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Exciton analysis of many-body wave functions: Bridging the gap between the quasiparticle
and molecular orbital pictures
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Exciton sizes and electron-hole binding energies, which are central properties of excited states in extended
systems and crucial to the design of modern electronic devices, are readily defined within a quasiparticle
framework but are quite challenging to understand in the molecular-orbital picture. The intent of this work is to
bridge this gap by providing a general way of extracting the exciton wave function out of a many-body wave
function obtained by a quantum chemical excited-state computation. This methodology, which is based on the
one-particle transition density matrix, is implemented within the ab initio algebraic diagrammatic construction
scheme for the polarization propagator and specifically the evaluation of exciton sizes, i.e., dynamic charge
separation distances, is considered. A number of examples are presented. For stacked dimers it is shown that
the exciton size for charge separated states corresponds to the intermolecular separation, while it only depends
on the monomer size for locally excited states or Frenkel excitons. In the case of conjugated organic polymers,
the tool is applied to analyze exciton structure and dynamic charge separation. Furthermore, it is discussed
how the methodology may be used for the construction of a charge-transfer diagnostic for time-dependent
density-functional theory.
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I. INTRODUCTION

Quantum chemical computations have improved our un-
derstanding of organic electronic devices considerably by
giving a first-principles description of electronically excited
states [1–6]. These methods provide accurate estimates of
excitation energies and molecular properties and give detailed
insight into the state character through the molecular orbitals
(MOs) involved. However, there are a number of properties
relevant to organic electronics [7–9], which are usually not
considered in this type of approach. These include electron-
hole binding energies, exciton sizes, and other properties of
the exciton within the quasiparticle picture [10]. While these
quantities emerge naturally in a solid-state physics context,
e.g., when evaluating the Wannier model or the Bethe-Salpeter
equation [11–16], they are notoriously difficult to understand
in the MO picture. Indeed, a number of researchers have
proceeded to include such ideas in a quantum chemical
context by computing exciton sizes [17–20] and binding
energies [21,22], and by analyzing the correlated electron-hole
wave function [23–26]. However, here we attempt to provide a
general theory bridging the gap between the quasiparticle and
MO viewpoints of electronic excitations. Such a theory should
(i) be well-defined independent of the wave-function model
and give a result for the exact solution, (ii) apply to a wide range
of wave-function properties, (iii) be invariant to redundant
orbital rotations, and (iv) neither depend on atom-centered
basis function nor require a partitioning of the wave function
into atom or fragment centered contributions [27].

The purpose of this work is to present such a theory and
exemplify its usefulness in the case of the exciton size (i.e., the
mean dynamic charge separation or electron-hole separation),

*felix.plasser@iwr.uni-heidelberg.de;
http://www.iwr.uni-heidelberg.de/groups/compchem/

which is a highly important and often discussed property of
excitons [8,11,28–30]. Although it is difficult to comprehend in
standard quantum chemistry terms, it can be readily evaluated
with the methods presented here.

Quantification of exciton sizes is not only relevant from a
fundamental physics perspective but there is also an important
methodological component to this issue. It is well known
in molecular quantum chemistry that charge-transfer (CT)
character undermines the description of excited states with
time-dependent density-functional theory (TDDFT) [31,32].
In solid-state physics the same problem appears in a different
way: the inability of standard TDDFT to describe excitonic
effects and the ensuing bound electron-hole pair [15,22,33].
For large molecular systems one may expect that this lat-
ter issue comes into play and there is indeed increasing
evidence [33–39] that the resulting dynamic electron-hole
separation has a similarly detrimental effect on TDDFT as
directed charge transfer does. In spite of the fact that a number
of diagnostics have been developed with the aim of quantifying
charge separation [40–44] no general solution exists yet and
TDDFT is still described to suffer from “significant but
hard-to-detect errors” [37]. In the following, it will be outlined
how the formalism described here has potential in this context
as a unified measure of static and dynamic CT effects.

A theory of exciton analysis is introduced, which relies on
the sole assumption that the one-electron transition density
matrix (1TDM) can be interpreted as an effective two-body
exciton wave function describing the correlated electron-hole
motion, a relation which is justified in terms of many-body
Green’s-function theory. Once this identification is made, there
is no need for further assumptions or approximations and
the exciton can be analyzed by standard quantum chemical
methodology. While previous work was focused on a popu-
lation analysis of this exciton wave function [25,45–48], it is
in fact possible to compute expectation values with respect
to any operator whose matrix elements can be evaluated
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FIG. 1. Molecular systems considered in this work: (a) [ethylene
tetrafluoroethylene], (b) pyridine dimer, (c) (PV)5P, (d) tetracene, and
(e) hexacene.

in the underlying orbital basis. Below, we will specifically
consider the exciton size, defined as the root-mean-square
(rms) electron-hole separation, and derive the equations to
evaluate it. However, our formalism also opens a route to a
wealth of other properties, e.g., binding or kinetic energies
and additional spatial moments, which will be discussed in
future work.

