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Cross sections for the dissociative recombination of N+
2 for v+

i = 0–3 are computed using multichannel
quantum defect theory with molecular data generated using the R-matrix method. The calculation is completely ab
initio and includes three electronic cores of the ion. Extensive comparisons are made with previous experimental
and theoretical studies. Our cross section is in excellent agreement with experimental results and other theoretical
results. Cross sections and isotropic rate coefficients are provided for all computed vibrational levels.
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I. INTRODUCTION

Molecular nitrogen is the most abundant molecule in
the terrestrial atmosphere as well as in those of Titan and
Triton. Its cation, N+

2 , is therefore prevalent in the earth’s
ionosphere as well as in nitrogen plasmas produced for reasons
varying from lightning strikes to combustion. Unsurprisingly,
there is a strong interest in characterizing nitrogen and there
have been a number of recent attempts to put together
comprehensive nitrogen chemistries for studies of plasmas
containing molecular nitrogen [1–4].

Dissociative recombination (DR)

N+
2 + e → N∗∗

2 → N + N (1)

is a vital process in these plasmas [5] as it is a major destroyer
of N+

2 ions. However, for reasons described below, the rate of
DR, and other properties of the reaction, are poorly determined
experimentally.

Storage rings have revolutionized our ability to measure
DR rates reliably for small molecules [5,6], not least because
the ability to store ions for a sufficiently long time for
them to cool means that measurements can be made from
vibrationally and rotationally cold molecules. It transpires,
however, that N+

2 , which has no permanent dipole moment,
is particularly difficult to cool even in long-lived beams in
storage rings [7], and is also observed to be vibrationally hot
in merged-beam experiments [8]. This means that the only
available temperature-dependent N+

2 DR rate measurements
have been performed on vibrationally hot molecules [7–10].
Flowing afterglow Langmuir probe measurements have been
made at 300 K [11–13]. Given this situation there is a clear
need for vibrationally resolved theoretical studies, which can
help provide reliable energy-dependent DR cross sections as
function of vibrational state.

Guberman [14–18] has performed a series of calculations
on the DR of N+

2 using high-quality curves and couplings
computed using standard quantum chemistry procedures and
a multichannel quantum defect theory (MQDT) treatment
of the actual DR process. Recently, two of us obtained
comprehensive bound [19] and resonance [20] curves ab initio
using the R-matrix method [21]. Previous studies using
R-matrix curves for DR calculations [22–24] have obtained

excellent results. However, for NO+, a system with one less
electron than N+

2 and closed-shell core, it was found necessary
to adjust the curves using experimental data in order to obtain
reliable results [23]. Our aim here is for a completely ab initio
treatment of the problem, where all parameters needed for
the computation of a DR cross section are self-consistently
calculated using the R-matrix method.

The paper is organized as follows: first we describe how we
prepared the data from the R-matrix calculation for its use in
an MQDT calculation, second a theoretical exposition of the
cross-section calculation using MQDT is given with details
of including core-excited bound Rydberg states, third a brief
summary of computational details, and then our results with a
discussion followed by our conclusions.

II. MOLECULAR DATA

The following minimal set of parameters are needed for
an MQDT calculation of the DR cross section: the potential-
energy curves (PEC) of the ground state of the ion, the PECs of
the neutral molecule providing routes to dissociation (valence
dissociative states), the electronic couplings between these
neutral valence states (dissociative channels), and the Rydberg
series converging to the ground state of the ion (ionization
channels). For a MQDT calculation which includes “core-
excited” initial states of the ion we additionally require the
following: the PECs of the excited ion states, the electronic
coupling between the valence states and the Rydberg series
converging to each excited state of the ion, and the Rydberg-
Rydberg coupling between each series converging to each state
of ion.

A. Potential-energy curves

The data to form the potential-energy curves are taken
from an R-matrix study using the UKRmol code suite [25],
henceforth referred to as I [19] and II [20], respectively.
The R-matrix method is a sophisticated quantum mechanical
scattering technique and can be used to calculate bound and
resonant (quasibound) electronic states of a molecule. For
ionic targets the R-matrix method matches asymptotically to
Coulomb functions; further details of the method can be found
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in the review by one of us [21]. Bound states were calculated
by solving for negative scattering energies using the module
BOUND [19,25,26] and resonant states we found using the
time-delay method with an improved fitting technique for
overlapping resonances [20,27,28]. The calculations of the
bound and resonant states are described extensively in I and
II, respectively. By combining the data above (resonant) and
below (bound) the ionization threshold of N+

2 , we have a
complete description of the superexcited neutral electronic
states which are important for dissociative recombination. The
states which cross the ion ground state at favorable positions
can then be identified. In the following discussion the N+

2 states
X 2�+

g , A 2�u, and B 2�+
g will be referred to as X, A, and B,

respectively.
To form smooth potential-energy curves from the data

presented in I and II it was necessary to fit the data
with smoothing splines. The reasons for this were twofold.
First, the R-matrix method works in the Born-Oppenheimer
approximation and hence avoided crossings are present in
the PECs. These avoided crossings were interpolated across
using the smoothing spline; no formal diabatization took place.
Secondly, for reasons described in detail in I and II, gaps in
the data appear slightly above and slightly below the PEC of
each electronic state of the ion. Therefore, it was necessary
to interpolate across these gaps. An example of a smoothing
spline being fitted to the adiabatic curves is given in Fig. 1.

