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The binary collision dynamics of 2D, 3/, ground state scandium atoms is studied from first principles. We
employ 30 coupled diabatic ab initio potentials in a coupled-channels study of the scattering dynamics of cold
and ultracold scandium atoms in external magnetic fields. Due to the long-ranged magnetic dipolar interaction, the
field dependence of the cross section does not follow the threshold laws derived by Volpi and Bohn [Phys. Rev. A
65, 052712 (2002)]. In the field-free case, the near-threshold cross section is independent of the collision energy,
and hence the cross section does not follow the well-established Wigner threshold laws. The observed threshold
behavior is explained in the Born approximation. For energies above 1 uK, inelastic collisions are driven by
the anisotropic nonrelativistic electronic interaction. For energies below 100 ©K, the ratio of elastic-to-inelastic
collisions is likely to be favorable for evaporative cooling. Both anisotropy in the long-range interaction and in
the short-range potential contribute to large cross sections for inelastic collisions at higher energies and lead to
a small ratio of elastic-to-inelastic collisions. This is in agreement with the large rates for Zeeman relaxation
of submerged-shell atoms observed experimentally. The effect of the uncertainty in the ab initio potential is
sampled by scaling the reduced mass and is found to have little influence on the conclusions drawn from this

work.
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I. INTRODUCTION

Experiments on ultracold magnetically trapped atoms and
Bose-Einstein condensates are performed mainly with alkali
metals [1-3]. Atoms which possess nonzero electronic orbital
angular momenta are more difficult to cool to ultracold
temperatures [4]. The reason is that for such atoms, the
electronic interaction is anisotropic [5]. These anisotropic
interactions drive Zeeman relaxation, which leads to heating
of the sample and loss of atoms from the magnetic trap.

It has been proposed that the interaction anisotropy may be
suppressed for so-called submerged-shell atoms [6,7]. These
are atoms with an open subshell that contributes electronic
angular momentum, which is screened by a filled subshell
of higher principal quantum number. The suppression of
angular momentum changing collisions was observed to be
efficient for scattering between helium and titanium [8—10], as
well as for helium-erbium and helium-thulium collisions [4].
However, scattering of pairs of erbium or thulium atoms leads
to unexpectedly large inelastic cross sections [4]. The sup-
pression of reorientation of angular momentum in collisions
with rare gas atoms has been explained theoretically [10]. To
our knowledge, no theoretical explanation exists for the large
inelastic rates found for collisions of pairs of submerged-shell
atoms.

In this paper, we present coupled-channels calculations
for collisions of scandium atoms. We consider scandium
as a model system for submerged-shell atoms, as it is the
lightest element of this class of atoms. Scandium has a
2Dg,3 ;2 ground state with an [Ar]4s23d! configuration. The
anisotropy due to the open 3d shell is screened by the
outer 4s electrons. We use the ab initio interaction potentials
reported in the companion paper [11]. Short-range potentials
were calculated using second-order n-electron valence state
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perturbation theory (NEVPT2). The first-order long-range
interaction has been determined at the complete active space
self-consistent field level. Long-range dispersion coefficients
was determined from frequency-dependent polarizabilities of
the atoms calculated using time-dependent density functional
theory.

We use the diabatic representation proposed in Ref. [5],
which describes the general theory of collisions of open-shell
atoms. This theory has previously been applied to the collision
of P-state atoms [12—14]. The interaction of P-state atoms
can be considered a special case, since each adiabatic state
of the dimer can be assigned a definite asymptotic total
electronic orbital angular momentum, L. For atoms with
orbital angular momentum L 4 > 2, this is no longer the case,
and in that sense, the present work can be considered the
first application of the general theory of Ref. [5]. To the best
of our knowledge, calculations for interacting L4 > 2 state
atoms have only been performed using model potentials. See,
for example, Ref. [15], which describes Zeeman relaxation of
dysprosium atoms, using a universal single-channel scattering
model and a long-range dispersion potential determined from
experimental atomic energy levels. Feshbach resonances in
elastic scattering from the high-field seeking states of ultracold
dysprosium atoms have been also been investigated using
coupled-channels theory and the same model potential [16].

For the special case of collisions between rare gas and
2 P-state atoms, the spin-orbit coupling is known to play a
major role in the suppression of interaction anisotropy [17,18].
The reason is that j = 1/2 state atoms are not coupled by
anisotropic components of the interaction, whereas atoms
in the j = 3/2 state are. Spin-orbit driven suppression of
interaction anisotropy is not expected to play a major role for
the interaction of two 2 D-state atoms, as atoms in either spin-
orbit state, j = 3/2 or j = 5/2, interact through quadrupole-
quadrupole coupling and anisotropic dispersion [5,19]. Atoms
in the j =3/2 ground state are shielded only from the
highest rank spherical tensor contributions to the short-range
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interaction. Shielding from these contributions is a minor
effect, as it is shown in this paper that even completely turning
off the short-range anisotropy is insufficient to significantly
increase the ratio of elastic-to-inelastic cross sections.

This article is organized as follows. In Sec. II we discuss the
scattering theory including the interactions that we consider,
the channel basis, symmetry aspects, and the near-threshold
energy and magnetic field dependence of the scattering cross
sections. Section III discusses the numerical implementation
of the scattering calculation. In Sec. IV we present the results
for scattering in field-free space and in external magnetic
fields. We find that the interaction anisotropy leads to large
inelastic rates. The main mechanism for relaxation in the
ultracold limit is determined to be magnetic dipolar coupling.
For energies above 10~° K, inelastic collisions are driven by
anisotropic nonrelativistic electronic interactions, rather than
by the magnetic dipolar coupling. Concluding remarks are
given in Sec. V.