Four molecular systems are chosen to highlight different
aspects of this computational protocol (Fig. 1). As a first step it
is demonstrated that for simple charge-transfer states between
two chromophores the newly defined exciton size is equal to
their spatial distance. This is, first, explained in some detail
in an analytic model and, second, the interactions of ethylene
and tetrafluoroethylene ([Et· · · TFE]) at varying distances are
investigated for this purpose. Secondly, the symmetric pyridine
dimer is selected as a representative stacked π system. In
this case the differentiation between excitonic and charge
resonance states in terms of the completely delocalized MOs
will be illustrated (see also Refs. [46,49,50]) and different
state mixing, charge separation, and excimeric effects will be
discussed. Thirdly, excitons in poly (para phenylene vinylene)
(PPV), a representative conjugated organic polymer, will be
analyzed briefly. For this molecule it is of particular interest to
compare the previously computed electron-hole correlation
plots [51] with our measure of exciton size. Finally, our
methodology is applied to polyacenes. In this case we want
to evaluate the specific question whether our approach is able
to quantify excited-state charge-transfer character even in a
system where this is notoriously difficult to do [37,38].

II. EXCITON ANALYSIS

A. Basic terminology

Before starting the discussion, some of the basic quantities
will be introduced and the underlying terminology will be
defined (see Ref. [47] for more details). The central quantity
of the presented analysis scheme, the one-particle transition
density matrix (1TDM) between the ground- �0 and the
excited- �I state wave functions, is defined as

γ 0I (rh,re) = N

∫
�0(rh,r2, . . . ,rN )

×�I (re,r2, . . . ,rN )dr2, . . . ,drN , (1)

where ri denotes the spatial and spin coordinates of the ith
electron: ri = (�xi,si). Note that in Eq. (1) and in the following

FIG. 2. (Color online) Illustration of the exciton wave function
χexc(rh,re): (a) definition of the rh and re coordinates giving the hole
and electron positions; (b) schematic exciton wave function χexc with
respect to these coordinates.

real-valued wave functions and orbitals are assumed but an
extension to complex quantities is straightforward.

The matrix representation with respect to an underlying
basis set of spin atomic orbitals (AOs) {χμ(r)} is constructed
as

D0I
μν = 〈�0 |̂a†

μâν |�I 〉, (2)

where â†
μ and âν are the creation and annihilation operators,

respectively. This definition leads to an alternative expression
for γ 0I

γ 0I (rh,re) =
∑
μν

D0I
μνχμ(rh)χν(re), (3)

which will be used in the following derivations. Finally, we
note for notational convenience that

DI0
νμ = 〈�I |̂a†

ν âμ|�0〉 = 〈�0 |̂a†
μâν |�I 〉 = D0I

μν, (4)

i.e., switching the bra and ket states amounts to transposing
the transition density matrix

(D0I )T = DI0. (5)

B. Exciton wave function

As described above, some properties of excited states (e.g.,
exciton sizes and binding energies) are best understood in
terms of a two-body exciton wave function describing the
correlated motion of the hole and electron quasiparticles (cf.
Fig. 2). Such a wave function appears directly within the
“solid-state physics” approach of using many-body Green’s-
function theory [12–16,52], while it is usually not considered
in the context of quantum chemistry methodology. This leads
to an unfortunate gap between these two fields as far as the
interpretative power of the calculations is concerned. The
purpose of this section is to provide a rigorous framework to
bridge this gap and to unite the quasiparticle and MO pictures.

The discussion starts with the Bethe-Salpeter equation
(BSE) of the exciton, which is the standard way of solving
the electronic excitation problem within Green’s-function
theory [12,13,15]. The solution of the BSE may be expressed
as the frequency- (ω) dependent two-body correlation func-
tion [13]

L(r1,r
′
1; r2,r

′
2; ω)

= i
∑
I �=0

[
χI (r1,r

′
1)χI (r ′

2,r2)

ω + �EI
− χI (r2,r

′
2)χI (r ′

1,r1)

ω − �EI

]
, (6)
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which is closely related to the polarization propagator [53].
Here, �EI denotes the excitation energy of state I and χI

is entitled the electron-hole amplitude. This latter function is
commonly regarded as the wave function of the electron-hole
pair [13–16] and it is precisely the quantity of interest for the
purposes of this work. It is usually given in the form [13–15]

χI (re,rh) =
∑
vc

AI
vcψ

QP
v (rh)ψQP

c (re) (7)

connecting the valence (ψQP
v ) and conduction (ψQP

c ) quasi-
particle states [54].