To compute DR cross sections, it is necessary to know
the asymptotic behavior of the PECs. The bound curves were
extended using the R-matrix method in what will be termed
“quantum chemistry (QC) mode.” QC mode is an option that is
available in UKRmol suite in which the spatial restriction of the
R-matrix sphere is removed allowing the target plus scattering
electron continuum orbitals to span an extended region. It
was shown in I that, at points where there was little or no

FIG. 1. (Color online) Example of spline fitting to the data given
in I, in this case for the symmetry 3�u. The avoiding crossings are
interpolated across using a smoothing spline, no formal diabatization
is performed. The avoided crossing discussed in Sec. V D is
highlighted by the red box.

interaction with Rydberg states, the full scattering bound-state
calculation and the QC-mode calculation gave almost identical
results. The advantage of using the QC mode to extend the
calculation to longer bond lengths is that it relies only on
the diagonalization of a Hamiltonian [29] to find energy
eigenvalues. This is more numerically stable than propagating
and solving the R matrix, and it does not suffer from problems
with the target wave function leaking outside the R-matrix
sphere at large internuclear separations. Therefore, when one
is only interested in low-lying bound states at long bond
lengths, where there is no influence of Rydberg states, QC
mode is the preferred option. Despite this, issues do arise
when performing QC mode calculations at large internuclear
separations. The number of target states used in an R-matrix
calculation is arbitrary and their energetic order switches
with internuclear separation leading to discontinuities in the
calculated potential-energy curves, as is described in detail in
I and II. Secondly, the continuum orbitals which are placed at
the center of mass of the molecule become less appropriate at
longer bond lengths. As we are only interested in the asymptote
the state converges upon and the asymptotic behavior is easily
predictable, these issues do not present significant problems.

The potential-energy curves taken from the data given in
I and II with their asymptotes can be seen in Fig. 2 and
Fig. 3. The smoothed curves are available in the Supplemental
Material [44].

B. Electronic couplings

For a DR calculation including multiple ionic cores it
is necessary to use two types of coupling: Rydberg-valence
couplings, which describe the coupling of the ionization chan-
nels to valence or dissociative states, and Rydberg-Rydberg
couplings, which describe the coupling between ionization
channels of a given symmetry associated with each ionic state.
All couplings used in the present calculation are given in the
Supplemental Material [44].

1. Rydberg-valence couplings

Resonances were calculated using the time-delay method
of Smith [30] using the module TIMEDEL with an improved
fitting method [20,27]. In classical terms the time delay of a
scattered electron can be thought of as the difference in time
an electron would experience with or without an interaction
with the target. Resonances appear as Lorentzians when the
eigenvalues of the time-delay matrix are plotted against energy.
These Lorentzians are fitted to find the autoionization width,
�(R), of the resonance, where R is internuclear separation.
The autoionization width is then transformed into a Rydberg-
valence coupling using V (R) = √

�(R)/2π . The time-delay
method also provides the branching ratio of the autoionization
to a partial wave through the square of the time-delay matrix
eigenvector [31]. This means that the coupling can be resolved
by autoionization to a specific electronic state of the ion and
then again to a specific partial wave associated with that state.
In this study we only resolved the coupling to autoionize into
a particular electronic state of the ion; see Fig. 4. Indeed, this
was necessary to correctly include the coupling to each ionic
core included in the cross-section calculation.
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FIG. 2. (Color online) Singlet dissociative states included in the cross-section calculation with their asymptotic limits. The potential-energy
curves were taken from the data provided by I and II.

Again, due to the reasons outlined in Sec. II A regarding
the avoided crossings and gaps in data, it was necessary to
fit the couplings with smoothing splines; an example is given
in Fig. 4. There is a significant amount of structure in the
couplings due to the adiabatic behavior of the dissociative
state interacting with Rydberg states as it passes through
them; this structure was ignored, which can be thought of
as a “diabatization of the couplings.” For more details on the
adiabatic structure of the couplings, see Sec. 5.2 of II.

In the R-matrix method the electronic width of a resonance
goes to zero below the ground state of the ion. Therefore,
couplings were forced to zero rapidly after the threshold had

been crossed; see Fig. 4. The couplings associated with each
dissociative state are displayed in Fig. 5 and Fig. 6 for singlet
and triplet states, respectively.

2. Rydberg-Rydberg couplings

Rydberg-Rydberg couplings were found for the interaction
between the Rydberg series with the lowest value of �

converging on the X state and the Rydberg state with the lowest
value of n and � converging on the A state. Rydberg-Rydberg
couplings for the B state interacting with the X state were not
included in the calculation as the only interaction was at very

FIG. 3. (Color online) Triplet dissociative states included in the cross-section calculation with their asymptotic limits. The potential-energy
curves were taken from the data provided in I and II.
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FIG. 4. (Color online) Example of the fitted couplings, in this
case of 3�u symmetry. The total coupling has been resolved by the
autoionization branching ratios to the state of the ion to which they
are coupled (black, red, blue for X, A, B). The couplings show
considerable structure due to the adiabatic nature of the states they are
associated with. This structure was ignored and the gaps interpolated
across using smoothing splines. The structure of the couplings is
discussed in more detail in II.

short internuclear separations. The implementation of MQDT
used only supports Rydberg-Rydberg couplings between the
ground and excited states and hence couplings between the A

FIG. 6. (Color online) Potential-energy curves of triplet states
(top panel) and their respective Rydberg-valence coupling (lower
panel). The couplings are resolved by the ionic state to which they
are coupled; X state — — —; A state – • – •; B state — ••— ••.

and B state were not included in the calculation. The couplings
were calculated by assuming a two-state interaction with
adiabatic potential-energy matrix V between the two adiabatic
Rydberg state potentials with matrix elements V (R)ij =
Vi(R)δij . This can be transformed to a diabatic potential
matrix U with a 2 × 2 rotation matrix R using U = R−1VR.
The off-diagonal elements of the diabatic potential matrix
U12 = U21 = 1

2 [V (R)22 − V (R)11] sin[2γ (R)] then gives the

FIG. 5. (Color online) Potential-energy curves of singlet states (top panel) and their respective Rydberg-valence coupling (lower panel).
The couplings are resolved by the ionic state to which they are coupled; X state — — —; A state —•—; B state —••—.
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FIG. 7. (Color online) Rydberg-Rydberg couplings for each
symmetry included in the cross-section calculation. The couplings
associated with Rydberg states with n � 5 are only approximate; see
text.

unscaled electronic coupling between the two states where γ

is the rotation angle. If the energetic point of closest approach
occurs at the same R, then γ = π/4 and the coupling is
simply half the difference between the adiabatic states [32].
The coupling is then scaled according to the scaling law

Ũninj
=

√
n∗

i
3n∗

j
3Uninj

(2)

(in atomic units), where i and j correspond to each core state,
and n∗ is the effective quantum number associated with each
Rydberg state [33].