II. THEORY

A. Atomic Hamiltonian and quantum numbers
We consider the collision of two scandium atoms, labeled
(A) and (B). This section discusses the Hamiltonian and
quantum numbers of an isolated atom (X) = (A) or (B). The
atomic Hamiltonian is given by
5 Ay (X (X (X
AY = HG) + Vg + Vi 1)

elec. Zeeman’

7y (X)

where H is the nonrelativistic electronic Hamiltonian,

elec.
S%O is the spin-orbit interaction, and VZ(é(e)man represents the
interaction with the external magnetic field. The electronic

Hamiltonian is given by
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where Fh is the reduced Planck constant, m, is the mass of
the electron, e is the elementary charge, €y is the vacuum
permittivity, r;; is the distance between electrons i and j, and
rix is the distance between electron i and the nucleus of atom
X with charge e Zx. We describe the atoms in Russel-Saunders
coupling, with electronic orbital and spin angular momentum
quantum numbers, L x and S, total electronic angular momen-
tum, jx, and corresponding space-fixed projection quantum
numbers, My,, Ms,, and my. Clebsch-Gordan coupling of
orbital and spin angular momentum states, |LxMy,) and
|Sx Ms, ), defines the atomic fine structure states as

[jxmx) = Z |LxMy,)|SxMs, ) Lx My, SxMs, | jxmx).
My Ms,

3)

For 2Dg ground-state scandium atoms Ly = 2 and Sy = 1/2.
The spin-orbit interaction is described by an effective spin-
orbit Hamiltonian of the form

V5o’ = AsoL - 8%, )
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where LX) and SX are the electronic orbital and spin
angular momentum operators, respectively, and the value
Aso = 0.3068 mE; is taken from experiment [20]. The jx =
3/2 ground state and the excited jx = 5/2 level are split by
about 168 cm~'. The interaction with a magnetic field in the
space-fixed z direction is given by

Zeeman

where the magnetic dipole operator is given by
Y = —pp L0 + g, 8. (6)

Here, wp is the Bohr magneton and g, ~ 2.0023 is the
electron g factor. In magnetic fields, mx is conserved, but the
fine-structure states are mixed. We denote the exact quantum
numbers of the atom by nx and myx and express the atomic
state in terms of the fine-structure states as

nxmy) = |jxmx)Ujeny. (7)
Jx

The expansion coefficients, Uj,,,, are elements of a unitary
matrix that diagonalizes the matrix representation of the atomic
Hamiltonian [Eq. (1)] in the space of the coupled angular
momentum states [Eq. (3)]. In the limit where the Zeeman
interaction is much weaker than the spin-orbit coupling, jy is
an approximately good quantum number, but the degeneracy of
its 2jx + 1 sublevels is lifted. The energy difference between
the sublevels is proportional to my and to the magnetic field
strength, B.

For atoms in states with mx > 0, the Zeeman energy
increases with the magnetic field strength. Atoms in such low-
field seeking states can be trapped magnetically. Therefore,
cold magnetically trapped scandium atoms will be in the lowest
spin-orbit manifold, nx = 3/2, and initially the space-fixed
projection quantum number will equal its maximum value,
myx =3/2.

B. Hamiltonian and scattering theory

The collision is described in the center of mass frame, and
the total Hamiltonian is given by

h2 82 EZ
AH=———R+—+HA" + A% + 7,
2uR OR2 ZMRz elec. elec. elec.
+ VSO + Vmagn.dip‘ + VZeemam 3

where R is the interatomic distance, w is the reduced mass,
the operator £ generates the end-over-end rotation of the

collision complex, FI;@ represents the electronic Hamiltonian

of atom (X)=(A) or (B), Velec_ represents the Coulomb
interaction between atoms (A) and (B), VSO is the spin-orbit
coupling, Vmagn,dip, is the magnetic dipolar coupling, and
V-eeman represents the interaction with magnetic fields.

To describe the nonrelativistic electronic interaction, Ve1ec.,
we use the diabatic model proposed in Ref. [5]. The use of a
diabatic representation is essential as nonadiabatic coupling
vanishes only as R~' [21], whereas the energy splitting
between the adiabatic states asymptotically vanishes as R™>.
The employed model uses a diabatic basis of transformed
adiabatic states that asymptotically correspond to space-fixed
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atomic states. A fixed transformation between the adiabatic
and diabatic representations is assumed, by diagonalizing the
asymptotic interaction in the space of asymptotic atomic states.
This model is correct at large separation and resolves the
singularity of the Hamiltonian. At short separation, residual
nonadiabatic coupling between these states exists, but as these
states split up in energy, the coupling may be neglected [5].

The interaction with the magnetic field is given by the sum
of the Zeeman Hamiltonians for both atoms

VZeeman = V(A) + V(B) (9)

Zeeman Zeeman*

The magnetic dipole-dipole coupling between the two atoms
is treated in Appendix A. We neglect the R dependence of the
spin-orbit coupling and assume that this coupling is described
by the atomic limit

56 + Vo) (10)
as the sum of an effective spin-orbit Hamiltonian for each
atom.

The collision of two atoms is treated with coupled-channels
theory. The scattering wave function is expanded in channel
functions as

Vso =

1
) =% lZ|¢,~>F,~j<R>, (11)

where j labels the entrance channel. The coupled-channels
equations are solved numerically for the expansion coeffi-
cients, Fi;(R). In the short range, we use the renormalized
Numerov algorithm [22], whereas in the long range, we use
the renormalized Airy propagator [23]. The renormalized Airy
algorithm efficiently propagates the solution to very large
distances, as is required in this work. For the channel basis
we use a fully coupled representation

|9i) = 1(jajB)japt; J M)

- ¥

mampgmemap

[jama)|jpmp)|€my)

X (jamajpmp|japmap)(japmaptme|J M), (12)

where i is a composite label for {L,Sa,ja,L5,SB,JB,
jag,t,J,M}. The atomic quantum numbers Ly, Sx, jx, for
X = A, B, and the corresponding projection quantum numbers
have been defined in Sec. II A. The total electronic angular
momentum jsp with projection m4p has been obtained by
Clebsch-Gordan coupling of the atomic angular momenta, js
and jp. The ket |€m,) describes the end-over-end rotation of
the system. The total angular momentum J with space-fixed
projection M is obtained by vector coupling of j4p and ¢.
Matrix elements of all considered interactions in this angular
basis are given in Appendix A.