A rigorous connection between the BSE and explicit many-
body theories, and thus between the quasiparticle and MO
pictures, can be given by considering the general form of the
electron-hole amplitudes [13]

χI (re,rh) = −〈�0|ψ̂†(rh)ψ̂(re)|�I 〉, (8)

where the field operators ψ̂(r) can be expressed in the AO
basis as

ψ̂(r) =
∑

μ

âμχμ(r). (9)

Insertion of Eq. (9) into Eq. (8) already provides the relation
of interest

χI (re,rh) = −
∑
μν

〈�0 |̂a†
μâν |�I 〉χμ(rh)χν(re)

= −γ 0I (rh,re) . (10)

The exciton wave function as defined within Green’s-function
theory is simply the 1TDM as obtained from quantum chemical
calculations. If χI were computed by exactly solving the BSE
it contains the same information as the 1TDM between the
exact many-body wave functions. Thus a rigorous starting
point for further investigations is provided.

Specifically, in the notation used here and in previous
work [47], we define the exciton wave function as

χexc(rh,re) := γ 0I (rh,re) = −χI (re,rh) , (11)

i.e., there is a change in sign and an exchange of the electron
and hole coordinates when compared to Ref. [13] (and the I

superscript is dropped for brevity).
γ 0I certainly possesses the required formal properties

of a wave function of two distinguishable particles (i.e.,
being square integrable and continuously differentiable) and is
therefore amenable to the computation of operator expectation
values. The expectation value of an arbitrary operator Ô with
respect to the exciton wave function is written as

〈Ô〉exc = 〈χexc|Ô|χexc〉
〈χexc|χexc〉 . (12)

To evaluate this expression we follow a similar strategy as used
by Tamura et al. [55] for the computation of energy-transfer
couplings: after writing down the equations in their explicit
form they are reformulated in terms of orbital integrals.

The denominator of Eq. (12) contains the squared norm of
the exciton wave function 
, a quantity which has been used to
measure the single excitation character of a transition [47,56].
By inserting the definition for χexc given in Eq. (11) 
 can be

rewritten as


 = 〈χexc|χexc〉 =
∫ ∫

γ 0I (rh,re)2drhdre. (13)

This quantity can be reexpressed [47] in terms of matrix
elements according to Eq. (3) [and using Eq. (5) for notational
brevity]


 = tr((D0I )TSD0I S) = tr(DI0SD0I S). (14)

Here S denotes the AO overlap matrix with elements

Sμν =
∫

χμ(r)χν(r)dr. (15)

Furthermore, the numerator of Eq. (12) can be treated in a
similar fashion

〈Ô〉exc = 1




∫ ∫
γ 0I (rh,re)Ôγ 0I (rh,re)drhdre, (16)

which after insertion of Eq. (3) leads to

〈Ô〉exc = 1




∑
μν

∑
ξζ

DμνDξζ

×
∫ ∫

χμ(rh)χν(re)Ôχξ (rh)χζ (re)drhdre. (17)

In other words, the task is reduced to a contraction of the AO
integrals with the density matrices. Once the AO integrals of
Ô are computed, the evaluation of Eq. (17) is straightforward.

The relation can be simplified in cases where the operator is
given as a product of two one-particle operators, each acting on
only one of the electrons, i.e., Ô = P̂ (rh)Q̂(re). Then Eq. (17)
yields

〈P̂ (rh)Q̂(re)〉exc = 1




∑
μν

∑
ξζ

DμνDξζ

∫ ∫
χμ(rh)χν(re)

×P̂ (rh)Q̂(re)χξ (rh)χζ (re)drhdre, (18)

which can be decomposed with respect to rh and re

= 1




∑
μν

∑
ξζ

DμνDξζ

∫
χμ(rh)P̂ (rh)χξ (rh)drh

×
∫

χν(re)Q̂(re)χζ (re)dre. (19)

In matrix representation this can be rewritten as

= 1




∑
μν

∑
ξζ

DμνDξζPμξQνζ , (20)

which, in analogy to Eq. (14), finally leads to (assuming that
Q is a symmetric matrix)

〈P̂ (rh)Q̂(re)〉exc = 1



tr(DI0PD0I Q). (21)

Finally, we want to point out that for an operator, which
does not explicitly act on rh and re but is a simple function of
these coordinates [Ô = f (rh,re)] Eq. (16) reduces to

〈f (rh,re)〉exc = 1




∫ ∫
f (rh,re)γ 0I (rh,re)2drhdre. (22)
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If, specifically, f is a polynomial then 〈f (rh,re)〉exc can be
interpreted as a multipole moment of the exciton distribution
function χ2

exc. It is precisely these types of expressions which
will appear in the following text.