In our data the point of closest approach only occurs
at the same value of R for Rydberg states of low n. For
interactions between Rydberg states of higher n (�5), the
coupling was approximated by taking half the difference
between the adiabatic potentials at the value of R halfway
between the point of closest approach. The couplings were
assumed to go to zero at a point where the X Rydberg series
and A Rydberg state were clearly no longer interacting, usually
∼0.2 a0 away from the energetically lowest avoided crossing.
The Rydberg-Rydberg couplings used in the calculation are
plotted in Fig. 7.

C. Quantum defects

In an MQDT calculation the quantum defect is interpolated
to the scattering phase shift and therefore, ideally, quantum
defects associated with the highest value of n should be used.
Computing quantum defects of high n can be problematic
for standard configuration-interaction (CI) techniques as they
decrease in accuracy with increasing energy. As a result
averages are taken of the quantum defect over the entire
series [33].

The R-matrix method has a distinct advantage in that the
highest n Rydberg states are the most accurate, as shown in
Table 1 of II. Therefore, for this calculation the quantum
defect for the highest value of n was used. Limitations
were placed on this value by the energetic proximity of
the A state to the X state which results in Rydberg states

interacting close to the threshold. This, coupled with the
energy difference between states scaling with 1/n2, makes
it difficult to confidently identify high n Rydberg states over a
large enough range of internuclear separations, ∼1.5–3.5 a.u.
Nevertheless, for all symmetries, quantum defects with n � 7
state were successfully used.

III. MQDT-TYPE APPROACH TO LOW-ENERGY
DISSOCIATIVE RECOMBINATION WITH CORE

EXCITED STATES

A. MQDT formalism for a single-ion core

We restrict ourselves to the case where the energy of the
incident electron is lower than the dissociation energy of the
target ion, considered to be in its ground electronic state.
The collision process involves two mechanisms: (a) the direct
process, where the incoming electron is captured in a doubly
excited neutral dissociative state N∗∗

2 , which either autoionizes
or leads to two N neutral fragments

N+
2 (v+

i ) + e− →N∗∗
2 →

{
N + N∗,
N+

2 (v+
f ) + e−,

(3)

and (b) the indirect process, where the incident electron is
temporarily captured into a singly excited bound Rydberg state
N∗

2, predissociated by N∗∗
2 :

N+
2 (v+

i ) + e− → N∗
2 → N∗∗

2 ,

N∗∗
2 →

{
N + N∗,
N+

2 (v+
f ) + e−.

(4)

Both direct and indirect processes involve two different
types of channels, namely dissociation and ionization chan-
nels. A channel is open if the total energy of the molecular
system is higher than the energy of its fragmentation threshold,
and closed in the opposite case. A closed ionization channel
introduces in the calculation a series of Rydberg states
differing only by the principal quantum number of the external
electron [34]. Hence the inclusion of the closed channels
allows for the indirect mechanism, which interferes with the
direct mechanism resulting in the total process.

The short-range Rydberg-valence interaction couples the
dissociation and ionization channels. For a given symmetry 	

of the neutral system, assuming that one single partial wave
of the incident electron contributes to this interaction, the R-
dependent electronic coupling of an ionization channel relying
on the ground-state electronic core c1 with the dissociation
channel dj is written [35]:

V (e)	
dj ,c1

(R) = 〈

dj

∣∣Hel

∣∣
el/ion
c1

〉
, (5)

is assumed to be independent of the energy of the external
electron, and the integration is performed over the electronic
coordinates of the neutral (electron + ion) system. Here Hel

denotes the electronic Hamiltonian, 
dj
is the electronic

wave function of the dissociative state, and 
el/ion
c1

the wave
function describing the electron-ion system, the ion being in
its electronic ground state, c1. Integrating these couplings over
the internuclear distance, the nonvanishing elements of the
interaction matrix V (E) are

V 	
dj ,v

(E) = 〈
Fdj

(E)
∣∣V (e)	

dj ,c1
(R)|χv〉. (6)
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Here χv is the vibrational wave function associated with an
ionization channel in the reaction zone, Fdj

is the radial wave
function of the dissociative state dj , and E is the total energy
of the molecular system. This interaction is effective at short
electron-ion and internuclear distances typical in the reaction
zone.

Starting with the interaction matrix V , a short-range
reaction matrix, K, is then built as a solution of the Lippmann-
Schwinger equation

K = V + V
1

E − H0
K, (7)

where H0 is the zero-order Hamiltonian of the molecular
system.

The structure of the reaction matrix K in block form is

K =
(

Kd̄ d̄ Kd̄ v̄

Kv̄d̄ Kv̄v̄

)
, (8)

where the collective indices d̄ and v̄ span the ensembles
of all individual indices dj and v which respectively label
dissociation channels and ionization channels built on core c1.