At large separation, we transform to the uncoupled repre-
sentation

|jama)|jemp)|€my)

= D Gais)jast; IM)
J.M,jag,map

X (jamajpmpljapmag){japmaptme|JM). (13)

In the field-free case, these states are eigenfunctions of the
asymptotic Hamiltonian, which consists only of spin-orbit
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coupling. Hence, we can match the wave function to its
asymptotic form in this representation:

Fij(R) = R[h (ki R)S;j + Sihl) (ki R)]. (14)

The functions hél) and hg) are the spherical Hankel functions
of the first and second kind, respectively [24]. The labels i
and j enumerate the asymptotic basis, and k; = /2u(E — €;)
is the channel wave number. The channel energy, ¢;, is an
eigenvalue of the asymptotic Hamiltonian. Scattering cross
sections are calculated from the elements of the scattering
matrix, S;;, according to

4 2
Oy ey = k_2 § |8yy’8w’5m(m2 - Sy’l/m’l;ylmg ) (15)
14 Lmy 0/ m),

where the internal state is labeled by the composite label
y = {ja,my,jp,mp}. Cross sections for processes where the
initial and final states are identical are referred to as elastic
cross sections, whereas m 4- or m g-changing collisions corre-
spond to Zeeman transitions. Transitions to excited spin-orbit
manifolds, j4- or jg-changing collisions, are energetically not
accessible in cold collisions.

When a magnetic field is included the uncoupled states
[Eq. (13)] are not eigenstates of the asymptotic Hamiltonian

A

Hasymp = Vs + V5o’ + Vaoorman + Vaooman + Hior + Hioo

Zeeman Zeeman elec elec*

(16)

Therefore, we transform to an asymptotic basis which is related
to the uncoupled representation by

|[nama)ngmp)|€mg)

= 3 lamalism ) emo) U n, Uy, (17)
JasJB

where Uj,,, are elements of the unitary transformation
discussed in Sec. IT A. Scattering cross sections are determined
from Eq. (15) with y = {ns,ma,np,mp}. Again, collisions
that preserve m 4 and m g are referred to as elastic, whereas m 4 -
or m g-changing collisions correspond to Zeeman transitions.
As the Zeeman transitions from the m4 =n4 and mp = np
initial states are exothermic, these are also referred to as
Zeeman relaxation.

For the extent of the radial grid, we can formulate some
minimal requirements. If a magnetic field is present, avoided
crossings occur at large separation, and these should be
included in the radial grid [25]. The position of these crossings
may be estimated from the criterion that the difference between
the centrifugal terms for the initial and final states compensates
the Zeeman splitting

R+ 1) — e+ 1)]
2 R? ’

gjiupBAmyp = (18)

Here ¢ is the angular momentum associated with the end-over-
end rotation, and the change in projection quantum numbers is
defined as Amyp = my + mp —m'y —m'y, where unprimed
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(primed) quantum numbers refer to initial (final) states. In the
lowest spin-orbit manifold, j = 3/2 and the Landé g factor
gj ~ 0.8, as will be discussed in Sec. IID. In the field-free
case, magnetic dipolar relaxation also occurs at long range,
and one should propagate past the classical turning point

e+
R. = /2M—E' (19)

See Sec. I D for a detailed discussion. For the lowest energies
of 1077 K considered in this work, propagation to 5x 10* a is
required.

C. Symmetry constraints

In Appendix B, we consider the action of spatial inversion,
i, and nuclear permutation, P,p, on the channel functions of
Eq. (12). The results are

i1(jajs)jast: JM)
= (=D"|(jajp)jasts: IM),
Pagl(jajp)japt; J M)
= (=Y ian e (g ja) japls M), (20)

where n, = 21 is the number of electrons of the scandium
atom. The channel functions are adapted to permutation and
inversion symmetry as

[1(jajB)jat; JM)

1
+ — .
|¢jAj1;jA1;4;JM> - 2(1 + 8}, i )

T (=D (g ja) jagls IM)]. (21)

Since these symmetries are conserved, only states with the
same permutation symmetry, given by the =+ sign above, and
inversion symmetry, given by (—1)¢, are coupled.

The only stable naturally occurring isotope of scandium is
45Sc. This nucleus is a fermion with nuclear spin quantum
number I =7/2. As the total wave function should be
antisymmetric with respect to the interchange of the two
nuclei, the nuclear spin state determines the contribution
of symmetric and anti-symmetric channel functions. If all
contributing nuclear spin states are symmetric under £, 3, only
antisymmetric channel functions occur. This would be the case
if all nuclear spins are aligned with the external magnetic field,
for example. If the nuclear spins are not aligned, symmetric
channel functions also contribute, and the relative weights
follow from the nuclear spin statistics for I = 7/2.

In the entrance channel, both atoms are in the lowest
spin-orbit manifold and have their magnetic moments aligned
with the external magnetic field, such that we have j4 = jp =
3/2and jap = ja + jp. Therefore, the symmetrized entrance
channel functions exist only for odd parity [(—1)¢ = —1], and
antisymmetric entrance channel functions are present only
for even parity [(—1)¢ = 1]. Thus, if the atoms are prepared
in identical internal states, the atoms, which are composite
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bosons, can collide only through even partial waves, even
though the nuclei are identical fermions.

D. Threshold laws

The Wigner threshold laws state that collision cross
sections for isoenergetic processes near-threshold depend on
the collision energy as

o x EFY, (22)

with ¢, ¢’ the relative angular momenta in the entrance and exit
channels, respectively [26]. For exothermic processes, such as
Zeeman relaxation in an external magnetic field, the near-
threshold scattering cross sections vary with collision energy
as

o« EC12, (23)

These threshold laws are independent of the actual interaction
mechanism, as long as it operates at finite range [26,27].

Near-threshold elastic collisions in field-free space with
even parity will occur through s waves, £ = ¢ =0, and
the cross section will approach a constant value. Zeeman
transitions cannot occur through s waves, and the dominant
inelastic process will involve one d wave, leading to an
inelastic collision cross section proportional to E2. For odd
parity, the lowest partial waves are p waves. Therefore, both
elastic and inelastic cross sections are suppressed at least as E°.
In magnetic fields, Zeeman transitions becomes exothermic,
and collisions occurring through initial s waves lead to cross
sections that diverge as E~/2.