C. Exciton size

In this section it will be shown how Eq. (21) can be used to
derive an equation for the size of the exciton. This quantity is
defined here as the root-mean-square (rms) separation between
the instantaneous electron and hole positions

dexc =
√

〈|�xh − �xe|2〉exc. (23)

This equation may be expanded as

d2
exc = 〈(�xh − �xe) · (�xh − �xe)〉exc

= 〈�xh · �xh〉exc − 2 〈�xh · �xe〉exc + 〈�xe · �xe〉exc . (24)

Further evaluation of the dot products leads to the nine terms

d2
exc =

∑
ξ∈{x,y,z}

(〈
ξ 2
h

〉
exc − 2

〈
ξhξe

〉
exc + 〈

ξ 2
e

〉
exc

)
, (25)

which are simple expectation values of one-electron multi-
pole operators. Considering Eq. (21) these can be evaluated
according to 〈

xk
hx

l
e

〉
exc = 1



tr
(
DI0M(k)

x D0I M(l)
x

)
, (26)

where for example M(k)
x refers to the k-order multipole matrix

for coordinate x, whose components are given as

M (k)
x,μν =

∫
χμ(r)xkχν(r)dr (27)

and specifically M(0)
ξ = S is the overlap matrix in the AO basis

[Eq. (15)]. These matrices are usually readily available within
quantum chemical programs and thus the task is reduced to
a few matrix multiplications. The final working equation is
given as

d2
exc = 1




∑
ξ∈{x,y,z}

(
tr
(
DI0M(2)

ξ D0I S
)

− 2 tr
(
DI0M(1)

ξ D0I M(1)
ξ

) + tr
(
DI0SD0I M(2)

ξ

))
. (28)

The first and third terms in this sum refer to the quadrupole
moments of the hole D0I SDI0 and electron DI0SD0I densities
(see also Ref. [47]). The second term contains mixed dipole
contributions deriving from the correlated motion of the hole
and electron.

As a final note, it may be pointed out that the decomposition
of the two-particle problem into matrices of one-particle
operators derives from the specific definition of dexc as
the rms separation, a simplification which is also used in
the Boys orbital localization scheme [57]. By contrast the
mean absolute separation 〈|�xh − �xe|〉exc or the mean inverse
separation 〈1/|�xh − �xe|〉exc (determining the Coulomb binding
energy) cannot be expressed in such a simple form.

D. Electron spin

While the above equations were given in their most general
form, i.e., in terms of arbitrary spin orbitals, we briefly want

to mention their practical implementation in terms of spatial
orbitals. For this purpose a basis of K spatial AOs {ϕμ,1 �
μ � K} is considered and the 2K spin AOs are constructed as
(see, e.g., Ref. [58])

χμ(r) =
{
ϕμ(�x)α(s) : μ � K,

ϕμ−K (�x)β(s) : K < μ � 2K.
(29)

Using this construction the transition density matrix between
two states of the same mS quantum number is block diagonal:

D0I =
(

D0I
α 0
0 D0I

β

)
. (30)

The overlap matrix is block diagonal as well and possesses
two equivalent blocks, i.e.,

S =
(

S̄ 0
0 S̄

)
, (31)

where S̄ is the overlap matrix between the spatial AOs. By
considering Eq. (14) it now follows that


 = tr

(
DI0

α S̄D0I
α S̄ 0

0 DI0
β S̄D0I

β S̄

)
= tr

(
DI0

α S̄D0I
α S̄

) + tr
(
DI0

β S̄D0I
β S̄

)
= 
α + 
β, (32)

i.e., the α and β contributions to 
 can be evaluated indi-
vidually. An analogous relation holds for general expectation
values of spin-independent one-particle operators and Eq. (21)
leads to

〈P̂ (rh)Q̂(re)〉exc = tr
(
DI0

α P̄D0I
α Q̄

) + tr
(
DI0

β P̄D0I
β Q̄

)

α + 
β

, (33)

where P̄ and Q̄ are defined in analogy to Eq. (31).
Finally, the spin-restricted case will be discussed. In the case

of a closed shell reference, it holds for spin-adapted singlet and
triplet excited states that

D0I
β =

{
D0I

α : singlet,

−D0I
α : triplet,

(34)

which in both cases leads to

tr
(
DI0

β P̄D0I
β Q̄

) = tr
(
DI0

α P̄D0I
α Q̄

)
. (35)

Consequently, Eq. (33) reduces to

〈P̂ (rh)Q̂(re)〉exc = tr
(
DI0

α P̄D0I
α Q̄

)

α

(36)

and it suffices to consider only the α space explicitly.

