eq. (28) with
mj = μ, EK = E, and R = rj = r becomes simply

�k =
√

2μE r̂ = �ki r̂, (33)

which expresses k in terms of the constant ki and a direction
only, i.e., independent of particle distance.

However, in the laboratory coordinates (and also in internal
coordinates for many bodies) one sees explicitly the necessity
to introduce linear behavior of distance with time. In laboratory
coordinates one has the momenta �kj from Eq. (28), from
which follows the sum rule of Eq. (29). Thus, one sees that
the classical relations established above, i.e., �kj = mjvj with
rj = vj t are consistent since one obtains from Eq. (28), with
t = (2EK/

∑
i mir

2
i )−1/2 from Eq. (32),

�kj = mj

rj

t
= mjvj (34)

and �K ≡ mR/t = mV .
The classical momenta also appear when we transform to

internal coordinates. For example, for two particles a and b

we use center-of-mass and relative coordinates

Rcm ≡ ma ra + mbrb

ma + mb

, r ≡ ra − rb. (35)

The conjugate momenta then are, from Eq. (28), the center-of-
mass momentum �κ ,

�κ ≡ �(ka + kb) =
(

2E

mar2
a + mbr

2
b

)1/2

(ma ra + mbrb)

= M
Rcm

t
≡ MV cm, (36)

where total mass M = ma + mb, and the relative momentum

�k ≡ �(mbka − makb)/M

=
(

2E

mar2
a + mbr

2
b

)1/2

(mbma ra − mambrb)/M

= μ
r
t

≡ μv, (37)

where μ is the reduced mass. Here, although obscured
in the standard derivation, one sees even in the two-body
case the necessity to assume classical free motion, distance
proportional to time, in order that changes in distance are
associated with measured momenta.

We stress that we are still fully quantum mechanical and
time independent in our approach and yet a classical time
dependence has emerged from the free asymptotic behavior of
the wave function. This allows a sharp classical momentum
to be associated with a sharp quantum position variable via
r = vt . At no stage do we need to invoke wave-function
collapse or narrow wave packets as Kemble [1] surmised.
Our scattering wave function occupies all space and we need
only interpret detection probability as given by the modulus
squared of this wave function. We have shown that we are
justified in associating the mathematically defined momenta
with final measured classical momenta. Also, since now we
have a classical time variable, we can use these quantum
momenta to define classical velocities. In this way, we show
next how standard expressions for cross sections are obtained
from the quantum probabilities without the necessity to infer
a particle flux in terms of time-independent wave functions.

B. Differential cross section

Again, first we consider the effective one-body case, where
the differential scattering probability is given by Eq. (10), i.e.,

dP = |f (k)|2dR d�. (38)

We define the scattering cross section as the effective area
dσ the exit channel defined by d� presents to a steady
incident beam with speed vi ≡ �ki/μ. Then, we have that
vidt dσ ≡ dP , assuming one particle in the incident beam per
unit volume [21]. At asymptotically large distances we put
dR = (�k/μ)dt = v dt and obtain for the differential cross
section

dσ

d�
= v

vi

|f (k)|2 = |f (k)|2. (39)

It is standard practice to define a differential cross section
with respect to measured momenta k. This expression is
readily obtained. To express the cross-section differential in
momentum, one must integrate the above equation over an
energy (or momentum) acceptance but recognizing energy
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conservation. Then one has, reverting to momenta rather than
velocity,

dσ

d�
= k

ki

|f (k)|2δ(Ek − Eki
) dEk. (40)

With Ek = �
2k2/(2μ) one obtains

dσ

dk
= �

2

μki

|f (k)|2 δ
(
Ek − Eki

)
dEk (41)

or, putting again vi ≡ �ki/μ and substituting for f (k) from
Eq. (7), we obtain the final expression

dσ

dk
= 2π

�vi

|〈k|V |�+
i 〉|2 δ

(
Ek − Eki

)
, (42)

which is the standard result for the differential scattering cross
section. However, here it was derived from the point of view
of a position measurement without the need to calculate an
outgoing flux. Note that we have identified the solid angle
element d� of the spatial coordinate r with that of the final
momentum which is justified precisely by the definition of
k = k r̂ .

