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Concept of effective states of atoms in compounds to describe properties determined
by the densities of valence electrons in atomic cores
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We propose an approach for describing the effective electronic states of atoms in compounds to study the
properties of molecules and condensed matter, which are circumscribed by the operators heavily concentrated
in atomic cores. Among the properties are hyperfine structure, space parity (P) and time reversal invariance (T)
nonconservation effects, chemical shifts of x-ray emission lines (XES), Mössbauer effect, etc. An advantage of the
approach is that a good quantitative agreement of predicted and experimental data can be attained even for such
difficult cases as XES chemical shifts providing correct quantum-mechanical interpretation of the experimental
data. From the computational point of view the method can be quite efficient being implemented in the framework
of the relativistic pseudopotential theory [A. V. Titov and N. S. Mosyagin, Int. J. Quantum Chem. 71, 359 (1999)]
and procedures of recovering the wave functions in heavy-atom cores [A. V. Titov, N. S. Mosyagin, A. N. Petrov,
and T. A. Isaev, ibid. 104, 223 (2005)] after a molecular, cluster or periodic structure calculation performed on the
basis of pseudo-orbitals smoothed near the nuclei within the pseudopotential approximation. We report results
of our studies of a number of atomic and molecular systems to demonstrate the capabilities of the approach.
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I. INTRODUCTION

One of the most popular ideas in quantum theory of elec-
tronic structure of molecular and condensed matter systems
is the concept of atoms in molecules (AIM). Its use allows
one to understand some chemical-physical properties of a
whole system by analyzing the characteristic properties of
constituent atoms. Though there is a well-known formulation
of “quantum theory of atoms in molecules” developed by
Bader [1,2], unambiguous and commonly accepted definitions
of such terms as “partial atomic charges” or “state of an
atom in a molecule” do not exist. Using different theoretical
backgrounds and pursuing certain goals one derives different
results, which can be useful for some applications and not
so useful for the others (e.g., see the discussion about partial
atomic charges on p. 309 of Ref. [3]).

Several basic concepts and quantitative tools are widely
exploited in the literature on the subject. Basic concepts such
as the oxidation state (number), valence, formal charges,
etc. are commonly used to characterize the charge states
of atoms in molecules to get a preliminary idea about the
chemical structure of a compound of interest. However, there
are no well-defined representations of these concepts by
observable quantities which would be commonly accepted
by the physical-chemical community. This means that the
following applies for intuitively useful quantities such as
oxidation state, valence, etc: (i) They cannot be presented as
expectation values of some unambiguous quantum mechanical
operators; (ii) they cannot be uniquely determined from
experiments (even nominally, see Table II for different charge
states of Pb causing the same chemical shifts); (iii) they can be
well-defined theoretically and/or experimentally but not very
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helpful from practical point of view to be used for analysis
of vital electronic properties of a chemical system (see next
paragraph and “Class III charges” in Ref. [3]).

Quantitative approaches to describe the effective states of
atoms in compounds are mainly based on using Hartree-Fock,
natural or localized orbitals, and one-electron density matrices;
alternatively, they are originated on analysis of the total
electronic density ρ(�r) of a chemical system, utilizing spatial
criteria or reproducing some experimental data within simple
theoretical models (e.g., see Ref. [3] and text below).

Each of the known definitions has not only advantages but
drawbacks, which can seriously weaken the former in specific
applications. In particular, the methods based on the Mulliken
and Löwdin population analyses [4] strongly depend on the
basis set used and are not so useful for large basis sets. The
more elaborate concept of natural atomic orbitals (NAOs) [5,6]
overcomes the problem but the valence NAOs of an atom
can notably differ in various chemical compounds and they
are generally not localized on an atom, thus complicating
the comparison of effective states of the atom in different
molecular environments in terms of occupation numbers,
etc. The methods utilizing the electronic densities directly,
including those by Hirshfeld [7], Bader (see Ref. [1] and next
paragraph), Voronoi, etc. (see Refs. [3,8]), suggest partitioning
of a chemical compound by using some spatial criteria in a
manner that is not an intrinsic quantum mechanical hallmark
even if it is compatible with quantum mechanics description
of the compound. The auxiliary concepts introduced by such a
way are logical when determining the charge states of a given
atom for particular cases only.

The most sensible of the methods for determining the
effective states of atoms (and not just their partial charges)
in chemical compounds described in the literature are anyway
based on evaluation of some kind of overlapping the electronic
wave function of a chemically bonded atom with those of
a free atom and its ions. In other words, a mapping of the
effective state of an atom in a molecular environment on states
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of the free atom takes place. One of the natural approaches of
this group described in the literature is recently formulated
in Ref. [8]. The charge states of atoms in a molecule are
determined there when assigning to an atom the parts of
molecular orbitals truncated with using the Bader zero-flux
surfaces. These surfaces are defined by the equation

∇ρ(�r) · �n(�r) = 0, (1)

for every point �r on the interatomic boundary surface, with
the unit vector �n(�r) normal to the surface. Thus, the atoms
constituting the chemical system can be separated by the
spatial criterion using total electronic density only. The
overlap integrals of molecular orbitals with atomic functions
are calculated not over the whole space, but only in the
areas bounded by zero-flux surfaces. These surfaces define
the boundaries of atoms in a molecule within the Bader
analysis and the atomic expansion coefficients of the molecular
orbitals thus obtained are, obviously, consistent with the
atomic Bader charges. However, as is discussed above, such a
definition of partial atomic charges and spatial partitioning
into atomic regions is not completely consistent with the
quantum-mechanical description of electronic structures. In
particular, the relativistic atomic orbitals (spinors) with differ-
ent l,j components for valence electrons usually have notably
different spatial localizations and the atomic regions cannot be
separated by any surfaces unambiguously.

To calculate the properties of molecules described by
quantum mechanical operators heavily concentrated in atomic
cores but sensitive to variation of densities of valence electrons,
combined (two-step) approaches have been developed [9–12]
and applied to study hyperfine structure (HFS), space parity
(P), and time-reversal invariance (T) nonconservation (PNC)
effects. Earlier calculations of these properties, which are in
the context of the subject of this paper are given in Table I (see
also discussion in the next section).