III. COMPUTATIONAL DETAILS

All calculations were performed using the algebraic dia-
grammatic construction scheme for the polarization propaga-
tor [53] evaluated at second order in many-body perturbation
theory [ADC(2)] [59] using a developmental version of the
QChem 4.1 program package [60–62]. For the ethylene-
tetrafluoroethylene complex and the pyridine dimer Dunning’s
cc-pVDZ basis set [63] was used. For computational efficiency
in the cases of PPV and polyacene excited states the smaller
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Ahlrichs SV basis set [64] was used as it was shown by previ-
ous studies that an unpolarized basis set is sufficient to provide
a qualitatively correct description of these systems [51,65].
Electron-hole correlation plots of the 
AB matrices (see below)
were created using an external program package [46,66].

The exciton size is compared to previously defined analysis
methods of the exciton wave function in terms of the
charge-transfer numbers 
AB [45–47]. Given two molecular
fragments A and B these are defined as


AB = 1

2

∑
μ∈A

∑
ν∈B

[
(D0I S)μν(SD0I )μν + D0I

μν(SD0I S)μν

]
(37)

and mark the probability that, simultaneously, the hole is on
fragment A and the electron on fragment B. In addition to
a direct visualization of 
AB as an electron-hole correlation
plot, the information can be compressed further [25,46]. In
this work the charge-transfer ratio

ωCT = 1




∑
A,B �=A


AB (38)

is considered for this purpose, which counts the off-diagonal
contributions of 
AB. ωCT ranges from 0 to 1, where 0
corresponds to a local excitation or Frenkel exciton (with
respect to the defined fragmentation scheme) and 1 denotes
a completely charge separated state.

IV. APPLICATIONS

In this section a hierarchy of model systems is analyzed to
expose the power of our computational protocol for a variety of
applications (Fig. 1). First, the case of local and charge-transfer
excitations in a dimer model system is discussed formally
in some detail. Specific results are given for the simple case
where the excitation process only consists of moving one point
charge across a distance d to show that in this case dexc = d.
This relation is tested practically for the lowest CT state of a
complex between ethylene (Et) and tetrafluorethylene (TFE).
As a somewhat more extended example the stacked pyridine
dimer at varying intermolecular separations is investigated.
In this case the different behavior between excitonic and
charge resonance states and mixing between them is analyzed.
After these proof-of-principle investigations two examples
displaying the potential of our methods in the case of
conjugated organic molecules are presented. On the one hand,
the structure of different excitons in PPV is analyzed. On the
other hand, the excited states of polyacenes are investigated
with the aim of elucidating otherwise hidden charge-transfer
contributions in their excited states.

A. Dimer model

In this section the formal structure of the exciton analysis
is discussed in some detail using an idealized dimer model.
For this purpose, a system of two chromophores 1 and 2
is considered, each possessing two active orbitals (see also
Refs. [46,49,50]). Chromophore 1 contains the initial orbital
i (occupied in the ground state) and the final orbital f

(unoccupied in the ground state), while the orbitals on 2
are denoted i ′ and f ′. The eight limiting cases arising for

FIG. 3. (Color online) Eight limiting cases for excitation patterns
emerging in the case of two chromophores with two orbitals each.
Adapted from Ref. [46].

singly excited states in such a situation are depicted in Fig. 3.
On the one hand, four linearly independent states may be
constructed as local excitations on each chromophore (|1∗2〉
= |i → f 〉 and |12∗〉 = |i ′ → f ′〉) and charge-transfer states
between them (|1+2−〉 = |i → f ′〉 and |1−2+〉 = |i ′ → f 〉).
On the other hand, delocalized linear combinations of these
may be constructed under resonance conditions leading to
Frenkel excitonic (or excitonic resonance, σ and γ ) and charge
resonance states (δ and ρ).

The transition density matrices D0I arising for these states
are given in Table I for the local states and Table II for the
delocalized states, along with their ωCT and dexc values (to be
discussed below). The nonzero entries of D0I simply represent
the individual orbital transitions as shown in Fig. 3.

The ωCT values can be extracted immediately from Tables I
and II by considering that only the off-diagonal 2×2 blocks
contribute to this quantity. The locally excited and excitonic
resonance states possess ωCT = 0, while this value is one
for the charge-transfer and charge resonance states (see also
Ref. [46]).