In the general case we have also given a derivation of
the detection counting probability, exactly following Eqs. (9)
and (10) for potential scattering, in terms of a position
measurement by the detectors. This assumes the simple form
of Eq. (24) in mass-weighted coordinates. In laboratory
coordinates, the detectors for particles j placed at positions
rj = Rj effect a projection of the scattered wave onto a
wave function

∏
j δ(rj − Rj ). Denoting the 3n-dimensional

detector position vector by R = (R1, . . . ,Rn), the detection
probability amplitude is given by �sc(R).

The volume element in R space is given by

dR = r2
1 dr1d r̂1 r2

2 dr2d r̂2 . . . r2
ndrnd r̂n. (43)

We will write this as

dR ≡ R3n−1dR d�, (44)

where following Gerjuoy [3] we define

d� ≡ dR̂ = q2
2 q2

3 . . . q2
n(

1 + q2
2 + q2

3 + . . . q2
n

)3n/2

× dq2 dq3 . . . dqn d�1d�2 . . . d�n (45)

with d�j ≡ d r̂j . The n − 1 ratios are defined with respect
to an arbitrary coordinate denoted r1, i.e., qj = rj /r1 for j =
2, . . . ,n. The directions R̂ are determined by the qj and the
2n angles in ordinary three-dimensional space determining the
directions r̂1, . . . r̂n. Then, the probability that particles scatter
onto an element of volume R3n−1dR d� at the surface of the
distant detectors is given by

dP = |�sc(R)|2 R3n−1dR d� (46)

or

dP

d�
= |f (K )|2 ηn

(
R

R

)3n−1

dR. (47)

Here, the scattering amplitude from Eq. (21) has been
expressed in laboratory coordinates using 〈K|R′〉 ≡ 〈K |R′〉

from Eq. (26) so that

f (K ) = −
√

2π
m

�2
(−iK)(3n−3)/2 〈K |Vf |�+

i 〉, (48)

which gives rise to the dimensionless factor

ηn ≡
n∏

j=1

(
mj

m

)3

(49)

in Eq. (47).
From the results of Sec. III A using d Rj = vj dt and vj =

Rj /t = RjV/R, one sees that

dR = R

R V dt (50)

to give, again using vidt dσ ≡ dP , the differential cross
section

dσ

d�
= V

vi

|f (K )|2ηn

(
R

R

)3n

. (51)

Equation (51) is the generalization of Eq. (39) to n particles
in the exit channel. Now substituting the scattering amplitude
Eq. (48) one has

dσ

d�
= 2πm

�3vi

K3n−2|〈K |Vf |�+
i 〉|2ηn

(
R

R

)3n

. (52)

It is customary to express the cross-section differential
in the final vector momenta, that is, we need to transform
from the q variables to momentum variables. First, using
qj = rj /r1 = vj/v1 asymptotically, we transform to velocity
variables. Evaluating the Jacobian gives

n∏
j=2

dqj = EK
1
2m1v

2
1

1

vn−1
1

n∏
j=2

dvj . (53)

Transforming further from velocities to momenta we obtain
n∏

j=2

dqj = 2EK
(�k1)n+1

mn
1

n∏
j=2

�

mj

dkj . (54)

Putting this transformation in Eq. (52) and equating position
angular variables with momentum angular variables results in
the simple expression

dσ = 2πm1

�3vi

k1|〈K |Vf |�+
i 〉|2 d�1

n∏
j=2

dkj . (55)