It has been pointed out that the Wigner threshold laws do
not apply when long-ranged interactions are present [27,28].
Magnetically trapped atoms necessarily have a magnetic
dipole moment, thus long-ranged magnetic dipole interactions
are generally present. The near-threshold behavior of magnetic
dipolar relaxation of X-state diatomic molecules has been
derived using the Born approximation in Ref. [29]. These
results also apply to the case of magnetically trapped atoms
with the minor revision that in this case the magnetic dipole is
approximated by

R~ gjip). (24)

The Landé g factor depends on the spin-orbit manifold and
can be calculated as

gj = ar + g,
iGG+1)— D+ L(L+1
L=J(J+ ) S(.S.+ )+ L(L + )’ 25)
2jG+1D
o _JU+D—LIL+1)+SS+1)
S 2jG+1) '

For scandium we have L =2, S=1/2, and j =3/2
in the lowest spin-orbit manifold. Equations (25) yield
gj = 0.79954, which is in good agreement with the experi-
mental value of g; = 0.79933 [20].

We will not repeat the derivation in Ref. [29] but sim-
ply state the resulting scattering cross section in the Born
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approximation

BA 1573 u?

1 [k
0y, = 2—7#(#381'0!)4(2]/4 + DjaGa+ D2js + Djs(js + 1) Z <P>
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21
e+ 120+ 1)

. ’
Lmemy,

(&) ’ C—0—1 040 N e 2 ey
X|:F(£/_Z+S)F(£+3/2) 2 Fy s ,—,€+3/2,<P) <O 0 O)

2

(1 1 2\ ja 1
Amy Amp —Amyp —m'y  Amy

Here, I' is the Gamma function, , | denotes Gauss’s hyperge-
ometric function, the quantities in round brackets are Wigner
3-jm symbols, and y is a composite label for the internal
state of the atoms, |y) = |jama)|jgmp). The fine structure
constant is given by «, and the differences in projection
quantum numbers are defined as Amy = m/y —my, Amp =
m'y —mp, and Amup = Amy + Amp. The wave number of
the initial state is given by k = h~'\/2E, with E the collision
energy, and primes denote the final state. The effect of the
magnetic field is contained in the wave number of the final
state

, 1
K = ?1\/2M(E +gjupBAmyp). @7

J

4
LB . o : . '
ot = 192071u2<g]TB> (2ja+ DjaGa +D2jp+ Djp(js + 1) Z

. . N2 . . N2
( Ja 1 JA) < Js 1 ]B) (
X ’ /
—myy Amy mg —my Amp mp

1 1 2\
“NAmy Amg —Amag) -

Again, the prime on the sum serves to remind that the term with
¢ = ¢/ = Oisexcluded. In this case, the scattering cross section
is independent of the energy, o o< E°, which is not consistent
with the Wigner threshold laws. Apart from a factor k/k’, the
energy dependence is completely contained in a radial integral
of the form

/ jekR)R™? ju(K R)R*dR = f JeGxk /K je(x)x ! dx.
0 0

(29)

The functions j,(x) are the spherical Bessel functions of the
first kind [24]. In the field-free case k = k', and this integral
is independent of energy, leading to a constant cross section.
The integrand peaks in the region where the Bessel functions
are maximal, i.e., near the classical turning point

L
R. = (£+1).
2uE

(30)

Ja
ma

N R A 2 A
—-my  Amp mpg —m, —Amap my)

(

Equation (26) has been derived in the Born approximation
and is expected to be valid for low energy and low magnetic
fields. Furthermore, this result applies only to the case where
£+ ¢ # 0, since otherwise Eq. (12) of Ref. [29] diverges.
The prime on the sum serves to remind us that the term with
¢ = ¢ =0 is excluded. For fixed B # 0, Zeeman relaxation
is exothermic, and near threshold k <« k’. In this case, the
threshold behavior of the cross sectionsis o oc E“~/2and o o
B'/2=¢[29]. We note that this energy dependence is consistent
with the Wigner threshold laws [Eq. (23)], but the magnetic
field dependence is different from that derived in Ref. [30].

For zero magnetic field k = k/, and the resulting cross
section can be obtained as the limit of Eq. (26) for B — 0,

(204 D20 + 1)
(0 =€ — 1) =L+ D+ O + £ +2)]

/ ’
Ll mem;,

¢ 2 N[ ¢ 2 e\
0 0 O —my, —Amap my

(28)

(

In the ultracold limit, E — 0, the classical turning point moves
to infinitely large separation, and the Wigner threshold laws
are not applicable.

For nonzero magnetic fields, the classical turning point for
the final state occurs at finite separation, given by

o @+ 1)
‘ 2pugingAmapB’

Near the threshold kR, <« 1, and the spherical Bessel function
can be approximated using the expansion

€2y

A

2!
+ 0(xl+1)’

¢+ 1)! (32)

Je) = x*
and Eq. (29) is proportional to (%)‘3. The cross section is
proportional to the product of the square of this integral and
a factor k/k’, which leads to the scaling o oc E‘/2 and
o o« B'/27¢, discussed above [29]. Since magnetic dipolar
relaxation occurs around the classical turning point, rather
than inside the centrifugal barrier, the scaling with the
magnetic field does not follow the threshold law of Ref. [30],
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o o« B>t which was derived under the latter assumption.
However, for a nonzero magnetic field, the classical turning
point occurs at finite separation given by Eq. (31), such that
the transition occurs at a finite range, and the energy scaling
of the cross section obeys the Wigner threshold laws.

We provide numerical implementations for the evaluation
of Egs. (26) and (28) as MATLAB routines [31]. These are made
available in the Supplemental Material [32].

III. NUMERICAL IMPLEMENTATION

The coupled-channels calculations are performed us-
ing MATLAB programs [31], which are made available as
Supplemental Material [32]. This section discusses the details
of the numerical implementation.