Next the analytical evaluation of Eq. (28) to compute dexc

will be discussed. We will first present the relevant equations
in the general case and will then proceed to evaluate them with
respect to a model system of pointlike orbitals. Starting with
the |1∗2〉 state, the case of a local excitation on one molecule
can be illustrated:

d2
exc(|1∗2〉) =

∑
ξ∈{x,y,z}

(
M

(2)
ξ,ii + M

(2)
ξ,ff − 2M

(1)
ξ,iiM

(1)
ξ,ff

)
. (39)

This equation has a simple interpretation if one assumes both
orbitals to be centered at the origin (M (1)

ξ,ii = M
(1)
ξ,ff = 0) and

to have the same spatial extent (M (2)
ξ,ii = M

(2)
ξ,ff = σ 2

d ). Then

dexc(|1∗2〉) = σd

√
6 is simply proportional to this extent.

For a charge-transfer state, e.g., |1−2+〉, an analogous
equation but with respect to an altered set of orbitals is
obtained:

d2
exc(|1−2+〉) =

∑
ξ∈{x,y,z}

(
M

(2)
ξ,ff + M

(2)
ξ,i ′i ′ − 2M

(1)
ξ,i ′i ′M

(1)
ξ,ff

)
.

(40)
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TABLE I. Transition density matricesa D0I , charge-transfer measures ωCT, and exciton size dexc of the idealized locally excited states |1∗2〉
and |12∗〉 and charge-transfer states |1−2+〉 and |1+2−〉 evaluated under the assumption of a unit overlap matrix.

State |1∗2〉 |12∗〉 |1−2+〉 |1+2−〉

D0I

⎛
⎝0 1 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎠

⎛
⎝0 0 0 0

0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎠

⎛
⎝0 0 0 0

0 0 0 0
0 1 0 0
0 0 0 0

⎞
⎠

⎛
⎝0 0 0 1

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎠

ωCT 0 0 1 1
dexc

b 0 0 d d

aArranged according to (i,f,i ′,f ′).
bEvaluated specifically for the case of two pointlike orbitals separated by a distance d .

The equations for the delocalized states are somewhat
longer but also easy to set up. For example, for the excitonic
state σ one obtains

d2
exc(σ ) = 1

2

∑
ξ∈{x,y,z}

(
M

(2)
ξ,ii + M

(2)
ξ,ff + M

(2)
ξ,i ′i ′ + M

(2)
ξ,f ′f ′

− 2
(
M

(1)
ξ,iiM

(1)
ξ,ff + M

(1)
ξ,i ′i ′M

(1)
ξ,f ′f ′ − 2M

(1)
ξ,ii ′M

(1)
ξ,ff ′

))
,

(41)

which includes also some matrix elements with mixed indices.
A similar situation arises for the charge resonance states, e.g.,
for δ the exciton size is given as

d2
exc(δ) = 1

2

∑
ξ∈{x,y,z}

(
M

(2)
ξ,ii + M

(2)
ξ,ff + M

(2)
ξ,i ′i ′ + M

(2)
ξ,f ′f ′

− 2
(
M

(1)
ξ,iiM

(1)
ξ,f ′f ′ + M

(1)
ξ,ff M

(1)
ξ,i ′i ′ + 2M

(1)
ξ,ii ′M

(1)
ξ,ff ′

))
.

(42)

A general interpretation of the above equations can be given
in the limit that the involved orbitals are points in space and that
i and f , as well as i ′ and f ′, are located at the same positions,
respectively. Furthermore, without loss of generality, i and f

are placed at the origin of the three-dimensional coordinate
system, while i ′ and f ′ are at a distance d in x direction. This
leads to the multipole matrices

M(k)
x = diag(0,0,dk,dk): k � 1, (43)

while the ones with respect to the y and z coordinates vanish.
The results obtained in this way are marked as dexc in Tables I
and II. For locally excited states and coupled local excitations
(Frenkel excitons) it holds that dexc = 0, while for the charge
separated states dexc = d. In other words, dexc corresponds
to the natural definition of a charge-transfer distance. In the

remaining sections, we will show how this concept can be
extended to increasingly complex cases.

B. Ethylene tetrafluoroethylene

Previously, the stacked [Et· · · TFE] complex [Fig. 1(a)] has
been investigated as a prototype system for intermolecular
charge transfer [31]. In this work this system is reused as a
first proof-of-principle application of our approach. For this
purpose, Et and TFE were set up in a parallel face-to-face
arrangement using varying molecular distances between 10
and 50 Å. To compare properties of local and charge-transfer
excited states, the two lowest-lying local ππ∗ excitations on
each molecule (denoted [Et∗ · · · TFE] and [Et· · · TFE∗]) and
the CT state from Et to TFE [Et+ · · · TFE−] are investigated
at the ADC(2)/cc-pVDZ level of theory.