From the sum rule (29), the total final energy

Ef =
n∑

j=1

�
2k2

j

2mj

+ Ef (56)

is fixed equal to the total initial energy Ei . Taking this into
account, one multiplies Eq. (55) by δ(Ef − Ei)dEf . Then,
using the transformation dEf = (�2k1/m1) dk1 gives the final
result

dσ (ab → n) = 2π

�vi

|〈K |Vf |�+
i 〉|2δ(Ef − Ei) d K , (57)

or the differential cross section
dσ

dk1dk2 . . . dkn

= 2π

�vi

|〈K |Vf |�+
i 〉|2δ(Ef − Ei). (58)
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Again, this is the standard result and is the n-particle
generalization of Eq. (42). By defining an asymptotic position
measurement, we have been able to circumvent the compli-
cated many-particle outgoing quantum flux calculations of
Gerjuoy’s derivation [3]. Indeed, it is unnecessary to specify
this flux. This has been avoided by defining a detector position
which can be associated with a classical time and classical
velocity.

IV. TIME-DEPENDENT SCATTERING THEORY

Having defined a classical time for asymptotic particle
motion, it remains to derive a time dependence for the complete
scattering process. To this end, we define a classical time
defined by the apparatus, by first integrating the detector into
the quantum mechanics and then considering the limit where
the detector becomes macroscopic. In this way, we show how
time-dependent scattering theory can be derived from our fully
time-independent theory. First, we consider that the quantum
scattering system with Hamiltonian H together with a quantum
apparatus with Hamiltonian HD giving the total Hamiltonian

H = H (r) + HD(R) + HI (r,R). (59)

Here, for simplicity, we consider only one particle’s coordi-
nates r . The operator HI is the time-independent interaction
between the two quantum systems, scattering complex, and
apparatus. The apparatus position is described first by a
quantum variable R which later will go over to a classical
position R(t). The total Hamiltonian is time independent so
the composite of scattering complex and apparatus has fixed
energy E. We wish to solve the time-independent Schrödinger
equation (TISE)

H�(r,R) = E �(r,R). (60)

Although the derivation is perfectly general, to keep the
notation simple we will consider the apparatus wave function
to depend upon a single “clock” coordinate R, which will be
used to define the classical time. The apparatus may consist of
timed preparation and/or detection operations. For simplicity,
we will refer to both as simply “the detector.” After preparation,
the total wave function is the entangled linear combination of
states

�(r,R) =
∑

ν

χν(R)ψν(r), (61)

where χν is the detector wave function in state ν at fixed energy
Eν and ψν and εν the corresponding quantities for the scattering
system. The total energy is conserved so E = Eν + εν for all
ν, i.e., for a given state ν of the scattering system, the energy
of the quantum detector changes such that the total energy is
invariant.

A. Detector time

Now, we consider the limit that the detector becomes so
large (and its energy and action also large on an atomic
scale) that we can use a classical approximation for its action
function. That is, we write

χν(R) = cν(R) e− i
�

Wν (R), (62)

where Wν(R) is the classical action of the detector, defined by

Wν(R) =
∫ R

Pν(R′)dR′ (63)

with Pν the classical momentum

Pν = (2M)1/2(Eν − VD)1/2

= (2M)1/2(E − εν − VD)1/2. (64)

Here, VD is a detector potential energy which for the purposes
of this discussion can be set to zero. Then, we have simply

Wν = PνR

= (2M)1/2(E − εν)1/2R. (65)

Next, we recognize that the total energy is now large or
E � εν for all ν so that we expand to first order

Wν ≈ (2ME)1/2[1 − εν/(2E)]R. (66)

The detector action still depends on the quantum energy εν ,
which is negligibly small. The final step is the complete
disentanglement of detector from scattering system by neglect
of this small energy. Then, the detector action becomes
independent of the state ν of the scattering system, i.e.,

W ≡ (2ME)1/2R = PR. (67)

With this classical action the classical time is defined as

t = MR

∂W/∂R
= MR/P. (68)

This is where the classical time first enters. Then, the total
action from Eq. (66) may be written

Wν = W − ενt. (69)

Up to an irrelevant overall phase, the total wave function
(61) at R = R(t) becomes the now time-dependent wave
function for the scattering system only in the form

�+
i (r,t) =

∑
ν

cν(t) e− i
�

εν tψν(r). (70)

Note that the energy-dependent dynamic phase factor and the
coefficients of the expansion arise as remnants of the wave
function of the detector. This detector clock time can now be
taken as monitoring the time variation of the coordinates r(t)
of the asymptotic scattering wave function.