In Ref. [13] a method of evaluating chemical shifts of x-
ray emission spectra (XES) for compounds containing period
four and heavier elements, that is consistent with the two step
approach, is also proposed.

On the basis of these developments one can introduce a
method for determining the effective state of a given atom in a

chemical compound (substance). This method is originated
from the relativistic pseudopotential theory [10,14,15] and
one-center restoration approaches [11,16] to recover proper
electronic structure in heavy-atom cores after the relativistic
pseudopotential simulation of a chemical substance. The
present research can also be considered as a generalization of
our computational models utilized to study the HFS and PNC
effects as well as XES chemical shifts in molecules and solids.

II. MOTIVATION

The observable properties and effective Hamiltonian pa-
rameters of our interest here include those that can be measured
and those that can only be calculated and, thus, usually need to
be checked by some appropriate way. The group of measurable
properties comprise magnetic dipole and electric quadrupole
HFS constants, XES chemical shifts, isomeric (chemical)
shifts of Mössbauer spectra, the volume effect of isotopic
shifts. The unmeasurable effective Hamiltonian parameters
cover those required to study T- and P-nonconservation effects
in nuclei, atoms, molecules, and solids: effective electric field
Eeff on (unpaired) electrons required for the electron electric
dipole moment (eEDM) search; electronic density gradients
on nuclei for Schiff moment; electromagnetic field on nuclei
for anapole moment, etc. Some examples of these studies are
discussed in the following paragraphs.

In Refs. [17–21] the calculated HFS constants in various
compounds are compared to the corresponding experimental
data [22–26] to estimate the errors in the effective electric field
calculations of HgF, PbF, YbF, HI+, and PbO, see Table I.

The XES lines correspond to electronic transitions be-
tween the shells localized in atomic cores. Comparing the
experimental and theoretical XES data one can analyze the
electronic structure (effective state) of an atom in a compound
(see below). The studies intended to extract the information
about the electronic structure in atomic cores in different
chemical compounds from the XES data are performed, in
particular, in Refs. [27–29]. The authors estimate the 3d-shell
occupancies in various metals by comparing the measured
Kβ to Kα x-ray intensity ratios to the results of atomic
multiconfiguration Dirac-Fock computations. In Refs. [30,31]
the electronic structures of various compounds were studied

TABLE I. Hyperfine structure constants.

A‖ (MHz) A⊥ (MHz) eQq0 (MHz) Relative error

199HgF
theory, Dmitriev et al. [17] (1992) 24150 23310 15%
expt., Knight et al. [22] (1981) 22621 21880

207PbF
theory, Dmitriev et al. [17] (1992) 10990 −8990 15%
expt., Mawhorter et al. [23] (2011) 10147 −7264

171YbF
theory, Mosyagin et al. [18] (1998) 8000 7763 15%
expt., Steimle et al. [36] (2007) 7424 7178

H127I+
theory, Isaev et al. [21] (2005) 968 −745 10%
expt., Chanda et al. [26] (1995) 1021 −712.6

207PbO∗, a(1)
theory, Petrov et al. [19,20] (2005) −3752 10%
expt., Hunter et al. [24] (2002) −4110(30)

207PbO∗, B(1)
theory, Petrov et al. [19,20] (2005) 4965
expt. (after theory), Kawall et al. [25] (2005) 5010(70)
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by comparing the experimental data on the x-ray chemical
shifts to the results of corresponding atomic calculations.

It can be shown [32] that the chemical shifts of Mössbauer
spectra (isomer shifts) in various compounds are proportional
to the differences of the total electronic densities on a given
atomic nucleus. The measured isomer shift values as functions
of the oxidation states (ligands) of the Fe, K, Ir, As, and other
atoms in different compounds are given in Ref. [32] together
with the calculated electronic densities on the atomic nuclei
as functions of electronic configurations for the neutral and
ionized Fe and Sn atoms.

The discussed properties and parameters characterize the
processes occurring in atomic cores or, for stationary states,
they are mean values of the operators heavily concentrated on
nuclei or in atomic cores. By other words, the properties and
parameters of our interest strongly depend on the electronic
configuration (effective state) of a given atom in a compound
(AIC)1 rather than on the chemical bonds between atoms.
We call such characteristics the AIC characteristics or AIC
properties and parameters (together with the core character-
istics, core properties, and core parameters as in our earlier
papers) assuming that the processes and quantum mechanical
operators considered are spatially localized near nuclei despite
the fact that not core but valence electrons usually give a key
contribution to the given properties and parameters.

The ultimate aims pursued in our consideration are: (i) to
formulate a robust model for description of the effective states
of atoms in compounds; (ii) to attain close and unambiguous
connection between the quantities, which can be measured
(chemical shifts of x-ray emission lines, etc.) and theoretical
models for their evaluation; (iii) to give insight into the quality
of ab initio calculations or semiempirical estimates of the AIC
characteristics, which cannot be (or are not yet) measured;
(iv) to provide a unified tool for indirect (or independent)
accuracy check of the evaluated AIC characteristics; (v) to
give a theoretical background for development of advanced
(combined) computational schemes, which would be optimal
(in the ratio quality to price) for their study; (vi) to make
calculations more feasible (easier, faster, and more reliable)
for computationally difficult cases (e.g., for complicated
molecules and condensed matter structures containing heavy
d and f elements).

It is well known that not all the well-observable properties
can be used for testing the calculated AIC characteristics but
only those that have comparable sensitivity to variation of
the electronic densities (or, generally, density matrix) in the
vicinity of a nucleus due to electronic structure reorganization
from one compound to the other, perturbations or electronic
excitations in the valence region, etc. On the other hand, some
properties that can serve as a good check for a given AIC
characteristic in one kind of compound are not suitable for
the other ones. As an example, for such molecules radicals
as BaF, YbF, and HgF [16] with sp-hybridized state of
unpaired (valence) electron, a good semiempirical estimate
for Eeff can be written as Eeff ∼ √

A ∗ Ad , where A = (A‖ +

1We will further use this terminology and acronym AIC to
distinguish them from the widely used terms atoms in molecules
and AIM.