For an energy-independent coupling V (R), Eq. (7) has a
perturbative solution which is exact to second order [36]:

K =
(

O V d̄ v̄

V v̄d̄ K(2)
v̄v̄

)
. (9)

Here O is the null matrix and the elements of the diagonal
block K(2)

v̄v̄ of K are given by

K
(2)
vv′ =

∑
dj

1

Wdj

∫∫ [
χ	

v (R)Vdj
(R)Fdj

(R<)

×Gdj
(R>)Vdj

(R′)χ	
v′ (R′)

]
dR dR′. (10)

where Wdj
is the Wronskian of the function pair (Fdj

, Gdj
),

and Vdj
(R) is a simplified notation for the coupling defined in

Eq. (5).
To express the effects of short-range interactions in terms

of phase shifts we diagonalize the K matrix

KU= − 1

π
tan(η)U, (11)

where U is a matrix whose columns are eigenvectors of matrix
K and the diagonal matrix tan(η) contains its eigenvalues.

In the external region, where the Born-Oppenheimer repre-
sentation is no longer valid for the neutral molecule, a frame
transformation [35] is performed via the projection coefficients

Cv+,	α =
∑

v

U	
v,α〈χv+ (R)| cos

[
πμ	

c1
(R) + η	

α

]|χv(R)〉,

(12)

Cdj ,	α = U	
dj ,α

cos η	
α , (13)

Sv+,	α =
∑

v

U	
v,α〈χv+ (R)| sin

[
πμ	

c1
(R) + η	

α

]|χv(R)〉,

(14)

Sdj ,	α = U	
dj ,α

sin η	
α , (15)

where α denotes the eigenchannels built through diagonal-
ization of the reaction matrix K. These can be grouped
into matrices C and S which are the building blocks of the
generalized scattering matrix X that involves all open (“o”) and
closed (“c”) channels. The X matrix in turn can be arranged
into four submatrices

X = C + iS
C − iS =

(
Xoo Xoc

X co X cc

)
. (16)

Imposing boundary conditions leads to the physical scat-
tering matrix [37]:

S = Xoo − Xoc
1

X cc− exp(−i2πν)
X co, (17)

where the diagonal matrix ν is constructed with the effective
quantum numbers νv+ = [2(Ev+ − E)]−1/2 (in atomic units)
associated with each vibrational threshold Eν+ of the ion,
situated above the current total energy E, labeling a closed
channel.

For a molecular ion, initially in the vibrational state v+
i ,

recombining with an electron of energy ε, the cross section of
capture into all the dissociative states dj of the same symmetry
� ( gerade or ungerade, singlet or triplet) and electronic angular
momentum projection 	 can be written as

σ
�,	

diss←v+
i

= π

4ε
ρ�,	

∑
j

∣∣Sdj ,v
+
i

∣∣2
, (18)

where ρ�,	 is the ratio between the spin multiplicities of the
neutral and the target ion. The total cross section for DR is
obtained by summing over all available �,	:

σ
sym
diss←v+

i

=
∑
�,	

σ
�,	

diss←v+
i

. (19)

B. Inclusion of core excited states

The MQDT formalism in the previous section is valid for
a system where one or more dissociative states are coupled to
the ionization channels of the ground ion core. However, N+

2
has several bound excited states whose ionization continua are
coupled to the ionization continuum of the ground core and to
neutral dissociative states.

For the energy range characterizing the incident electron in
the present work, two such excited states, A 2�u and B 2�+

u ,
are relevant, which we call core 2 and core 3, respectively.
The neutral dissociative states 2 3�u, 3 3�u, and 4 3�u are
coupled to the ionization channels of the three ion cores and
are responsible for driving the low-energy DR mechanism.
Figure 8 shows the curves used in the present calculation
that were taken from I and II and discussed in the previous
section.

The interaction between the ionization and dissociation
channels results in two types of couplings, namely the
Rydberg-valence couplings defined in Eqs. (5) and (6)
and those built in a similar way for the excited cores c2

and c3:

V 	
dj ,w

(E) = 〈
Fdj

(E)
∣∣V (e)	

dj ,c2
(R)|χw〉, (20)

V 	
dj ,u

(E) = 〈
Fdj

(E)
∣∣V (e)	

dj ,c3
(R)|χu〉, (21)
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FIG. 8. (Color online) N+
2 /N2 states relevant for the electron-

N+
2 dissociative recombination and vibrational excitation. Potential-

energy curves for N+
2 X 2�+

g (lowest curve, black), N+
2 A 2�u (middle

curve, red), N+
2 B 2�+

u (topmost curve, blue), and N2 2 3�u, 3 3�u,
4 3�u dissociative states (green, labeled). The vibrational levels of
the ground and excited cores are represented by horizontal thin lines,
of the same color as that of the respective ion cores. Zero energy is
defined as the ground-state vibrational level of X 2�+

g .

and the Rydberg-Rydberg couplings given by [33]

V 	
vw = 〈χv|Ṽ (e)	

c1,c2
(R)|χw〉, (22)

V 	
vu = 〈χv|Ṽ (e)	

c1,c3
(R)|χu〉, (23)

V 	
wu = 〈χw|Ṽ (e)	

c2,c3
(R)|χu〉, (24)

where the vibrational quantum numbers v, w, and u label the
ionization channels of core 1, 2, and 3, respectively.

The structure of the reaction matrix K in block form is the
following:

K =

⎛
⎜⎝

Kd̄d̄ Kd̄ v̄ Kd̄w̄ Kd̄ū

Kv̄d̄ Kv̄v̄ Kv̄w̄ Kv̄ū

Kw̄d̄ Kw̄v̄ Kw̄w̄ Kw̄ū

Kūd̄ Kūv̄ Kūw̄ Kūū

⎞
⎟⎠ , (25)

where the collective indices d̄, v̄, w̄, ū span the ensembles of
all individual indices dj , v, w, and u which respectively label

dissociation channels and ionization channels built on core 1,
core 2, and core 3.