If the detection step involves projection onto some mea-
sured state ψf (t), then the transition amplitude or T -matrix
element is, in prior and post forms,

Tf (t) ≡ 〈ψf (t)|�+
i (t)〉

= 〈�−
f (t)|ψi(t)〉. (71)

By the same procedure as used here it has been shown in
Refs. [17,18] in the limit that the detector coordinate R → R(t)
becomes a classical variable, that the full TISE [Eq. (60)]
reduces to the time-dependent Schrödinger equation (TDSE)
for the scattering system only, i.e.,

[H (r) + HI (r,t)] �i(r,t) = i�
∂�i

∂t
, (72)

where the operator ∂/∂t arises from the momentum operator of
the detector. Note also that in the interaction Hamiltonian HI
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the parametric dependence on quantum variable R has been
replaced by a parametric dependence on classical time t .

Now, if ψf (t) satisfies the TDSE with Hamiltonian Hf

where H = Hf + Vf , then the expressions (71) are equal in
prior form to

Tf (t) = − i

�

∫ t

〈ψf (t ′)|Vf |�+
i (t ′)〉dt ′, (73)

and in post form with H = Hi + Vi to

Tf (t) = − i

�

∫ t

〈�−
f (t ′)|Vi |ψi(t

′)〉dt ′, (74)

which are the standard expressions for the transition-matrix
element in time-dependent scattering theory.

The act of preparation and measurement is represented by
the interaction HI (t). Here, we must distinguish two cases. The
first case is when the detection simply defines two clock times,
one an initiation at time t0, for example the time where particles
enter a collision volume, the other the time of detection t .
Then, HI (t ′) essentially contains two delta functions δ(t ′ − t0)
and δ(t ′ − t). Otherwise, HI ≡ 0. Since the scattering system
Hamiltonian is still time independent, the time dependence
of the wave function is restricted to energy phases. Then,
for asymptotically large t , the time integral furnishes an
energy-conserving delta function only and, as we show in
the following, one could as well use time-independent theory.
Nevertheless, if time is defined by the measuring process,
the introduction of a clock time is necessary to describe the
detection process correctly and to prove the imaging theorem.
Also, for most people, a time-developing wave function is
physically more intuitive than the idea of a time-independent
continuum wave function.

However, the second case is more overtly classical in the
origin of time. This is where in addition to the clock interaction
defining an initial time and a detection time, the scattering
Hamiltonian is not time independent but contains an external
interaction potential Vi(t) itself. Such a time-dependent Hamil-
tonian arises only when an external perturbation, e.g., a particle
beam or light source, is treated in a classical approximation
from the outset. That is, the time dependence arises from a
classical interaction due to an external field obeying Newton
or Maxwell equations (particle or light beam). In this case, the
transition matrix involves Vi(t) in the form

Tf (t) = − i

�

∫ t

〈�−
f (t ′)|Vi(t

′)|ψi(t
′)〉dt ′, (75)

where again the time is set by the classical measuring
apparatus.

Having derived the formal expression for the time-
dependent transition-matrix element, we show in the next
section how it can be related to a position measurement.