A. Calculations without magnetic field

In the field-free case, the total angular momentum, J, is
a conserved quantity, and the calculation is performed per J.
Furthermore, the calculation is independent of the projection

PHYSICAL REVIEW A 90, 052702 (2014)

quantum number, M. Calculations for different J use the
same radial grid, which is generated beforehand. We use an
equidistant grid from 1 to 20 ay, with a step size of 0.01 ay,
in the short range. Beyond 20 ay, the radial grid is extended
logarithmically, such that the step size doubles every 50 steps
but does not exceed 200 ay.

Then, per total angular momentum, J, we generate two
channel bases. One is the primitive basis of Eq. (12); the
other is the permutation and inversion symmetry adapted
basis of Eq. (21). Then we precompute all angular matrices
in the primitive basis, as discussed in Appendix A. We
obtain the angular matrices in the symmetry adapted basis
by transforming the matrices in the primitive basis with a
rectangular transformation.

A detail that deserves additional attention is the computa-
tion of the 18-; symbol in the matrix element of the potential.
To the best of our knowledge, there is no efficient algorithm
to directly compute this 18- j symbol. Therefore, we compute
the 18-/ symbol in terms of 6-j and 9-j symbols. We use Eq.
(A.4.14) of Ref. [33], which is repeated here for completeness:

kA LA SA S% L/B kB
S
L)y Jja i Lp
kap
S Jh Jag JjaB JB Sp
. .,
= Z(le + D2x, + 1)(_1)kA+kB+L,A+LB+SU+S;‘7j’f7j,/q+jf“f+j;\8 anJas kAB}
oo X2 X1 S
L, L;‘ ka Sa L4 jA S}; L/B Jl,9
X LB L/B kB SB LB jB S;x L:4 ‘]‘/4
X1 xy  kap S x1 Jjas S x2  jip

For efficiency, the double sum over the 3n-j symbols should
not be performed at runtime, but we precompute all the
required 18- and store these on disk. This results in a file
of about 100 kB for two 2 D-state atoms.

Then we continue with propagation, during which the
W-matrix is constructed by multiplying the angular matrices
with the R dependent coefficients and adding the results. First,
we use the renormalized Numerov algorithm to propagate
across the short range and repeat this step for a number of
energies. Then we simultaneously propagate the Q matrices
for all energies in the long-range regime. In treating these
energies simultaneously, the diagonalizing step in the propa-
gator does not have to be performed repeatedly, which saves
computational time.

After propagation, we match to the scattering bound-
ary conditions to obtain the S matrix. The calculation
is repeated for all J, and the resulting S matrices are
accumulated. Next, we transform to the uncoupled rep-
resentation for all M and collision energies. Finally, we
extract the cross sections for elastic collisions and Zeeman
transitions.

(33)

B. Calculations with magnetic field

If magnetic fields are included, J is strictly speaking no
longer a good quantum number. Since the Zeeman interaction
induces only (weak) coupling between states with J quantum
numbers that differ at most by 1, it would be a reasonable
approximation to neglect these couplings and use J as a
good quantum number. We do not make such approximations
and treat the Zeeman interaction rigorously. The projection
quantum number, M, is conserved, but the calculation is no
longer independent of M. The calculation still proceeds by
generating a radial grid, as well as primitive and symmetry
adapted coupled basis sets, which now contain functions with
different J. Angular matrices are calculated as before.

Then, before starting propagation, we numerically deter-
mine the asymptotic basis. We first determine the transforma-
tion to the uncoupled basis. Next, we consider the asymptotic
Hamiltonian for each atom, consisting of its spin-orbit and
Zeeman interaction,

AY = Aso/2(j; — L3 — 83) + Bup(La-+8:842). (34
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and analogously for atom B. We calculate and diagonalize the
matrix representation of this (B-dependent) operator in the ba-
sis {| jam )}, for fixed m 4 and running j4. The asymptotic ba-
sis is determined from the eigenvectors of this matrix, and the
channel energies are related to the eigenvalues, using Eq. (17).

After determining the asymptotic basis and channel ener-
gies, we determine the total energy from the collision energy
and the energy of the initial channel. Then we propagate the
solutions of the coupled-channels equations across the radial
grid, as in the field-free case. We transform the final Q matrix
to the uncoupled representation, and finally to the asymptotic
basis. Then we match to the asymptotic boundary conditions,
calculate the elastic and inelastic cross sections, and repeat
this calculation for all required values of M.

IV. RESULTS
A. Collisions in field-free space

The coupled-channels calculations have been converged to
within 1% with respect to the radial grid and the truncation
of the angular basis. To this end we used a radial grid that
is equidistant with spacing 0.01 ay between 1 and 20 ay,
and propagate using the renormalized Numerov method [22].
In the long range, we continue using the renormalized Airy
propagator on a logarithmically spaced grid up to 10* ay for
energies E > 1073 K and 5x10* aq for lower energies [23].
The angular basis is truncated by including only functions with
£ < Lpax. For calculations with E < 1073 K, the calculation
was converged with £,,,x = 13, whereas we used £y.x = 101
for energies E > 1073 K.

The cross sections as a function of the collision energy
are shown in Fig. 1. The two panels refer to collisions with
even and odd parity, respectively. Solid lines correspond to
inelastic cross sections, elastic cross sections are shown as
dashed-dotted lines. Inelastic cross sections obtained in the
Born approximation [Eq. (28)] are shown as dashed lines.
For odd parity, also the elastic threshold cross section can be
calculated in the Born approximation, and this result is shown
as a dotted line. The dashed vertical lines mark three regimes:

(1) For energies E > 10~ K, the short range can be
reached classically. In this regime, the magnitude of the elastic
and inelastic cross sections is comparable.

(2) In the Wigner regime, at energies between 10~ K and
107% K, the short range can be reached only by tunneling
through the centrifugal barrier. Therefore, the collision cross
sections follow the Wigner threshold laws in this regime. Thus,
the elastic cross section for even parity becomes constant,
whereas the other cross sections are suppressed as o o« EZ, as
discussed in Sec. IID

(3) In the Born regime, for energies E < 10~% K, short-
range mechanisms are suppressed so heavily that long-ranged
magnetic dipolar relaxation becomes dominant. As shown in
Sec. II D, this leads to a constant cross section in the limit
of zero energy. The results in the Born approximation are
shown as dashed lines in Fig. 1. In the ultracold limit, the
Born approximation results agree with the coupled-channels
calculations to within a few percent.