2A⊥)/3,Ad = (A‖ − A⊥)/3, A‖ and A⊥ are magnetic dipole
hyperfine structure parameters [33]. However, this formula is
not so useful for the systems with d and f unpaired electrons
only [34]. So, a systematic analysis of applicability of some
(measurable) properties to test the other (unmeasurable) ones
is required.

The results of our earlier calculated values and experimental
data for A‖, A⊥ and electric quadrupole hyperfine structure
constant eQq0 in HgF, PbF, YbF, HI+, and PbO molecules
are presented in Table I. As one can see, the calculated HFS
values are within 10–15% agreement with the experimental
data. We should note that the calculations given in Table I are
performed with using the approximations that are compatible
with the theory given in the next section, whereas accuracy
of modern, more sophisticated calculations is notably better
(e.g., see recent results on ThO in Ref. [35]).

III. THEORY

According to the above-discussed motivation we are going
to formulate the AIC model for applications that satisfy
the following basic criteria: (i) correct quantum mechanical
description; (ii) common features of the AIC characteristics
should be taken into account; (iii) a good quantitative agree-
ment of the AIC-theory predictions with experiment.

The importance of the first criterion is discussed above; first
of all it concerns the chemical shifts, for which the present
status of theory cannot be considered as satisfactory. Taking
into account the common features of the AIC characteristics is
discussed below; it assumes exclusion of those computational
elements from the model, which do not affect essentially
the AIC properties and parameters, allows one to reduce the
computational cost visibly, and makes the calculation more
transparent.

As to the latter criterion, for different AIC characteristics
and various kinds of compounds the term “a good agreement”
can have different meanings. Consider as an example the
XES chemical shifts for heavy elements discussed in the
introduction. They can be three to six orders of magnitude
smaller than the energies of K,L lines and the difficulty
of their evaluation is highly aggravated by the two-electron
nature of energetic properties [13]. Therefore, calculation of
such chemical shifts with a good accuracy is a very serious
problem in practice. In general, however, we assume the
disagreement of an AIC-model prediction with experiment
should be at most on the level of ∼30% to provide a satisfactory
qualitative description of an experiment, though, a benchmark
ab initio calculation can provide, in principle, a better accuracy.
Note here that typical errors, 10–15%, for the HFS constants
(Table I) and error estimations for PNC effects [16], which
were earlier evaluated within simple two-step models [11], are
also compatible with this limitation. That is important since
one of main goals of the AIC theory is to provide accuracy
check for those unmeasurable molecular parameters, which
are required to study PNC effects.

The principal common feature of the AIC characteristics
given above is that the direct contributions from the spatially
valence region (r > Rc, the choice of the core radius Rc is
discussed in the next paragraph) to their values are relatively
small, though, these are the valence electrons, which determine

052522-3



TITOV, LOMACHUK, AND SKRIPNIKOV PHYSICAL REVIEW A 90, 052522 (2014)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.001 0.01 0.1 1 10

P
n
lj
(r

)
·r

(a
.u

.)

r (a.u.)

-0.3

-0.2

-0.1

0

0.1

0.2

0.01 0.1 1

7p1/2
6p1/2

scaled 7p1/2
6p1/2

FIG. 1. Large components of the 6p1/2, 7p1/2 spinors of Pb for the
5s2 5p6 5d10 6s26p2 configuration. The large components of 6p1/2

and scaled 7p1/2 spinors in the core region are given in subfigure,
where the scaling factor is chosen in such a way that the amplitudes
of large components of these spinors are equal at Rc = 0.5 a.u.

the effective state of a free or bounded atom and mainly control
the AIC characteristics taking into account the inactivity of
core shells. The valence states contribute directly to these
properties by only their small parts with the electronic density
share <10% localized in the atomic core (r < Rc) and not by
the valence and outer regions (r > Rc) with the share >90%.2

In turn, the native atomic potential from the nucleus and
core electrons is hard for the valence electrons in its own
atomic core, i.e., it is much higher by the amplitude than
the potentials of other atoms or external sources. It is also
much more by amplitude than the energies of the one-electron
valence and low-lying virtual (W) states. Note that the valence
and low-lying virtual states may change places with each
other in different environments of the atom, processes, etc.,
so one should treat them on equal footing when studying
the effective states of an atom in different compounds. We
take account of relativistic effects and, thus, use spherical
spinors (�ljm(�r/r) or |ljm〉, where l,j are the orbital and total
angular momentum quantum numbers, m is the projection
of j ) for the spin-angular part of W states. Neglecting the
outer potentials and energies of the W states in the atomic
core, the property of proportionality or homogeneous scaling
of the W spinors takes place in the core (W proportionality
below) as is shown in Figs. 1 and 2 [10,37–39]. This property
allows one to introduce the W reduced density matrix (given
below) that leads to a more intuitive (basis-set independent
and minimally sufficient) formulation of the density matrix
concept to evaluate the AIC characteristics (that is discussed

2In calculations of heavy-atom compounds the core shells of the
heavy atom(s) are usually treated as frozen. However, one can
partially account for a relaxation of the corresponding core shells
of an atom in different compounds by performing calculations of the
isolated atom after determining the state of the atom in the compound.
We use such approximation for estimating XES chemical shifts values
in various lead compounds below in the paper (see Table III for
details).
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FIG. 2. Large components of the 6p1/2 spinors of Pb for
[5s2 5p6 5d10]6s2 6p2, [. . . ] 6s1.11 6p2, and [. . . ]6s0.53 6p0.57 config-
urations. The first one corresponds to the ground state and the next
two are roughly (according to Ref. [40]) equivalent to the states of Pb
in the PbH4 and PbF4 molecules, correspondingly.

in detail below). One can see from Fig. 1 that the valence and
virtual spinors are proportional to each other in the atomic
core. Figure 2 illustrates the proportionality of the valence
spinor generated for different states of the atom.