B. Time-dependent transition-matrix element
and the imaging theorem

In the fully quantum-mechanical time-independent de-
scription we have emphasized particle detection at positions
R = R and shown that the probability amplitude (T -matrix
element) for scattering into detectors at R is proportional
to �sc(R) the scattered wave function at the detector. From

Eq. (71), by projecting onto a spatial δ function, we see
that this result holds also in the time-dependent case since
Tf (t) = 〈ψf (t)|�+

i (t)〉 ∝ �+
i (R,t), where we note that the

initial wave function ψi(R) = 0, i.e., the initial wave function
has no overlap with the detector. We remember also that
the fully quantum-mechanical theory predicts an asymptotic
relation between momenta and position which corresponds to
classical motion along R(t).

For times t > 0 following the fragmentation reaction, the
free propagation of the scattered fragments is described by

|�+
i (t)〉 = e−iH0t/�|�+

i (0)〉, (76)

where H0 is the n-particle free Hamiltonian. It is simplest to
express this time development in the hyperspherical coordi-
nates R and K from Sec. II B with mass-weighted elements
Rj ≡ √

mj/m rj and Kj ≡ √
m/mj kj , respectively. Then,

〈K′|e−iH0t/�|K〉 = ei�K2t/2mδ(K′ − K), (77)

and one obtains from Eq. (76) the 3n-dimensional time-
propagated Fourier-integral momentum representation

�+
i (R,t) =

∫
�̃+

i (K′)
eiK′ ·R

(2π )3n/2
e−i�K′2t/2mdK′

= ei�K2t/2m

(2π )3n/2

∫
�̃+

i (K′)e−i(�t/2m)(K′−K)2
dK′. (78)

This result is form identical with the one-particle expression
[2,7]. Hence, in the limit R,t → ∞ but with R/t ≡ V =√

2E/m fixed by the total energy, the integrand is highly
oscillatory except at the stationary-phase point K′ = K ≡
mR/�t . The maximum contributions to the integral come
from a small region about this point, and performing the
integral in stationary-phase approximation gives

�+
i (R,t) ∼ ei�K2t/2m

(
m

i�t

)3n/2

�̃+
i (K)|K=mR/�t , (79)

which is just the imaging theorem (IT) generalized to n-particle
fragmentation.

The condition of stationary phase �K ≡ mR/t gives
�kj = mj rj /t for each and every j = 1, . . . ,n, namely, the
same classical relationship as emerges from the asymptotic
time-independent limit. One sees that the classical large-time
limit is equivalent to the quantum large-R limit. Noting that
dK = (m/�t)3ndR from this condition, Eq. (79) leads to the
asymptotic equality of probabilities

|�+
i (R,t)|2dR ∼ |�̃+

i (K)|2dK (80)

with R and K related by the classical condition �K ≡ mR/t .
The same time development of the scattering wave function

can be carried out in terms of the measured R and K
coordinates and, corresponding to the equation above, leads
to equality of measured probabilities

|�+
i (R,t)|2dR ∼ |�̃+

i (K )|2d K . (81)

This demonstration of the equivalence of absolutely well-
defined momentum and position wave functions at the same
time would appear to violate quantum uncertainty. However,
this is not so since the above relation is only valid at distances
very large on an atomic scale. It is simply a reflection of the
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circumstance that asymptotically the accumulated action is
much greater than � which leads to classical behavior. Since
the exact path integral is decided by a single free-particle
classical trajectory, a stationary-phase evaluation [20] of the
path integral which is valid asymptotically leads to the well-
defined classical relation between distance and momentum,
as obtained in the IT. The IT is discussed in detail in our
two papers [2,7]. In particular, the conditions for validity
of the stationary-phase approximation are defined and the
generalization to the important case of extraction of collision
fragments from the reaction zone by the use of electric and
magnetic fields is given. Also, it is shown that with field
extraction the quantum coordinate R(t) obeys the classical
equations of motion asymptotically.