In the case of odd parity, (—D¥ = —1, elastic and inelastic
collision cross sections are roughly in the same order of
magnitude in all three energy regimes. For the even parity
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FIG. 1. (Color online) Scattering cross sections as a function
of collision energy in field-free space. Solid lines correspond to
inelastic cross sections, dashed-dotted lines correspond to elastic
cross sections. Results obtained in the Born approximation (BA)
are shown as dotted and dashed lines, for elastic and inelastic cross
sections, respectively. Vertical dashed lines separate the different
regimes, as discussed in the text. The upper panel corresponds to
even parity, (—1)* = 1, whereas the lower panel corresponds to odd
parity, (—1)¢ = —1.

case, (—1)¢ =1, only inelastic collisions are suppressed in
the Wigner regime, which increases the ratio of elastic-to-
inelastic collisions. Thus, the largest ratio of elastic-to-inelastic
collisions can be obtained by preparing all atoms in identical
nuclear spin states, such that only even parity collisions occur;
see Sec. I C. Therefore, we will focus on the even parity case,
(—1)¢ = 1, in the remainder of this work. For energies below
10~* K, the ratio of elastic-to-inelastic collisions is larger than
the critical value of 150 [34], and evaporative cooling from
such temperatures should be efficient. Unfortunately this is
colder than a typical buffer-gas cooled sample [35].

B. Collisions in magnetic fields

Coupled-channels calculations have also been performed
including a homogeneous magnetic field. The resulting elastic
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FIG. 2. (Color online) Elastic and inelastic cross sections as a
function of the collision energy and magnetic field are shown in
the upper and lower panel, respectively. Solid lines correspond to
inelastic cross sections, dashed-dotted lines correspond to elastic
cross sections, and dashed lines represent results obtained in the
Born approximation, respectively.

and inelastic cross sections for the even parity case as a
function of collision energy and magnetic field strength are
shown in Fig. 2. Solid lines refer to inelastic cross sections,
elastic cross sections are shown as dashed-dotted lines, and
cross sections obtained in the Born approximation are shown
as dashed lines.

In an external magnetic field, Zeeman relaxation becomes
an exothermic process. Therefore, the inelastic cross sections
are seen to increase with magnetic field strength. For moderate
magnetic field strengths of 1 G, the ratio elastic-to-inelastic
hardly exceeds the critical value of 150 at any energy.

Quantitative agreement between coupled-channels calcula-
tions and the Born approximation is obtained for low energy
(E < 107° K) and low magnetic field strength (B < 0.1 G).
At higher field strengths, deviations from the results in the
Born approximation occur. At a field strength of 100 G,
the deviation is larger than three orders of magnitude, and
the elastic cross section is also affected.
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FIG. 3. (Color online) The ratio elastic-to-inelastic, €, as a func-
tion of the mass-scaling parameter, A, for B = 0. The dashed line
marks the critical value of € = 150.

The differences between the numerically exact coupled-
channels calculations and the Born approximation results can
be understood in terms of the exothermicity:

AE:ngBAmABB. (35)

A magnetic field of B = 1 G corresponds to an exothermicity
of about 5x 1073 K, i.e., an energy for which the Born approx-
imation results deviate from the coupled-channels calculations
by an order of magnitude in the field-free case, as shown in
Fig. 1. Likewise, a field strength of B = 100 G corresponds to
an exothermicity of about 5x 1073 K. At this energy, the Born
approximation completely fails in the field-free case, as well.
For the lowest field strength of B = 0.01 G, the exothermicity
is around 5x 1077 K, and the Born approximation is accurate
for low energies.

C. Sensitivity to the potential

It is well established that scattering cross sections at
ultracold energies are highly sensitive to the details of the
potential, due to the sensitivity to the position of the least
bound state. In order to sample the effect of the uncertainty in
the ab initio potential, we have scaled the reduced mass by a
factor, A, varying between 0.9 and 1.1. This samples the effect
of scattering resonances, as scaling the reduced mass shifts the
position of the (quasi-) bound states [36].

The ratio of elastic-to-inelastic collisions, €, as a function
of the mass-scaling parameter, A, for B = 0, is shown in Fig. 3.
A large number of resonances is observed, owing to the large
density of states near zero energy, due to the large reduced
mass and deep potential well. For energies below 107 K,
€ exceeds the critical value, reasonably independent of A, and
evaporative cooling from such temperatures will be efficient.
For energies of 1073 K, € is below the critical value 150,
irrespective of A.

D. Mechanism of Zeeman relaxation

In order to identify the main mechanism for the collisional
reorientation of the magnetic moments, we have repeated
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FIG. 4. (Color online) Scattering cross sections as obtained when
turning off a single anisotropic interaction for B = 0. The top panel
shows the elastic cross section, and the bottom panel shows the
inelastic cross sections.

scattering calculations with a single anisotropic interaction
turned off. We turned off the magnetic dipole-dipole coupling,
the long-range electric quadrupole-quadrupole interaction,
the long-range dispersion interaction, and the short-range
interaction. For the last two interactions, we set the anisotropic
components to zero but kept the isotropic terms given by
the k4 = kp = kap =0 terms in the interaction potential
[Eq. (AD)].

Figure 4 shows the elastic and inelastic cross sections as a
function of the collision energy. Without the magnetic dipole
coupling, the Wigner threshold law continues to suppress the
inelastic cross section in the ultracold limit. Thus, turning
off the magnetic dipole coupling qualitatively changes the
inelastic cross sections in the ultracold regime. Turning off one
of the other interactions modifies the scattering resonances and
dramatically changes the value of the elastic cross section in
the ultracold limit. However, these large differences found in
Fig. 4 essentially reflect the sensitivity of the dynamics to the
potential, and the variation is comparable to that indicated by
the A scans. This is also shown in Fig. 5, which shows such
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FIG. 5. (Color online) Ratio elastic-to-inelastic, €, as a function
of the mass-scaling parameter, A, for the full calculation (Full) and as
obtained when turning off the short-range anisotropy (SR), magnetic
dipole coupling (MD), electric quadrupole-quadrupole coupling
(QQ), and the dispersion anisotropy (Disp). The dashed horizontal
line marks the critical value € = 150. The top and bottom panels
show the results for energies of 10~* K and 10~ K, respectively.