An extensive and rigorous derivation of the structure of
each block of the K matrix in second order was provided in
our earlier work [38] on H+

2 /HD+ with two cores, where in
addition to the H+

2 /HD+ ground core there was a repulsive ion
core. For N+

2 , with three attractive ion cores, natural extensions
of our earlier work lead to the following form of the K matrix
to second order,

K =

⎛
⎜⎜⎝

O V d̄ v̄ V d̄w̄ V d̄ū

V v̄d̄ K(2)
v̄v̄ V v̄w̄ V v̄ū

V w̄d̄ V w̄v̄ K(2)
w̄w̄ V w̄ū

V ūd̄ V ūv̄ V ūw̄ K(2)
ūū

⎞
⎟⎟⎠ , (26)

where the elements of the diagonal blocks of K are written

K
(2)
aa′ =

∑
dj

1

Wdj

∫∫ [
χ	

a (R)Vdj
(R)Fdj

(R<)

×Gdj
(R>)Vdj

(R′)χ	
a′ (R′)

]
dR dR′, (27)

where, as before, a stands for either v, w, or u and a′ denotes
the corresponding primed quantities, andVdj

(R) is a simplified
notation for the couplings appearing in Eqs. (6), (20), and (21).

C. Calculation of cross sections

The inclusion of the additional excited ion cores increases
not only the dimension of the K matrix, Eq. (9), but also that
of the C and S matrices. More specifically, besides the matrix
elements given by Eqs. (12) and (14), further matrix elements
related to cores 2 and 3 contribute to the building of these
matrices:

Cw+,	α =
∑
w

U	
w,α〈χw+(R)| cos

[
πμ	

c2
(R) + η	

α

]|χw(R)〉,

(28)

Sw+,	α =
∑
w

U	
w,α〈χw+ (R)| sin

[
πμ	

c2
(R) + η	

α

]|χw(R)〉,

(29)

Cu+,	α =
∑

u

U	
u,α〈χu+(R)| cos

[
πμ	

c3
(R) + η	

α

]|χu(R)〉,

(30)

Su+,	α =
∑

u

U	
u,α〈χu+(R)| sin

[
πμ	

c3
(R) + η	

α

]|χu(R)〉,

(31)

and, consequently, via Eqs. (16) and (17), to the building of
the matrices C and S. The DR cross sections are then obtained
from Eq. (19).

IV. COMPUTATIONAL DETAILS

The potential-energy curves included in the calculation
were selected based on their crossing point with the ground-
state PEC of the ion and the size of their Rydberg-valence
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coupling. The R-matrix calculation yielded many more states
than those that are included in the calculation; however, most
were deemed to make insignificant contributions to the total
cross section for the energy range studied. There is also some
ambiguity as to whether previously unidentified states are
valence states or Rydberg states converging to the a 4�+

u state
of the ion.

Eleven dissociative states of singlet and triplet symmetry
were included in the calculation, see Figs. 2 and 3, with
couplings resolved to each state of the ion; see Figs. 5
and 6. Cross sections were calculated for v+

i = 0–3 with an
energy range 10−5–1 eV. Ionization channels associated with
the X, A and B states were included in the calculation. Only
the X and A ionization channels were coupled as the X-B
Rydberg-Rydberg coupling is only important at very short
bond lengths and was deemed negligible. The cross-section
calculation was performed for each symmetry of the neutral
individually and then summed to find the total cross section.
The integration of Eq. (6) was performed from 0.5 to 25.0 a0.

V. RESULTS AND DISCUSSION

A. Cross sections

The DR cross section of N+
2 in its electronic ground state, X,

in initial vibrational levels v+
i = 0–3 can be seen in Fig. 9 and

at a larger scale for v+
i = 0 in Fig. 10. What is immediately

obvious from Fig. 10 is that the cross section is dominated
by the 3�u symmetry, in particular the 2 3�u state. This
is unsurprising considering the state’s position close to the
turning point of the ion ground state, its large coupling, see
Fig. 11, and previous theoretical results by Guberman [15–18]
and the experimental results of Kella et al. [39].

Secondly, the N+
2 (v+

i = 1) DR rate is significantly lower
than that for v+

i = 0,2,3. If one considers that the dominant
state in the cross section is the 2 3�u state, then this is also to be
expected. The crossing point of this state with the ion ground
state is very close to the minimum in the ion curve; therefore,
for v+

i = 1, the overlap of the wave function of this state and
the vibrational wave function will be significantly reduced
due to the node in the vibrational wave function. This effect is

FIG. 9. (Color online) Computed N+
2 dissociative recombination

cross section as a function of cation vibrational state, v+
i .

FIG. 10. (Color online) Contribution of different dissociative
curves of N∗∗

2 to the N+
2 (v+

i = 0) DR cross section as a function
of energy.

FIG. 11. (Color online) Contribution to the DR cross section of
N+

2 for v+
i = 0 (top) and v+

i = 1 (bottom) from N∗∗
2 states of 3�u

symmetry.
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FIG. 12. (Color online) Effect of including multiple cores on the cross-section calculation for 3�u symmetry. Each panel, with exception of
the final, ends at a vibrational threshold. That is, (a) 10−5 eV, v+

i = 1 (0.266 eV), (b) v+
i = 1 (0.266 eV), v+

i = 2 (0.528 eV), (c) v+
i = 3 (0.528

eV), v+
i = 4 (0.786 eV), and (d) v+

i = 4 (0.786 eV), 1 eV. Including the second and third core only has a minor effect on the cross section as,
for the dominant dissociative state 2 3�u, the majority of the Rydberg-valence coupling is to the ground state; see the leftmost panel of Fig. 6.

illustrated in Fig. 11. For v+
i = 0, the contribution to the total

cross section from the 3 and 4 3�u states is almost negligible
in comparison to 2 3�u. For v+

i = 1, the 2 and 4 3�u states
have a similar level of contribution to the overall cross section.
This is in agreement with previous studies by Guberman that
the most important dissociative states for DR are the 2 and 4
3�u. For v+

i = 2,3 the overlap with the dissociative state wave
function increases and the magnitude of the cross section is
similar to that of v+

i = 0.
States of other symmetry which cross within v+

i = 0 are
a′′ 1�+

g and G3�g; Figs. 5 and 6 show that although the
total width of these states is large, consideration of the
autoionization branching ratios shows that the majority of the
coupling is to the A state rather than the X state, resulting in a
reduced DR cross section.