Another aspect of the IT which deserves mention concerns
the relative orientation or the shape of fragment patterns
emerging from a collision. For two particles this shape is a line,
for three particles a triangle, for four particles a tetrahedron,
and so on. This is true both in position and in momentum space.
Since, from Eq. (31) one has ri/rj = vi/vj for all pairs (i,j ) of
particles and since the angular dependencies are the same, then
when the fragments have departed the interaction region the
expansion of their shapes in position and velocity space will be
identical and the shapes time-scale invariant. The IT equates
the position shape to the momentum shape exiting the reaction
zone, from which the velocity shape can be constructed via
�kj/mj = vj for each particle. Hence, data representations
such as the Dalitz plot for three particles tracing the shape of
a triangle in momentum space can be related to the position
shape. Indeed, in the case of the fragmentation of H3 where
momentum space coincides with velocity space, this has been
confirmed experimentally by Fechner and Helm [22].

Since we have shown that the time-independent position-
detection probability |�+

i (R)|2d R leads to the cross sections
(51) and (58), then from Eq. (81) the momentum-detection
probability |�̃+

i (K )|2d K should lead to the same result. This
is easily shown. In fact, Eq. (81) embodies in a simple way the
scattering-into-cones theorem of Dollard [23,24].

Let us take ψf (t) to be a product of quantum plane waves
with final quantum momenta K . This gives

Tf (t) = 〈K (t)|�+
i (t)〉

= �̃(K )ei(Ef −Ei )t/�. (82)

However, this is equivalent to

Tf (t) = − i

�

∫ t

0
〈K (t ′)|Vf |�+

i (t ′)〉dt ′

= − i

�
〈K |Vf |�+

i 〉
∫ t

0
ei(Ef −Ei )t ′/�dt ′. (83)

The probability of detection of particles with momenta
between K and K + d K is given by the right-hand side of
Eq. (81). Hence, the rate of detection is

dP

dt
= d K

d

dt
|Tf (t)|2 =

(
dT ∗

f

dt
Tf + c.c.

)
d K . (84)

Simple evaluation of this expression and division by the
incident flux leads to the differential cross section

dσ = 2π

�vi

|〈K |Vf |�+
i 〉|2 d K δ(Ef − Ei) (85)

or, with d K = ∏n
j=1 dkj ,

dσ

dk1dk2 . . . dkn

= 2π

�vi

|〈K |Vf |�+
i 〉|2 δ(Ef − Ei), (86)

which is identical to Eq. (58).
The foregoing derivation is much simpler and more direct

than that leading to Eq. (58) and could provoke the question as
to the need to examine the complicated properties of the many-
particle Green function in coordinate space. However, one
should not forget that to derive Eq. (86) a projection has been
made on quantum plane-wave states occupying the whole of
space. Only the classical condition contained in the asymptotic
spatial Green function and the corollary of identifying spatial
and momentum angular variables allows one to associate these
momenta with classical momenta deduced from position and
time measurements. This identification is also given by the IT.
Indeed, precisely this question is what led Kemble [1] to derive
the IT in the first place.

So far, we have developed a scattering theory assuming the
collision of two composite particles in the incident channel.
However, many fragmentation processes such as multiple
photoionization or photodissociation are initiated by laser
light. This can be thought of as a photon-particle collision. The
laser light sources used can be either cw or pulsed and strong
or weak depending on the experimental situation. In almost all
cases, the light source is treated as a classical electromagnetic
field with an explicit time dependence. Then, the transition
operator in the form of Eq. (75) is appropriate and a rate of
photofragmentation is calculated according to Eq. (84). In the
special case of a weak cw light source, first-order perturbation
theory can be used to eliminate the time and then a cross
section analogous to Eq. (86) can be defined.

V. CONCLUSIONS

We have simplified and extended the completely general
time-independent multiparticle scattering theory of Gerjuoy,
showing how it is a rather straightforward generalization
of the treatment of two-body potential scattering theory to
be found in many textbooks. In particular, we define a
many-body scattering amplitude in analogy to the two-body
case. By formulating the differential cross section in terms
of the measurement of final particle position rather than
momentum, we have derived the cross section without the
need to calculate the outgoing flux of scattered waves. This
simplifies significantly the derivation of the multiparticle
differential cross section.