A scans with individual anisotropic interactions turned off. At
an energy of E = 107> K, the range in which the ratio of
elastic-to-inelastic collisions, €, varies with A is unaffected
by turning off any single anisotropic interaction. At these
energies, Zeeman relaxation is driven by both short-ranged and
long-ranged anisotropic electronic interactions. At an energy
of E =107% K, turning off the magnetic dipolar coupling
systematically increases the ratio €, as discussed. Thus, the
magnetic dipole coupling drives Zeeman relaxation in the
ultracold limit for B = 0.

V. CONCLUSIONS

A coupled-channels theory description of the scattering
dynamics of cold magnetically trapped scandium atoms is
presented. We distinguish three regimes. For energies above
E = 1073 K the short-range can be reached without a barrier,
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and comparable elastic and inelastic scattering cross sections
are found. For lower energies, the short range cannot be
reached without tunneling through the centrifugal barrier.
Therefore, inelastic collisions are suppressed according to
the Wigner threshold laws. In the Born regime, for energies
below E = 107° K, tunneling through the centrifugal barrier
is so strongly suppressed that magnetic dipolar relaxation in
the long range becomes dominant. This relaxation mechanism
does not follow the Wigner threshold laws but can be explained
in the Born approximation.

Large inelastic cross sections have been found, which is in
agreement with experiments with cold submerged-shell atoms.
This includes collisions of titanium atoms [37], as well as
collisions of the heavier erbium and thulium atoms [4]. In the
ultracold regime, the main mechanism for Zeeman relaxation
is found to be the magnetic dipolar interaction. Above 107 K,
the relaxation is driven by anisotropic electronic interactions.

J

((GajB)jasls IM|Veiee |(hip)jngt's I'M')

=8y, 70m.m
S.ka.kp.kap

" C kap O\ [jap Jjip kas
0 0 0 a4 b4 J

ka

Here [l;,l»,...,l,] is a shorthand for (21 + 1)(2l,+1)---
(21, + 1), the factor in round brackets a Wigner 3- jm symbol,
the quantity in small curly brackets is a Wigner 6-j symbol,
and the larger one represents an 18-;j symbol, Eq. (A.4.14)
of Ref. [33]. The space-fixed expansion of the interaction
potential, Vki,kg,kAg (R), is related to the ab initio potential
energy surface through Egs. (6)—-(10) and (19) of Ref. [5]. The
ab initio energy curves are calculated at the NEVPT2/aug-cc-
pVQZ level of theory, as reported in the companion paper [11].
The spin-orbit interaction is assumed to be of the form

Vso = Aso(Lia -Sa + Lz - Sp)
Aso »m 5 & m A
= T(Jg — L3 -83+73-13-8), (A2

where Ago is the atomic spin-orbit coupling constant, which
has the experimental value of 0.3068 m E;, [20]. This operator
is diagonal in the coupled basis, and its matrix elements are

((jain)iasl: IM|Vsol(iyip)ingt's I’ M)
Aso
= 7511'5114/\/1/5_7']"503’51“1';3/',,/';

27
X [jA(jA +D+js(jp+1— 7} (A3)

We now turn to the magnetic interactions. The magnetic
dipole moment of each atom is given by Eq. (6). The magnetic
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Below 10~ K, the ratio of elastic-to-inelastic cross sections
is likely to be favorable for evaporative cooling.
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APPENDIX A: MATRIX ELEMENTS IN
THE COUPLED BASIS

On the basis of Eq. (12), matrix elements of the interatomic
interaction potential are given by Eq. (33) of Ref. [5]. Using
LAZL;‘:LBZL;EZZaHd SAZS;’:SBZS,BZI/Z,
we have

Z VkS/‘thvaB(R)(_1)kA+kB+jA+jA_j;\B_J_1 [jA9.].;‘5sjB7j1/31jABajI/AB7676/,kAskB7kAB]l/2[S]

1 1
2 ! 1 2 ks
Ja Js 2 - (AD

Ja JiB JAB

(
dipole-dipole coupling is given by

A~

Ol2 N R A (0
Vansgnip. = =305 x Ly ® ip]® @ CPB]). (Ad)

Here « is the fine-structure constant, and we define C Q)(Ié) to
be the rank-2 tensor whose spherical components are Racah
normalized spherical harmonics depending on the polar angles
of R in the space-fixed frame. The symbol

[A%0 @ BUYfuw = 5 AR B (kaqaksqslkasqas)
94,98

(AS5)

is the spherical component g4p of the irreducible rank-k4p
tensor product of A®*) and B*». Note the relation with
Eq. (2) of Ref. [29], where the magnetic moment has no
orbital contribution. Taking a matrix element, and applying
the Wigner-Eckart theorem, we obtain

((GajB)iasls I M| Vimagnaip |G jp)isgl's I M)

az ., . -/ 2
= Vo 8y 8u (=D {’2/3 T4 ]}

x (jallia ® Rl 211 4p)(LIICPNIE). (A6)
The reduced matrix element of the spherical harmonic is given

by

<2||c<2)||2’>=(—1>‘[E,E’]1/2<§ : f,) (A7)
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The other reduced matrix element may be obtained by substituting Eq. (6) for the dipole operator, and subsequently simplified

by noting that L 4 acts only on |L4 M| ,), and similarly for S4 and atom B. Using for the reduced matrix element of an angular
momentum operator

GBI =87V + D2j + D, (A8)
we have
ja oy 1
Uaslllis ® kgl Pl jhg) = V5Uias il Uallkall i) Gsllisllis) { s Jp 1. (A9)
jaB  Jjap 2
with

1
2 2

e o " jaJy 1 , ja o ji 1
<;A||uA||JA>=;LB[JA,jA]“2(—1>‘/2[(—1>W3O{2 2‘“ 1}+gs<—1>“v3/2{1 . 2” (A10)
! 1
Proceeding identically for atom B, we obtain