All other states included in the calculation either have a
small coupling to the X state, or cross the ground state far
from the turning point, or both and as a result make only minor
relative contributions to the cross section. The 1�u channel
does not open until 0.397 eV. Therefore, in a high-resolution
measurement of the DR cross section we expect that the
majority of the structure will be due to the 2 3�u with only
narrow resonance peaks due to states of other symmetry.

The effect of including additional cores on the cross section
can be seen in Figs. 12 and 13 for v+

i = 0 for 3�u and
3�g , respectively. For 3�u the cross section does not change
significantly with the addition of each core to the calculation;
there are only slight shifts in the resonance structure, with

the most significant change occurring with the inclusion of
the third core. This is to be expected as the majority of the
coupling for the dominant dissociative state 2 3�u is to the

FIG. 13. (Color online) Effect of including multiple cores in the
cross-section calculation for 3�g symmetry. It can be seen in the
rightmost panel of Fig. 6 that for this symmetry the majority of
Rydberg-valence coupling is to the A state. As a result, the inclusion
of the second core has a significant impact on the cross section. The
inclusion of the third core makes very little difference to the cross
section and resultantly is not shown.
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TABLE I. Fitted DR rate coefficients for N+
2 as function of

vibrational state, v+
i .

v+
i Rate coefficient (cm3s−1) Temperature range (K)

0 2.568 × 10−7(Te/300)−0.5166 300 � Te � 800
1.492 × 10−7(Te/800)−0.47 800 � Te � 1500

1 6.378 × 10−8(Te/300)−0.239 300 � Te � 500
5.652 × 10−8(Te/500)−0.17 500 � Te � 800
5.225 × 10−8(Te/800)−0.075 800 � Te � 1025
5.117 × 10−8(Te/1100)−0.023 1025 � Te � 1250
5.104 × 10−8(Te/1300)0.008 1250 � Te � 1500

2 2.145 × 10−7(Te/300)−0.36 300 � Te � 800
1.499 × 10−7(Te/800)−0.42 800 � Te � 1500

3 1.228 × 10−7(Te/300)−0.50 300 � Te � 600
8.711 × 10−7(Te/600)−0.4352 600 � Te � 1500

X state; see the leftmost panel of Fig. 6. The addition of the
second core has a much larger impact on the 3�g cross section;
this is because the G 3�g state is most strongly coupled to
the A state; see the rightmost panel of Fig. 6. As 3�u is the
dominant symmetry, the core-excited effects are only present
in the minor dissociative channels, such as G 3�g , and are
therefore not prevalent in the global cross section.

B. Rate coefficients

Isotropic rate coefficients fitted with the form A(Te/T )−a

are given in Table I; the fits give a good reflection of the
temperature dependence within their respective ranges. This
fitting form is not particularly suitable for the v+

i = 1 DR rate
as its temperature dependence changes frequently; however,
fits were made over shorter energy ranges to compensate.
The unfitted rate coefficients are available in the Supplemental
Material [44] and can be refitted as desired.

C. Comparison with other work and discussion
of vibrational dependence

1. Cross sections

As mentioned in the Introduction, there are a number of
difficulties cooling N+

2 sufficiently so that a measurement
can be made of its vibrational ground state. Therefore, to
make a correct comparison with experiment, we must first
sum the relative proportions of the cross section according to
the vibrational distribution of the ions with energy. Only two
experimental studies provide vibrational distributions of the
ion beam and cross sections, Peterson et al. [7] and Sheehan
and St. Maurice [8].

The vibrational distribution provided by Sheehan and
St. Maurice was not directly measured in their merged beam
experiment; instead it was taken from Noren et al. [40] but
deemed that it should give a “reasonable reflection” of the
vibrational population of their ion beam. Peterson et al. also
did not perform a direct measurement of their vibrational
populations either; instead they measured the DR rate times
population at zero relative energy of the electron and ion beam.
By convoluting the calculated cross section according to the
temperature distribution of the ion beam (transversal 0.01 eV

FIG. 14. (Color online) Comparison of our computed N+
2 DR

effective cross sections with those measured using CRYRING [7]
and by Sheehan and St. Maurice [8].

and longitudinal 0.0001 eV) using an anisotropic Maxwell
electron velocity distribution we can calculate vibrationally
resolved rates to find a derived population. The derived pop-
ulation using the rates at 10−5 eV is 0.274:0.533:0.066:0.127
v+

i = 0–3, respectively, for the JIMIS ion source [7]. The
vibrational distribution provided by Sheehan and St. Mau-
rice is 0.651:0.211:0.084:0.035:0.013:0.005:0.001 v+

i = 0–6,
respectively.

Figure 14 gives a comparison of the effective cross sections
measured in both experiments with our convoluted calculated
cross sections scaled with their respective vibrational popula-
tions. The general agreement with experiment is good; in prac-
tice, use of the vibrational distribution given by Sheehan and
St. Maurice gives better agreement with both measure-
ments than the derived population distribution from Peterson
et al.

Our calculations show many resonance structures arising
from the indirect mechanism. Except where these structures
merge together, often in the region of thresholds, these
structures are generally averaged by the thermal distribution
of the electrons used experimentally. There are two main
structures in the CRYRING cross section which are reproduced
by our calculation: a broad resonance centered at ∼0.07 eV and
a smaller resonance structure at ∼0.3 eV. These structures are
present in the cross section with both population distributions,
and are labeled “resonance A” and “resonance B” in Figs. 9
and 14. Our results indicate that each structure comes from
a cross section of a different vibrational level: resonance A

is from the v+
i = 0 cross section and resonance B from the

v+
i = 1 cross section; see Fig. 9. This gives a clear theoretical

indication that the vibrational distribution is dominated by
v+

i = 0 and v+
i = 1; our results do not show any large

resonance features in v+
i = 2,3.