The theoretical backgrounds of the AIC approach can be
formulated as follows: (i) in practice the core radius Rc can be
chosen for a given atom in a compound by such a way that the
contributions to a characteristic of interest outside the sphere
with this radius (r > Rc) can be neglected or small enough
and valence spinors with same angular quantum numbers are
proportional to each other;3 (ii) the W proportionality in the
core is applied to generate unique relativistic (four-component)
reference spinors, ηljm(r) for r < Rc, which are not smoothed
in the core. Being normalized within the sphere with

3From a formal point of view, the smaller Rc, the more unambigu-
ously W proportionality can be defined. In practice, however, one
needs to consider computational errors and costs at small Rc. Besides,
the larger radius of an AIC operator, the higher angular momenta j

and l of partial waves should be treated in general to attain appropriate
accuracy for the characteristic of interest. In applications such
calculations are performed using relativistic pseudopotentials with
the pseudospinors (pseudoorbitals) smoothed in some core region
within a matching radius (detailed studies on the subject are given in
Ref. [10]). Within the shape-consistent pseudopotential formulations
the matching radii should be as small as possible to attain better
accuracy. In practice, they are close to the last (by amplitude) maxima,
RV

m , of valence orbitals (thus the “large-core” pseudopotentials are
generated) or, for better accuracy, to the last maxima, ROC

m , of
outermost core orbitals (for the “small-core” pseudopotentials). So,
for the all-electron four-component case one can write Rc � RV

m ,
whereas, for the case of the pseudospinors smoothed in the atomic
core, one should first restore proper four-component behavior of
spinors in the core or use Rc at least not less than the largest matching
radius [11].
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radius Rc: ∫
r<Rc

r2dr|ηljm(r)|2 = 1 , (2)

these functions become universal and almost independent from
the state (states) of an atom and its ions for which they are
constructed; here we assume the ground or low-lying states
of the atom with excited or ionized valence electrons only.
Consider further the set {ηlj (r)}lj such generated as the AIC
basis for a given atom to describe its effective state in a
chemical substance.

Designate the four-component W spinors on a given atom
as

ϕnwljm(r) =
(

ϕL
nwljm(r)

ϕS
nwljm(r)

)
,

in accord with the conventional representation of atomic
Dirac-Fock spinors, ϕnxljm(r), by means of large (L) and small
(S) components. The index nx can naturally be the principal
quantum number not only for the core (nc) and valence shells
but for the virtual ones when a finite and localized basis
set and/or an external spherical wall-type potential on the
atom is used to generate atomic spinors with nx that grows
monotonically with the energies of ϕnxljm(r) states. Now
the W states are those that match the appropriate choice of
nw : nc < nw < nr , where the index nr corresponds to the
highly excited atomic states with energies comparable or more
than the amplitude of the atomic potential within the sphere
with radius Rc.

Thus, the W spinors in the core region with r < Rc can be
written as

ϕ<
nwljm(r) = knwljmηlj (r) , r < Rc , (3)

since the radial parts of W spinors with the same l,j and
different m are also proportional each other in the core.

With this background the following reducing of a one-
electron density matrix that describes the atomic, molecular,
and condensed matter structures can be performed.

(i) The valence and low-lying virtual molecular/crystal
orbitals or spinors are reexpanded on a basis set of atomic
(one-center) W spinors within the sphere with radius Rc:

ψW<
i (�r) ≈

∑
nwljm

ci
nwljm

(
ϕL

nwljm(r)�l,jm(�r/r)

ϕS
nwljm(r)�2j−l,jm(�r/r)

)
,

|�r| < Rc ,

where �l,jm and �2j−l,jm are the conventional spin-angular
factors for large and small components of an atomic bispinor.

(ii) The one-electron density matrix (DM) of these spinors,
ρW [ψW<

i ] ≡ (ρ<
nwljm,n′

wl′j ′m′), is calculated and reexpanded on

the chosen atom using a one-center basis set. The ρW matrix
can be obtained from the one-electron density matrix, ρ, that
describes all electrons of the system as follows:

ρW = PWρPW ≡ (1 − PC − PR)ρ(1 − PC − PR), (4)

where PW is the projector on the W states only, PC and PR

are the projectors on the core states of a selected atom and
the states having negligible densities in the core of this atom,

correspondingly. Note that none of both diagonal and off-
diagonal submatrices between the PC , PW , and PR projectors
are zero in general when correlation, relaxation, and mixing
of different harmonics take place for an atom in a chemical
substance. However, the core shells (particularly, for the small-
core cases) can usually be treated as frozen atomic spinors with
a very high accuracy, the DM will be diagonal on the core states
and the corresponding submatrix can be safely removed from
consideration even for XES chemical shifts [13]. Moreover,
the space of R states describing mainly the core relaxation and
correlation effects do not contribute to the DM in these cases,
they can be neglected and the Eq. (4) can be rewritten as

ρW ≈ (1 − PC)ρ(1 − PC) . (5)

The only a question in practice is to partition the one-electron
states on the C, W, and R subspaces correctly to minimize
computational efforts for an accuracy of the interest. Taking
account of Eq. (3) the ρW matrix can be transformed to a new
one:

	ljm,l′j ′m′ =
∑
nwn′

w

knwljmkn′
wl′j ′m′ρnwljm,n′

wl′j ′m′ . (6)

The new matrix is already reduced (summed up) on the
principal quantum numbers n for only W spinors which are
taken into account, whereas the core and high-energy virtual
states are excluded, so, we call this matrix the W reduced DM.

Because of the W proportionality, a physical meaning for
the AIC characteristics has only the W reduced DM since it is
generally impossible to distinguish the distribution of electrons
by W spinors with fixed l,j,m numbers in atomic cores by any
available data on AIC properties. Moreover, partitioning the
W space on individual states has a meaning only for free or
weakly bound atoms, it is almost meaningless for a chemically
bound atoms and, particularly, for condensed matter structures.