Further, we have shown that the time-independent theory
in spatial coordinates leads naturally for asymptotically large
distances to the definition of a classical time and thereby
allows association of time-independent quantum “momenta”
with measured classical momenta. This justifies proceeding
to a time-dependent quantum description of the scattering
process where the time is set by the classical apparatus. The
time-dependent description of quantum asymptotic fragment
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motion leads in turn to the IT, which relates the position and
momentum forms of the transition-matrix element. This allows
an alternative simpler derivation of the cross section in terms of
the probability of a momentum measurement. The asymptotic
classical relations occurring in both the time-independent and
time-dependent formulations of scattering theory justify the
successful use of classical mechanics for such motion as is
assumed routinely in experimental data processing.
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APPENDIX A: COMPOSITE PARTICLES
AND INTERNAL COORDINATES

For simplicity of notation, we have assumed structure-
less particles although by definition fragmentation processes
involve composite particles. However, the extension of the
notation to describe particle aggregates of different charac-
ter in initial and final states is straightforward, as is the
transformation from laboratory to center-of-mass and internal
coordinates. We begin with the differential rate expression
(58). Then, for a set of particles with final momenta K =
(k1,k2 . . . kn), we write

dσ

d K
= 2π

�vi

|〈ψf |Vi |�+
i 〉|2δ(Ef − Ei). (A1)

The scattering state is defined as

|�+
i 〉 = (1 + GVi)|ψi〉. (A2)

In the case of composite particles a,b in the incident channel,
the initial state is defined as

|ψi〉 = ∣∣ka,φ
a
p

〉∣∣kb,φ
b
q

〉
, (A3)

where |k,φp〉 denotes a particle with momentum k and internal
state φp. Correspondingly, the final state |ψf 〉 is defined by a
product of such one-particle states. Then, since these states
diagonalize Hi and Hf , this fixes the interactions Vi and Vf

as those parts of the total Hamiltonian not diagonalized. The
initial total energy is

Ei = �
2k2

a

2ma

+ �
2k2

b

2mb

+ Ei , (A4)

where the Ei is the sum of the internal binding energies.
Similarly, for n particles in the final channel

Ef =
n∑
j

(
�

2k2
j

2mj

)
+ Ef . (A5)

The transformation to internal coordinates is made easily since
all interactions involve relative coordinates so that the center-
of-mass (c.m.) motion may be integrated out. In the incident
channel, one transforms to the two-body c.m. and relative

coordinates defined in Sec. III. Then,

|ψi〉 = ∣∣K i ,φ
a
p,φb

q

〉|κ i〉 (A6)

with energy

Ei = �
2κ2

i

2M
+ �

2K2
i

2μ
+ Ei . (A7)

An equivalent transformation is made on the final state and
since all interactions do not involve the c.m. motion, the cross
section may be written

dσ

d K ′dκf

= 2π

�vi

|〈ψf |Vf |�+
i 〉|2δ(Ef − Ei) δ(κ f − κi ),

(A8)

where K ′ = (k′
1,k

′
2 . . . k′

n−1) are a set of internal momenta.
Integrating over c.m. momentum one has

dσ

dk′
1dk′

2 . . . dk′
n−1

= 2π

�vi

|〈ψf |Vf |�+
i 〉|2δ(E′

f − E′
i).

(A9)

This is the standard result, where the energies now have the
c.m. energy subtracted. Similarly, the integrations implied by
the matrix element are now over internal coordinates only.