((Gajp)iasls I M| Vimagndip |G ip)ingts I M)

. . jaJy 1
(npa)? T+ o € 2 UN\(jap i 2 . .
=818 30 -1 +jagt3/2 , /’ , /’ , ’ ,Z,E/ 1/2 /
T SMm N 8 (=D Lja:Ja-JB+Jp+JaB:Jap-t.C] 0 0 olle ¢ 7 .]B .],B
jaB  Jap 2

§ i, 1 . in .1
x[(—l)m«/%{]; JZA l}+g5(—1)h,/3/z{]f Ja H

1
2 2 2

—_—

x [(—1)18@{]; ]23 1}+g5(—1)13w/3/2 {JIB /s ” (A1)
2 > 2

The interaction with a homogeneous magnetic field is given by

Vyeeman = =R - B = ugB(L. + 8,5.), (A12)
with the magnetic field, B, in the space-fixed z direction. The matrix elements of the z component of the angular momentum
operators are evaluated using the Wigner-Eckart theorem, for example,

J 1 J

iajB)] E;JMi,[” i i) jh el s I MY = (=1 M
((jajB)jaB | ,~|(]A]B)]AB ) (=D (—M 0 M

)((jAjB)jABE;Jllf-la”(j;&jl/?)j/,{Bg,;J/)- (A13)
Again, the reduced matrix element can be simplified by noting that L, acts only on |L 4 M 1, Proceeding identically for S, and
the second atom, combining the results yields

(Gais)ianl: I M| Vzeemanl (i jg)japt's J'M')

. , . J 1 J J J’ 1
= (= 1)/ Mt 32, g BIJL T jag, J) ]1/2< ) y .
o -M 0 M Jag  Jap ¢

TR jas J. L |ja Jjy 1
| 8,5 (=D Ity A1 AV/30 T AR L
Ja Ja JB 2 2 5

-~/

JB JB JA

i antiyr i J J 1| |js Jjz 1
+5j,\j,g(—I)JBMARﬂB[JB,]é;]I/zm{ A ” 5 ;}
2

./

. j ¥ 1 j i1
_,’_gsajgjg(_l)jg-!-],qg-"m [jAajA]lﬂ 3/2 {]AB ],.43 ' } {]A Ja }

Jaoa sz 3 2
- T

g8, (— Lyt gtz Ay VAR Jan o LR T . (Al4)
Jjg JB Ja) |z 3 2
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APPENDIX B: SYMMETRY OPERATIONS

In this Appendix we consider the action of symmetry operators on the channel functions [Eq. (12)]. In particular, we consider

spatial inversion and the permutation of identical nuclei.

Following Ref. [38], we write the channel functions explicitly as

|(jajs)jasl; IM) = A Z

ma,mp,map,ny

D@y, S0, nma (Vl — Ry,w1,r2 — Ry, . ..

sn, — RA awng)

- = - = - =
X CDLB,Sg,jR,mR(VnU—H - RvanP+lsrn(+2 - RB7wn‘,+2» e, — RBva)nﬁ-nC)

X |€mg)(jamajpmp|japmap){japmaptme|J M), (B1)

with 7; the spatial coordinates of electron i, w; denotes the
electron spin coordinates n, = 21 is the number of electrons
of the scandium atom, and Ry the coordinates of nucleus X
with X = A, B. Denoted by <I>L_g,j,m(71,a)172,w2, . ,?ne,a)ne)
is the electronic wave function of an atom at the origin, with
orbital (L) and spin (S) electronic angular momentum, which
are coupled to a total, j, with space-fixed projection quantum
number m. The operator A antisymmetrizes the wave function
with respect to the interchange of any two electrons. We note
that, strictly speaking, the transformed adiabatic states are
written as products of atomic states only for asymptotically
large R. However, the symmetry properties derived in this
section are the same for finite and asymptotically large R.
The spatial inversion operator, f, inverts the coordinates of
all particles with respect to the center of mass of the dimer,
it = 7,
iRAi" = =Ry = Ry, (B2)
The electronic wave functions have well-defined parity,
which is gerade in the case of scandium, whereas the

J

(

nuclear wave function obtains a phase (—1) under inversion.
Thus, the coupled space-fixed functions of Eq. (12) have
definite parity given by (—1)!, as they transform under
inversion as

11Gjajp)jasl; IM) = (=1)*|(jajp)japl; IM).  (B3)

We denote the operator that interchanges the two identical
nuclei by P4p. The action of the permutation operator on the
coordinates of the particles is given by

ﬁAB7iﬁ,IB = Ti,
PasRAP), = Rp. (B4)

The action of P45 on the nuclear wave function is identical
to inversion of the nuclear coordinates, which yields a phase
of (—1)¢. The permutation operator, ﬁA B, does not act on the
electronic coordinates in the space-fixed frame. However, the
electronic wave function of atom A is centered at R4, hence it
parametrically depends on R 4. Under the action of P4z, we
obtain for the electronic part

Pyg A, (1,2, ..., RA)D,, (ne + Ling +2,...,n, +n,; Rp)

=AD,,(1,2,...,n,;Rp)®,,(n, + 1,n, +2,...,n, + 1.5 Ra)

= AP®, (n, + 1,n, +2,....n, 4+ 1, Rp)®,,(1,2,....n,; Ra)

= (—1)”"’.[((1)},8(1,2, e RO)®, (e + 1ne +2, ... ,n, +n.; Rp), BS)

where ®,, (1,2, ... ,n.; R4)is ashorthand notation for ®;, s, j,.m,(F1 — Ra,@1.F2 — Ra, s, . ..

o, — R, ,wy,). The permutation

operator P interchanges electrons i and i + n, for alli € {1,2,...,n.}, and in the last step we used AP = (=P A, where p is

the parity of the permutation operator, 2, which equals 7.
Combining the results above, and using

(jamajsmpljapmag) = (=) HE7I8 (Gamp jamal japmag), (B6)

we have for the action of P, on the channel functions

Papl(jajp)japl; IM) = (—1)atis=iastttne|(Gip i1y japls TM). (B7)
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