Let us consider the diagonal terms 	ljm,ljm of the W
reduced DM. Multiplying these terms by the charge of the
corresponding reference states {ηljm} within the sphere of
radius Rc, one obtains the {qW

lj } quantities for a given atom
taking into account Eq. (2):

qW
lj =

∑
m

	ljm,ljm

∫
r<Rc

r2dr|ηljm(r)|2 =
∑
m

	ljm,ljm, (7)

which we call below the core region partial wave charges.
Alternatively, as one can easily see, the partial wave charges

of an atom “A”, qWA
lj , may be defined as the expectation values

of the projection operators

P
<,A
lj =

∑
m

|ljm〉 θ (Rc − |�r − �RA|) 〈ljm| (8)

on the W density matrix ρW :

qWA
lj = Tr

[
P

<,A
lj ρW

]
. (9)

The Heaviside step function θ (Rc − |�r − �RA|) is equal to unity
in the core of atom “A” and zero outside:

θ (Rc − |�r− �RA|) =
{

1, |�r− �RA| < Rc

0, otherwise
,

and |ljm〉 is the spherical spinor discussed above.
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TABLE II. The chemical shifts of energies of the 2p1/2 → 1s1/2 and 5d3/2 → 4p1/2 transitions and partial wave charges in the ionic and
excited states of the isolated Pb atom. The calculations were carried out with HFD code [42]. The Pb shells from 1s to 5d were taken from Pb+2

isolated ion calculations.

Cations Pb+n Excited states of Pb∗

Transition qW
p1/2

a NW
6p1/2

b χ c, meV NW
6p1/2

b NW
7p1/2

b χ ′c, meV δd, %

0.0042 0.60 −70 0.47 1.53 −72 2.8
2p1/2 → 1s1/2 0.0062 1.00 −106 0.97 1.03 −105 0.9

0.0097 1.80 −151 1.77 0.23 −150 0.7

0.0042 0.60 −147 0.47 1.53 −152 3.4
3p1/2 → 2s1/2 0.0062 1.00 −221 0.97 1.03 −220 0.4

0.0097 1.80 −313 1.77 0.23 −311 0.6

0.0042 0.60 −422 0.47 1.53 −434 2.8
5d3/2 → 4p1/2 0.0062 1.00 −633 0.97 1.03 −630 0.5

0.0097 1.80 −897 1.77 0.23 −891 0.7

aThe qW
p1/2 values are the partial wave charges of the electrons on the 6p1/2 and 7p1/2 states within the core region r < Rc = 0.5.

bThe NW
nlj values are the occupation numbers of the corresponding one-electron states.

cThe χ and χ ′ values are the chemical shifts of the considered transition energies (see Ref. [13] for details), with respect to the Pb+2 isolated
ion, in the ionic and excited states of the Pb atom correspondingly.
dThe δ = |χ−χ ′ |

χ
· 100% value is the relative difference of the chemical shifts in ionic and excited states of the Pb atom.

The operator (8) can be interpreted also as a tailless
semilocal model potential (pseudopotential) of Abarenkov-
Heine type [41] that is independent on the radial parts features
of atomic spinors. Thus, it can be easily utilized in most
available quantum chemical codes to evaluate the partial wave
charges on an atom. The only a limitation is in its use together
with the DFT wave functions, which do not allow one to
construct DM correctly but the electronic density only, so the
accuracy in DFT calculations of partial wave charges can be,
in principle, quite low.

It is shown in Ref. [13] that the XES chemical shifts
between two compounds can be calculated as the differences
of mean values of an effective one-electron operator in these
compounds. In Table II the evaluated chemical shifts of
energies of the 2p1/2 → 1s1/2, 3p1/2 → 2s1/2, and 5d3/2 →
4p1/2 transitions with respect to Pb2+ for various ionic and
excited states of an unbound Pb atom are listed together with
the values of partial wave charges qW

p1/2 of p1/2 spinors in
the considered states. These states (electronic configurations)
differ by only the occupation numbers of W shells, which are
chosen in such a way that the partial wave charges are the same
in both ionic and excited states. Due to the W proportionality
(3) the chemical shifts depend on the partial wave charges only.
One can see from Table II that the chemical shift of the ionic
and excited states with the same partial wave charges agree
well with each other with the highest relative error of 10% for
the 5d3/2 → 4p1/2 transition. Note here that our formulation
cannot be attributed to one of the four classes (charge models
I–IV), discussed by Cramer in Ref. [3] since it is well defined
theoretically and reproduces well the experimental data.

In Table III the partial wave charges qW
lj and effective

occupation numbers of the valence Pb (sub)shells in the
PbH4, PbF4, and Pb2 compounds and Pb+2, Pb+4 ions are
listed together with the chemical shifts of the x-ray K line
in Pb with respect to the Pb+2 ion. The partial wave charges
and XES chemical shifts values are obtained with using the
two-step restoration codes developed in Refs. [12,45] after

pseudopotential calculations carried out with the DIRAC code
[46]. Due to the stability of the computation procedure issues,
calculations of the electronic structure of all listed compounds
were performed with the core Pb shells frozen up to 5d.
The states belonging to these shells were taken from the
Pb+2 computation. The effective occupation numbers of the
valence shells, NW

nvlj
, were determined from the following

equations:

NW
nvlj

∫
r<Rc

[∣∣φL
nvlj

(r)
∣∣2 + ∣∣φS

nvlj
(r)

∣∣2]
r2 dr = qW

lj , (10)

where φL
nvlj

(r) and φS
nvlj

(r) are the radial functions of the
large and small components of the corresponding valence
state obtained from the relativistic average configuration
computation of the isolated ion with frozen core states;
the occupation numbers of the valence Pb shells in this
computation are equal to the NW

nvlj
values. Thus Eq. (10)

is a nonlinear self-consistent equation and must be solved
iteratively. Corresponding calculations were carried out with
the HFD code [42].

It is possible to carry out all-electron calculations of an
isolated ion with the given occupation numbers, NW

nvlj
, and to

take partially account of relaxation of the core states frozen
earlier. The chemical shifts obtained from these calculations
are also listed in Table III. The differences of these values and
the chemical shifts obtained in the frozen core calculations
are 10–20% by the order of magnitude for the neutral Pb
atom and molecules PbH4, PbO, Pb2, which are weaker bound
compared to PbF4. For the Pb+4 ions and PbF4 the relaxed
chemical shifts are about two to three times lower than the
corresponding values obtained in the frozen core calculations.