Sheehan and St. Maurice make the point that, as their
measured cross sections and the CRYRING cross section are
similar, the vibrational distribution of the ions may have also
been similar in both experiments. This is, of course, only true if
the cross section is significantly vibrationally dependent. Our
calculation suggests that there is clearly a significant difference
between v+

i = 0 and 1 cross sections, and our cross section
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with the Sheehan and St. Maurice population distribution
has better agreement with the CRYRING cross section. One,
however, must be cautious in making these comparisons as the
measurement of the population distribution was not actually
carried out on the ion beam of either experiment and population
effects are known to have subtle effects on the effective DR
cross sections measured, as found, for example, in the DR of
H+

3 [41].
Guberman’s most recent study [18] suggests that at very

low energies (0.001 eV) the cross sections for each vibrational
level are all of a similar magnitude, and in fact that v+

i = 1
is the largest. Use of these cross sections yields a vibrational
distribution of 0.50:0.25:0.10:0.14 for v+

i = 0–3, respectively,
which is similar to that of Sheehan and St. Maurice. From
the perspective of our model, the difference between the two
studies comes down to the importance of the 4 3�u state. In
Guberman’s model this state is slightly lower in energy and
has a Rydberg-valence coupling which is around double the
magnitude found by the R-matrix calculations presented in
II, dominating the v+

i = 1 cross section at low energies. In
our model the process is driven entirely by the 2 3�u which,
for reasons described in Sec. V A, leads to a reduced v+

i = 1
cross section. Unfortunately the data for the cross sections
was not available for Guberman’s study so we cannot make
any direct comparisons of the vibrationally resolved cross
sections.

2. Rate coefficients

Figure 15 gives a comparison with the flowing afterglow
Langmuir probe (FALP) measurements, given as an isotropic
rate coefficient, of Mahdavi et al. [11], Geoghegan et al. [12],
and Canosa et al. [13], and our v+

i = 0 isotropic rate coefficient
at 300 K [8]. There is very good agreement with our calculated
v+

i = 0 rates and the FALP measurements, the value is within
error of the measurement of Canosa et al. and Mahdavi, and
is just outside the error bars of Geoghegan et al.

By comparing the above measurements for v+
i = 0 and

those with a mix of vibrational levels we get another indication
that the v+

i = 1 rate must be lower than v+
i = 0; the rates where

FIG. 15. Comparison of our calculated, isotropic rate coefficient
for N+

2 DR v+
i = 0 with the FALP measurements of Mahdavi

et al. [11], Geoghegan et al. [12], and Canosa et al. [13] at 300 K.
Agreement with experiment is excellent.

FIG. 16. (Color online) Comparison of our calculated, isotropic
rate coefficients for N+

2 DR with the measurements of Peterson
et al. [7], and Sheehan and St. Maurice [8]. The experimental rate
coefficients were recalculated using the cross sections from each
respective study.

the ions are not vibrationally cool (Peterson et al. and Sheehan
and St. Maurice) are both lower than those of v+

i = 0.
To compare our computed rate coefficient with the measure-

ments of Peterson et al. and Sheehan and St. Maurice we have
found rate coefficients using the cross sections they provided.
Although rates of the form A(Te/T )−a are provided in both
studies, fittings of this form ignore a lot of structure due to the
simple single-exponent temperature dependence. Sheehan and
St. Maurice also recalculated an isotropic rate coefficient using
the cross section of Peterson et al. and found a fitted value of
(1.50 ± 0.23) × 10−7(Te/300)−0.39 cm3s−1 which has nearly
perfect agreement with the value found for their merged beams
experiment, (1.50 ± 0.23) × 10−7(Te/300)−0.38 cm3s−1. The
value we found at 300 K is 1.734 × 10−7 cm3s−1, which
is similar to the original value given by Peterson et al.,
(1.75 ± 0.09) × 10−7 cm3s−1.

Figure 16 gives a comparison of our work scaled by the
derived CRYRING and Sheehan and St. Maurice distributions
with the rate coefficients calculated using their respective cross
sections. Again we see that the Sheehan and St. Maurice vibra-
tional distribution gives better agreement with the CRYRING
results indicating that this may be closer to the true distribution.
All of the rates have a very similar temperature dependence
above 600 K; the vibrationally resolved rate coefficients
in Fig. 17 also indicate that there is not a drastic change
in temperature dependence with vibrational excitation. The
divergence between the Sheehan and St. Maurice distribution
and the CRYRING rate is due to resonance A (see Fig. 14)
being slightly too low in energy and narrower than that
measured in the CRYRING cross section.

Comparisons with available calculated rates from Guber-
man are presented in Fig. 17. The formula given by Guberman
is 2.2+0.2

−0.4 × 10−7(Te/300)−0.40 cm3s−1. When comparing un-
fitted and fitted, it is clear that fitting over a large temperature
range (100–3000 K) averages out a lot of the structure. There
is, however, good agreement between his and our v+

i = 0 rate
fitted and unfitted. The rates for v+

i = 1,2 are very different in
terms of both magnitude and temperature dependence.
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FIG. 17. (Color online) Comparison with Guberman’s [15,17]
isotropic N+

2 DR rate coefficients. Guberman’s fitted and unfitted
values for v+

i = 0 are displayed for comparison.