APPENDIX B: REARRANGEMENT COLLISIONS

Since fragmentation always corresponds to rearrangement
of the particles involved in collision, here we present some
identities satisfied by the various Green operators and T -matrix
elements. Appropriate to the three channels, free particle,
initial, and final, we have three subdivisions of the total
Hamiltonian

H = H0 + V = Hi + Vi = Hf + Vf (B1)

and corresponding Green functions

G±(E) = (E − H ± iε)−1, (B2)

G±
λ (E) = (E − Hλ ± iε)−1 (B3)

with Hλ = H0,Hi or Hf . All Hamiltonians are assumed to be
Hermitian.

1. Post and prior equivalence

The equivalence of post and prior forms of the exact T -
matrix element is used to derive Eq. (21) of the text. The proof
is as follows. Consider the prior form of the T -matrix element

T = 〈ψf |Vf |�+
i 〉 = 〈ψf |Vf (1 + G+Vi)|ψi〉. (B4)

We write this as

T = 〈ψf |Vi + Vf G+Vi |ψi〉 + 〈ψf |Vf − Vi |ψi〉 (B5)

or

T = 〈(1 + G−Vf )ψf |Vi |ψi〉 + 〈ψf |Vf − Vi |ψi〉
= 〈�−

f |Vi |ψi〉 + 〈ψf |Vf − Vi |ψi〉. (B6)
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Now, consider the first Born elements on the right-hand side
of this result. One has

〈ψf |Vf |ψi〉 = 〈ψf |H − Hf |ψi〉 = 〈ψf |H − Ef |ψi〉.
(B7)

From energy conservation, Ef = Ei so we can write 〈ψf |H −
Ef |ψi〉 = 〈ψf |H − Ei |ψi〉 to give equivalence of post-prior
first-Born terms

〈ψf |Vf |ψi〉 = 〈ψf |H − Hi |ψi〉 = 〈ψf |Vi |ψi〉. (B8)

Hence, the second term on the right-hand side of Eq. (B6)
vanishes identically and we have the post form of the exact
T -matrix element

T = 〈�−
f |Vi |ψi〉. (B9)

2. Alternative form of the scattered wave

In Eq. (15), the exact scattering state is written

|�+
i 〉 = |ψi〉 + |�sc〉 = |ψi〉 + G+(Ei)Vi |ψi〉. (B10)

Now, we employ the equivalent form with

|�+
i 〉 = |ψi〉 + G+

i (Ei)Vi |�+
i 〉. (B11)

Using the identity

G+
i (Ei) = G+

f (Ei)[1 + (Vf − Vi)G
+
i (Ei)] (B12)

which can be proved by letting both sides operate on
[G+

i (Ei)]−1, we have, noting that all Green operators are at

energy Ei ,

|�sc〉 = G+
f [1 + (Vf − Vi)G

+
i ]Vi |�+

i 〉
= G+

f Vi |�+
i 〉 + G+

f (Vf − Vi)(|�+
i 〉 − |ψi〉)

= G+
f Vf |�+

i 〉 − G+
f (Vf − Vi)|ψi〉. (B13)

The second term of this equation involves a contribution from
the initial state. However, when we project the scattering state
onto the final state and recognize energy conservation, we have

〈ψf |G+
f (Vf − Vi)|ψi〉 = 〈ψf |(Vf − Vi)|ψi〉

Ef − Ei + iε
≡ 0 (B14)

from the equivalence of post and prior first-Born matrix
elements [Eq. (B8)]. Hence, that part of the scattered wave
with nonzero overlap with the final state is simply G+

f Vf |�+
i 〉.

Accordingly, instead of Eq. (18) we could write, choosing
G+

f = G+
0 ,

lim
R→∞

�sc(R)

= lim
R→∞

〈R|G+
0 Vf |�+

i 〉

= lim
r→∞

∫
〈R|G+

0 |R′〉〈R′|Vf |�+
i 〉 dR′

= −
√

2π
m

�2
(−iK)(3n−3)/2 ηn

eiKR

R(3n−1)/2
〈K|Vf |�+

i 〉,
(B15)

which is a more direct derivation of Eq. (21) and analogous to
the one-particle case of Eq. (7).
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