The experimental datum for the chemical shift of the
XES 2p3/2 → 1s1/2 line of lead in crystalline PbO with
respect to metallic Pb is listed in Ref. [43] and equals
to 54 ± 8 meV. One can estimate the corresponding value
from the performed calculations as difference between
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TABLE III. The partial wave charges and chemical shifts of the Pb K−lines with respect to the Pb+2 ion for PbH4, PbF4, PbO molecules
and Pb+4 ion.

Dirac-Fock calculations

Pb+4e PbF4
e Pb+2e PbH4

e PbOe Pb2
e Pbe

qW
s1/2

a 0 0.0089 0.0233 0.0124 0.0182 0.0191 0.0193

qW
p1/2

a 0 0.0036 0.0000 0.0059 0.0056 0.0035 0.0104

qW
p3/2

a 0 0.0037 0.0000 0.0057 0.0021 0.0027 0.0000

V conf.b – 6s0.726p0.44
1/2 6p0.52

3/2 6s2 6s1.166p0.91
1/2 6p1.13

3/2 6s1.766p0.90
1/2 6p0.42

3/2 6s1.816p0.54
1/2 6p0.62

3/2 6s2.006p2.00
1/2

χ2p1/2→1s1/2, meVc 330 79 0 −72 −77 –h −175
χ2p3/2→1s1/2, meVc 391 156 0 −68 −68 – −156

χ2p1/2→1s1/2,rel, meVd 205 37 0 −59 −82 – −150
χ2p3/2→1s1/2,rel, meVd 222 45 0 −55 −72 – −125

χ2p3/2→1s1/2,exp, meVf −102 ± 8
Density functional theory calculations

Pb+4g PbF4
g Pb+2g PbH4

g PbOg Pb2
g Pbg

qW
s1/2

a 0 0.0120 0.0250 0.0150 0.0198 0.0196 0.0207

qW
p1/2

a 0 0.0040 0.0000 0.0065 0.0053 0.0087 0.0109

qW
p3/2

a 0 0.0037 0.0000 0.0059 0.0027 0.0017 0.0000

V conf.b – 6s1.07
1/2 6p0.53

1/2 6p0.57
3/2 6s2.00

1/2 6s1.53
1/2 6p1.28

1/2 6p1.69
3/2 6s2.00

1/2 6p0.93
1/2 6p0.61

3/2 6s2.00
1/2 6p1.97

1/2 6p0.59
3/2 6s2.00

1/2 6p2.00
1/2

χ2p1/2→1s1/2, meVc 349 39 0 −73 −82 −144h −187
χ2p3/2→1s1/2, meVc 413 58 0 −67 −77 −131 −168

χ2p1/2→1s1/2,rel, meVd 205 6 0 −94 −96 −140 −151
χ2p3/2→1s1/2,rel, meVd 223 0 0 −90 −90 −122 −125

a The qW
lj values are the partial wave charges values for the shells starting from 6s in compounds within the sphere of Rc = 0.5 a.e. radius

centered on the Pb atom.
b The occupation numbers of the valence states of the Pb atom obtained from partial wave charges values (see Eq. (10) and text below.
c The χf i values are the chemical shifts of XES lines corresponding to the transitions between the F and I shells of the Pb atom in the given
compound with respect to the Pb+2 ion. These values are computated by the method described in Ref. [13].
d The χf i,rel values are the values of the XES chemical shifts of the transitions between the F and I shells of the Pb atom in the given compound
with respect to the Pb+2 ion, obtained within the relativistic average configuration calculations of the isolated ions, carried out with help of the
HFD code [42]. The isolated ion electronic configurations are correspond to the configurations listed in these table. This way of the computation
of the chemical shifts allows one to take into the account the core shells changing from one compound to another.
e The electronic structure of the Pb2, PbH4, and PbF4 molecules, and Pb+2 isolated ion were calculated by the DIRAC code. These calculations
were carried out in the Dirac–Fock approximation with using of semilocal 22 electron relativistic pseudo potential [20], the Pb spinors, that
belonging to the shells from 5s to 5d are frozen and taken from Pb+2 computation.
f The value obtained from experimental data for the chemical shifts of the Kα1 lead XES lines in the PbO crystal with respect to the crystalline
metallic lead [43]. The presented experimental value is obtained as difference between the experimental chemical shift value and chemical shift
of the Pb2 molecule presented in the χ2p3/2→1s1/2,rel row.
g The results of calculations are obtained with the DIRAC code in the DFT framework, the used functional is the PBE0 [44]. The Pb spinors
belonging to the shells from 5s to 5d were taken from Pb+2 calculations. The semilocal 22-electron relativistic effective core potential [20]
was used.
hThe electronic correlations taken into account at the DFT level lead to the Pb2 ground state configuration different from that obtained at the
Dirac-Fock level. This can be seen from comparison of the corresponding occupation numbers listed in the “V-conf.” rows and the partial wave
charges qW

p1/2. The ground-state configuration of the Pb2 valence electrons at the DFT level is π 2σ 2, while the configuration of valence electrons
at the Dirac-Fock level is π 2π 2. As a result, the XES chemical shifts obtained at the DFT level are almost three time more than those calculated
at the Dirac-Fock level. The comparison of the Dirac-Fock and DFT chemical shifts is uninformative here and the Dirac-Fock chemical shifts
are not listed in the table.

chemical shifts of PbO and Pb2. For the results obtained
in the Dirac-Fock approximation this estimate gives 9
meV without taking into the account the Pb core relax-
ation in the compounds and it is 15 meV for the relaxed
core case.