3. Summary of vibrational distribution discussion

Overall the agreement between both experiments and
experiment and theory is good. The agreement between our
rate and Guberman’s for v+

i = 0 is also good. It is, however,
difficult to make a solid conclusion as to the actual vibrational
population of each experiment. More weight should be placed
on the vibrational distribution of Peterson et al. as this
measurement took place on the ion beam used in the cross-
section measurement. However, this measurement was taken
at 0 eV relative collision energy and it is not guaranteed that the
vibrational distribution will not change during the experiment.
The fact that the v+

i = 1 DR cross section is much lower
relative to the other vibrational level results in this vibrational
state dominating the population. The better agreement with the
vibrational distribution of Sheehan and St. Maurice indicates
that this may be closer to the vibrational distribution in the
CRYRING experiment.

D. Branching ratios

Branching ratios are calculated by simply summing the
cross sections for each individual dissociative channel to each
asymptote and dividing by the total cross section. A Landau-
Zener calculation [42] was performed on the avoided crossing
highlighted by the red box in Fig. 4; the crossing probability
to the lower state was found to be 0.85 for v+

i = 0 and 0.87 for
v+

i = 1. Therefore, 15% and 13% of the branching ratio going
to N(4S) + N(2D) was subtracted and added to the branching
ratio for N(2D) + N(2D) for v+

i = 0 and v+
i = 1, respectively.

The branching ratios for v+
i = 0,1 are displayed in Fig. 18 for

10−5–0.1 eV.
The branching ratios of the DR of N+

2 were measured by
Peterson et al. [7] for v+

i = 0 and its isotoplogue 15N14N+ by
Kella et al. [39] for v+

i = 0,1 at zero relative energy. The use
of 15N14N+ by Kella et al. meant that radiative rovibrational
relaxation was possible due to the dipole of the molecule and
the branching ratios for v+

i = 0 could be measured. Given the
small difference between the ground vibrational state of 14N+

2
and 15N14N+, a comparison between the measured rate of the
isotoplogue and the calculated rate of the homonuclear 14N+

2

FIG. 18. (Color online) Energy-dependent branching ratios for
v+

i = 0 (upper panel) and v+
i = 1 (lower panel).

is justified. Table II gives the branching ratio at 10−5 eV with
a comparison with experimental data.

For v+
i = 0, agreement is reasonable if we consider that

both experimental studies report that the majority of the cross
section should go to N(4S) + N(2D) and N(2D) + N(2P ). In
our model there is no path to the N(2D) + N(2P ) asymptote
available at this energy which is confirmed by experiment.
There is, however, a disparity between the experiment and
the relative branching to these two products. The reasons
for this are unclear; both this theoretical study and that of
Guberman [17] suggest that the 2 3�u is the dominant state for
v+

i = 0 which dissociates to N(4S) + N(2D). In Guberman’s
first study of the DR N+

2 [14] he also calculates the crossing
probability of the avoided crossing highlighted in Fig. 1 and
finds a similar crossing probability of 0.88; this again is not
enough to account for the difference between the theory and
experiment. Kella et al. report that Guberman has recalculated
branching ratios to be 0.70, 0.27, and 0.3 for N(4S) + N(2D),
N(2D) + N(2D), and N(4S) + N(2P ), respectively. To our
knowledge, this calculation has not been reported in detail,
but gives good agreement with our results.

TABLE II. Branching ratios, calculated and experimentally mea-
sured for v+

i = 0,1.

Product channel Branching ratio

v+
i = 0 This work Kella et al. Peterson et al.

N(4S) + N(2D) 0.776 0.46 ± 0.08 0.37 ± 0.08
N(4S) + N(2P ) 0.005 0.08 ± 0.06 0.11 ± 0.06
N(2D) + N(2D) 0.219 0.46 ± 0.08 0.52 ± 0.04
N(2D) + N(2P ) 0.0 0.0

v+
i = 1 This work Kella et al.

N(4S) + N(2D) 0.434
N(4S) + N(2P ) 0.047
N(2D) + N(2D) 0.519 0.5 ± 0.1
N(2D) + N(2P ) 0.0 0.5 ± 0.1
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Due to the resolution of their experimental equipment Kella
et al. were only able to measure the branching ratios for the
N(2D) + N(2D) and N(2D) + N(2P ) asymptotes which they
found to be equal. In our model only 1% of the cross section
is going to the N(2D) + N(2P ) asymptote and just under half
to N(2D) + N(2D). The branching ratios for v+

i = 1 are very
similar to the measured values for v+

i = 0.
Figure 1 shows the many avoided crossings in the superex-

cited states of N2, some strongly avoided. It may be that
accounting for these avoided crossings in a more rigorous
way is key to reproducing the experimental results. A time-
dependent wave-packet calculation [43] would provide more
information about the final-state products. The relevant input
information to perform this calculation is available in the
Supplemental Material [44].

VI. CONCLUSION

The calculated cross section has excellent agreement with
experiment and also reproduces the two main structures in the
CRYRING [7] cross section. The cross section is completely
ab initio; no empirical data has been introduced into the
calcuation at any point. This shows that the R-matrix method
coupled with the MQDT approach presented in this paper
provides a self-consistent and accurate ab initio approach to
calculating DR cross sections. As with previous theoretical
studies by Guberman [14–18] this study shows that the most
important symmetry for the DR of N+

2 is 3�u. The main
difference between the model presented here and that of
Guberman is the relative importance of the 2 3�u and 4 3�u

states. It is interesting to note that, although the potential-
energy curve crossing positions were similar in both studies,
the couplings were not. Nevertheless, both results, at least for
v+

i = 0, resulted in good agreement with experiment. There is
strong experimental evidence to suggest that the v+

i = 1 rate
is lower than the v+

i = 0 one; this study also suggests that this

is the case. The vibrationally resolved rates we have calculated
indicate that there is not a strong vibrational dependence on
temperature dependence; this is in agreement with previous
studies [7,8].

The branching ratios still remain uncertain from a theo-
retical point of view; taking into account the many avoided
crossings present in the original adiabatic potential energy
curves or the use of the time-dependent wave-packet method
may shed more light on this issue.
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