The excitation energies and exciton sizes dexc of these three
states are presented in Fig. 4. For the local states (positioned at
S2 and S3) the excitation energies remain constant at about
8.73 and 8.77 eV for the range considered. By contrast
the energy of the CT state increases strongly according to
the expected 1/d behavior (where d is the intermolecular
separation), which follows from the electrostatic attraction
between the electron and the hole. Accordingly, the relative
position of this state is somewhat raised: while it is the S12

state at d = 10 Å, it becomes the S14 state at d = 50 Å.
Similar to the excitation energies also the exciton sizes of
the local states remain constant at dexc = 1.94 and 2.04 Å
for [Et∗ · · · TFE] and [Et· · · TFE∗], respectively [Fig. 4(b)].
These values are identical to the ones for the ππ∗ states of the
isolated Et and TFE molecules. For the CT state there is a close
correspondence between d and dexc and only a minor difference
remains due to the nonvanishing size of the molecules making
dexc somewhat larger. For example, at a distance of d = 10

TABLE II. Transition density matricesa D0I , charge-transfer measures ωCT, and exciton size dexc of the idealized Frenkel excitonic resonance
states σ and γ and charge resonance states δ and ρ evaluated under the assumption of a unit overlap matrix.

State σ γ δ ρ

D0I · √
2

⎛
⎝0 1 0 0

0 0 0 0
0 0 0 −1
0 0 0 0

⎞
⎠

⎛
⎝0 1 0 0

0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎠

⎛
⎝0 0 0 1

0 0 0 0
0 1 0 0
0 0 0 0

⎞
⎠

⎛
⎝0 0 0 1

0 0 0 0
0 −1 0 0
0 0 0 0

⎞
⎠

ωCT 0 0 1 1
dexc

b 0 0 d d

aArranged according to (i,f,i ′,f ′).
bEvaluated specifically for the case of two pointlike orbitals separated by a distance d .
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FIG. 4. (Color online) (a) Excitation energies of charge transfer
and locally excited ππ∗ states of [Et· · · TFE] and (b) exciton sizes
(dexc, Å) examined for varied molecular separations d (Å) at the
ADC(2)/cc-pVDZ level of theory.

Å the exciton size is 10.20 Å. In summary, the results are
consistent with the theoretical considerations of the previous
section and highlight the suitability of dexc for quantifying
charge transfer.

C. Pyridine dimer

Complexes of aromatic and heteroaromatic molecules are
highly interesting models for biological chromophores with
particular relevance to DNA [67]. The excited states of these
systems are characterized by excitonic delocalization and
charge transfer, and at smaller intermolecular separations exci-
plex interactions come into play [68,69]. However, analyzing
these processes is challenging, in particular when several
transitions between delocalized orbitals are involved [46,50].
The pyridine dimer [70,71] is chosen here as a prototypical
example: two pyridine molecules are positioned in a face-
to-face arrangement, with the nitrogen atoms located on top
of each other yielding C2v symmetry for the total system.
Due to this symmetric arrangement, all states and MOs are
evenly delocalized over the system and no net charge transfer
or dipole moments are present. While this is a challenging
situation for standard analysis methods [50,72], the states can
be readily characterized using the charge-transfer measure ωCT

and exciton size dexc as defined above.
In Table III a summary of the 15 lowest-lying singlet

states of the pyridine dimer at 5 Å distance is presented. The
twelve lowest-lying states are excitonic resonance states of
nπ∗ and ππ∗ nature. These states arise as the σ and γ linear
combinations (cf. Fig. 3) of the six low-lying states of the

TABLE III. Excitation energies (�E, eV), oscillator strengths
(f ), charge-transfer measures (ωCT), exciton sizes (dexc, Å), and
type assignment of the 15 lowest-energy singlet nπ∗, ππ∗, CT, and
Rydberg states of the pyridine dimer at an intermolecular separation
of 5 Å at the ADC(2)/cc-pVDZ level of theory.