It is possible to take account of the effects of electronic
correlation within DFT. From the results of calculations with
using the PBE0 functional [44] listed in Table III we conclude
that the electronic correlation effects are important for the Pb2

molecule, since the XES chemical shifts differ by the factor
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of two for Dirac-Fock and DFT calculations. The chemical
shift of the lead XES 2p3/2 → 1s1/2 line obtained at the DFT
level is 54 meV when the core relaxation is not considered
and is 32 meV when the relaxation is taken into account. The
obtained values are much closer to the experimental datum
than those obtained at the Dirac-Fock level.

IV. CONCLUSIONS

Utilizing the property of proportionality of valence and
low-lying virtual spinors within an atomic core region with
radius r < Rc, the notions of W reduced density matrices,
ρW , and partial wave charges, qW

lj , for valence electrons in
the core region are introduced. Such properties as hyperfine
structure constants (Table I), T- and P-violation effects [16],
XES chemical shifts (Table III), which are mainly sensitive
to a variation of electronic densities in an atomic core region
(or even on a nucleus), with a good accuracy depend on ρW

only. For specific AIC properties or effective Hamiltonian
parameters the more particular blocks of ρW like diagonal
terms qW

lj (for XES chemical shifts), off-diagonal s−p, p−d,
etc., submatrices (for evaluation of Eeff and some other P
and T,P-odd Hamiltonian parameters with the sp-, pd-, etc.,
hybridized unpaired electrons [17,47]), are sufficient to know.
Thus, the W reduced DM allows one to characterize the
effective state of an atom in a chemical substance by an
appropriate manner.

The features of the AIC approach are summarized as
follows.

(i) The W reduced DM and, correspondingly, the AIC
characteristics calculated on an atom are independent on the
origin of one-electron basis set used (whether it is a one-center,
MO LCAO, analytic, or numerical one) in the limit of its
completeness in contrast to the cases of Mulliken and Löwdin
population analyses; the one-center AIC basis functions are
independent of the valence structure of a chemical substance
studied in contrast to those in the NAO approach.

(ii) It describes well (generally, in the range of ac-
curacy of 10–30%) the multitude of AIC characteristics.

(iii) Due to the property of W proportionality, the core
radius Rc is not a very critical parameter to be fixed as
exactly as possible for an AIC characteristic but the accuracy
of calculation is higher for those characteristics for which
it can be chosen smaller since the W reduced DM match
better the original DM for smaller Rc;4 the situation is similar
to that in theory of transferable shape-consistent relativistic
pseudopotentials with the Rc treated as a matching radius (see
Refs. [10,48] and references).

(iv) The method allows one to give a correct quantum
mechanical interpretation even for such difficult cases as XES
chemical shifts and provide an unambiguous analysis of atomic
(one-center) spinor contributions to AIC characteristics in
complicated electronic structures (see discussion in Ref. [49]
concerning RaO).

(v) it can provide a theoretical background for semiem-
pirical models to evaluate (estimate) the AIC characteristics,
which are not known or cannot be calculated using available
experimental data for corresponding properties [33].

Note as well that the approach can be easily implemented in
codes when the relativistic pseudopotential theory [10,14,15]
and one-center recovery (restoration) procedures [11,16] can
be utilized for calculation of the AIC properties and parameters
in heavy-element compounds. However, within the AIC
approach, the concept of a charge on an atom in a chemical
substance becomes meaningless [3].
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4The W proportionality can be interpreted as some kind of
asymptotic unfreedom of valence and low-lying virtual spinors in
an atomic core of a chemical substance in contrast to a widely known
property of asymptotic freedom in theory of strong interactions.

[1] R. F. W. Bader, Atoms in Molecules: A Quantum Theory,
Vol. 22 of International series of monographs on chemistry
(Oxford University Press, New York, 1994).

[2] R. F. W. Bader, in Encyclopedia of Computational Chemistry
(Wiley, Chichester, 1998), Vol. 1, pp. 64–86.

[3] C. J. Cramer, Essentials of Computational Chemistry: Theories
and Models (Wiley, New York, 2004), 2nd ed.

[4] P.-O. Löwdin, Adv. Quantum Chem. 5, 185 (1970).
[5] A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899

(1988).
[6] F. Weinhold and C. Landis, Valency and Bonding: A Nat-

ural Bond Orbital Donor-Acceptor Perspective (Cambridge
University Press, Cambridge, 2005).

[7] F. L. Hirshfeld, Theoret. Chem. Acc. 44, 129 (1977).
[8] E. Ramos-Cordoba, P. Salvador, and I. Mayer, J. Chem. Phys.

138, 214107 (2013).
[9] A. V. Titov, Int. J. Quantum Chem. 57, 453 (1996).

[10] A. V. Titov and N. S. Mosyagin, Int. J. Quantum Chem. 71, 359
(1999).

[11] A. V. Titov, N. S. Mosyagin, A. N. Petrov, and T. A. Isaev, Int.
J. Quantum Chem. 104, 223 (2005).

[12] L. V. Skripnikov and A. V. Titov, arXiv:1308.0163.
[13] Y. V. Lomachuk and A. V. Titov, Phys. Rev. A 88, 062511

(2013).
[14] A. N. Petrov, N. S. Mosyagin, A. V. Titov, and I. I. Tupitsyn,

J. Phys. B 37, 4621 (2004).
[15] N. S. Mosyagin, A. N. Petrov, A. V. Titov, and I. I. Tupitsyn,

Progr. Theor. Chem. Phys. B 15, 229 (2006).
[16] A. V. Titov, N. S. Mosyagin, A. N. Petrov, T. A. Isaev, and

D. P. DeMille, Progr. Theor. Chem. Phys. B 15, 253
(2006).

[17] Y. Y. Dmitriev, Y. G. Khait, M. G. Kozlov, L. N. Labzovsky,
A. O. Mitrushenkov, A. V. Shtoff, and A. V. Titov, Phys. Lett.
A 167, 280 (1992).

[18] N. S. Mosyagin, M. G. Kozlov, and A. V. Titov, J. Phys. B 31,
L763 (1998).

[19] T. A. Isaev, A. N. Petrov, N. S. Mosyagin, A. V. Titov, E. Eliav,
and U. Kaldor, Phys. Rev. A 69, 030501(R) (2004).

052522-8

http://dx.doi.org/10.1016/S0065-3276(08)60339-1
http://dx.doi.org/10.1016/S0065-3276(08)60339-1
http://dx.doi.org/10.1016/S0065-3276(08)60339-1
http://dx.doi.org/10.1016/S0065-3276(08)60339-1
http://dx.doi.org/10.1021/cr00088a005
http://dx.doi.org/10.1021/cr00088a005
http://dx.doi.org/10.1021/cr00088a005
http://dx.doi.org/10.1021/cr00088a005
http://dx.doi.org/10.1007/BF00549096
http://dx.doi.org/10.1007/BF00549096
http://dx.doi.org/10.1007/BF00549096
http://dx.doi.org/10.1007/BF00549096
http://dx.doi.org/10.1063/1.4807775
http://dx.doi.org/10.1063/1.4807775
http://dx.doi.org/10.1063/1.4807775
http://dx.doi.org/10.1063/1.4807775
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)57:3<453::AID-QUA19>3.0.CO;2-4
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)57:3<453::AID-QUA19>3.0.CO;2-4
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)57:3<453::AID-QUA19>3.0.CO;2-4
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)57:3<453::AID-QUA19>3.0.CO;2-4
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)71:5<359::AID-QUA1>3.0.CO;2-U
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)71:5<359::AID-QUA1>3.0.CO;2-U
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)71:5<359::AID-QUA1>3.0.CO;2-U
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)71:5<359::AID-QUA1>3.0.CO;2-U
http://dx.doi.org/10.1002/qua.20418
http://dx.doi.org/10.1002/qua.20418
http://dx.doi.org/10.1002/qua.20418
http://dx.doi.org/10.1002/qua.20418
http://arxiv.org/abs/arXiv:1308.0163
http://dx.doi.org/10.1103/PhysRevA.88.062511
http://dx.doi.org/10.1103/PhysRevA.88.062511
http://dx.doi.org/10.1103/PhysRevA.88.062511
http://dx.doi.org/10.1103/PhysRevA.88.062511
http://dx.doi.org/10.1088/0953-4075/37/23/004
http://dx.doi.org/10.1088/0953-4075/37/23/004
http://dx.doi.org/10.1088/0953-4075/37/23/004
http://dx.doi.org/10.1088/0953-4075/37/23/004
http://dx.doi.org/10.1007/1-4020-4528-X11
http://dx.doi.org/10.1007/1-4020-4528-X11
http://dx.doi.org/10.1007/1-4020-4528-X11
http://dx.doi.org/10.1007/1-4020-4528-X11
http://dx.doi.org/10.1007/1-4020-4528-X12
http://dx.doi.org/10.1007/1-4020-4528-X12
http://dx.doi.org/10.1007/1-4020-4528-X12
http://dx.doi.org/10.1007/1-4020-4528-X12
http://dx.doi.org/10.1016/0375-9601(92)90206-2
http://dx.doi.org/10.1016/0375-9601(92)90206-2
http://dx.doi.org/10.1016/0375-9601(92)90206-2
http://dx.doi.org/10.1016/0375-9601(92)90206-2
http://dx.doi.org/10.1088/0953-4075/31/19/002
http://dx.doi.org/10.1088/0953-4075/31/19/002
http://dx.doi.org/10.1088/0953-4075/31/19/002
http://dx.doi.org/10.1088/0953-4075/31/19/002
http://dx.doi.org/10.1103/PhysRevA.69.030501
http://dx.doi.org/10.1103/PhysRevA.69.030501
http://dx.doi.org/10.1103/PhysRevA.69.030501
http://dx.doi.org/10.1103/PhysRevA.69.030501


CONCEPT OF EFFECTIVE STATES OF ATOMS IN . . . PHYSICAL REVIEW A 90, 052522 (2014)

[20] A. N. Petrov, A. V. Titov, T. A. Isaev, N. S. Mosyagin, and
D. P. DeMille, Phys. Rev. A 72, 022505 (2005).

[21] T. A. Isaev, N. S. Mosyagin, A. N. Petrov, and A. V. Titov, Phys.
Rev. Lett. 95, 163004 (2005).

[22] L. B. Knight, Jr., T. A. Fisher, and M. B. Wise, J. Chem. Phys.
74, 6009 (1981).

[23] R. J. Mawhorter, B. S. Murphy, A. L. Baum, T. J. Sears,
T. Yang, P. M. Rupasinghe, C. P. McRaven, N. E. Shafer-Ray, L.
D. Alphei, and J.-U. Grabow, Phys. Rev. A 84, 022508 (2011).

[24] L. R. Hunter, S. E. Maxwell, K. A. Ulmer, N. D. Charney, S. K.
Peck, D. Krause, S. Ter-Avetisyan, and D. DeMille, Phys. Rev.
A 65, 030501(R) (2002).

[25] D. Kawall, Y. V. Gurevich, C. Cheung, S. Bickman, Y. Jiang,
and D. DeMille, Phys. Rev. A 72, 064501 (2005).

[26] A. Chanda, W. C. Ho, F. W. Dalby, and I. Ozier, J. Chem. Phys.
102, 8725 (1995).

[27] S. Raj, B. B. Dhal, H. C. Padhi, and M. Polasik, Phys. Rev. B
58, 9025 (1998).

[28] S. Raj, H. C. Padhi, P. Palit, D. K. Basa, M. Polasik, and
F. Pawłowski, Phys. Rev. B 65, 193105 (2002).

[29] F. Pawłowski, M. Polasik, S. Raj, H. Padhi, and D. Basa, Nucl.
Instrum. Methods Phys. Res., Sect. B 195, 367 (2002).

[30] O. I. Sumbaev, in Modern Physics in Chemistry (Academic
Press, London, 1976), pp. 31–51.

[31] A. Sovestnov, A. Tyunis, A. Fomin, A. Petrunin, A. Kurbakov,
and B. Melekh, Tech. Phys. Lett. 35, 26 (2009).

[32] D. P. E. Dickson and F. J. Berry, Mössbauer Spectroscopy
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