State �E f ωCT dexc Type

1 1B1 5.13 0.00 0.000 2.55 nπ∗

2 1A1 5.13 0.00 0.000 2.55 nπ∗

1 1A2 5.37 0.00 0.000 2.57 nπ∗

1 1B2 5.37 0.00 0.000 2.57 nπ∗

2 1A2 5.44 0.00 0.001 2.43 ππ∗

2 1B2 5.45 0.04 0.000 2.43 ππ∗

2 1B1 6.92 0.00 0.002 2.54 ππ∗

3 1A1 6.95 0.04 0.000 2.53 ππ∗

3 1A2 7.67 0.00 0.006 2.51 ππ∗

3 1B1 7.78 0.00 0.005 2.57 ππ∗

3 1B2 7.84 1.10 0.000 2.49 ππ∗

4 1A1 7.92 0.92 0.008 2.72 ππ∗

4 1B1 8.00 0.00 0.990 5.65 nπ∗

5 1A1 8.00 0.02 0.984 5.63 nπ∗

5 1B1 8.19 0.00 0.011 3.81 Rydberg

pyridine monomer [48,73]. In all these cases ωCT is very close
to zero and the exciton size is about 2.5 Å. After these twelve
excitonic states, the two charge separated states (ωCT ≈ 0.99)
4 1B1 and 5 1A1 follow. Their exciton sizes (dexc ≈ 5.6 Å)
reflect the extended electron-hole separation of these states
spanning the intermolecular separation of 5.0 Å. These are
the δ and ρ charge resonance states deriving from the same
orbitals as the 1 1B1 and 2 1A1, σ and γ excitonic states,
forming together a complete set of four delocalized states as
described in Fig. 3. The last state considered is the 5 1B1 state.
This state is local in the sense that ωCT ≈ 0.0, but Table III
reveals that its exciton size is somewhat increased compared
to the previous cases (dexc = 3.81 Å). The reason for this is the
Rydberg character of this state, i.e., the diffuse particle orbital
leads to an increase of the exciton size.

Table III is used as a starting point for a scan of inter-
molecular separations between 2.5 and 9 Å. To reduce the
complexity of the information only states of B1 symmetry
will be considered, as this irreducible representation contains
both the lowest-lying excitonic and charge resonance states.
In Fig. 5 the relative energies, exciton sizes dexc, and the ωCT

values of these states are plotted against the intermolecular
separation.

Above separations of 6.0 Å (i.e., on the right-hand side of
Fig. 5) the first three excited states (1 1B1–3 1B1) are excitonic
combinations of nπ∗ and ππ∗ states, while 4 1B1 is a Rydberg
state and none of these states show any charge separation
(ωCT = 0). The nπ∗ charge resonance state (ωCT = 1) is the
highest-lying state presented here (5 1B1). This latter state
exhibits the expected 1/d dependence of the total energy and a
linear growth of dexc comparable to the CT state [Et+ · · · TFE−]
described previously. For the other states these values remain
constant possessing similar values as in Table III. In Fig. 5,
coming from the right, the first state crossing occurs at about
5.75 Å affecting the Rydberg and the charge resonance state.
This goes along with an abrupt exchange of the excited-state
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FIG. 5. (Color online) (a) Total energies relative to the ground
state at infinite separation (E, eV), (b) exciton sizes (dexc, Å), and (c)
charge-transfer measures (ωCT) for the five energetically lowest-lying
1B1 states of pyridine dimer calculated at the ADC(2)/cc-pVDZ level
for varied molecular separations d (Å).

characters of the 4 1B1 and 5 1B1 states as seen in Figs. 5(b)
and 5(c).

Below about 5 Å direct orbital interactions come into
play [50] and the clear distinction between excitonic and
charge resonance states is no longer possible. In Fig. 5 this
effect can be seen by the fact that starting at around this
separation the dexc and ωCT values of the individual states
diverge from the idealized results described above. This effect
is enhanced for the 3 1B1 and the 4 1B1 states which lie close
in energy over an extended geometric range around d = 4 Å.
Substantial coupling between these states leads to strong
modulations of the dexc and ωCT values.

At intermolecular separations below 3.5 Å excimeric effects
play the dominant role. In particular, the ππ∗ states (2 1B1

and the 3 1B1) exhibit deep potential wells at intermolecular
separations below 3.0 Å. It should be noted that a quantitatively
correct description of these minima cannot be guaranteed using
the present computational protocol owing to potential mul-
tireference effects and basis set superposition error [69], but
a semiquantitative analysis of the wave functions is certainly
of highest interest. As discussed previously [46,67,69], the
energetic stabilization goes along with a significant change
in wave-function character, which is reflected by the fact
that at smaller separations the charge-transfer measures (ωCT)
of all states approach a value of 0.5. This means that
the differentiation between excitonic and charge separated
states disappears and the resulting exciplex states are of a
homogeneous and coherent nature. An analogous trend is
also observed for dexc, which converges to about 3.0 Å for
all the valence states. Only the Rydberg state (4 1B1) retains
its distinctly higher value of 3.87 Å. In summary, it could be
shown that the presented analysis strategy is indeed useful
for drawing a detailed picture about excited-state characters
in stacked systems and that new quantitative information can
be provided, which remains hidden when applying simpler
analysis strategies.

D. Poly(para phenylene vinylene)

Over the past decades the study of poly(para phenylene
vinylene) has provided fundamental insight into the working
principles of π -conjugated polymers used in organic electron-
ics [1,11,28]. However, a number of questions remain open
and especially the magnitude of the exciton binding energy is
still discussed controversially [8,74–78]. Aside from the large
system sizes the main barrier for computational studies lies
in the fact that even when accurate excitation energies are
available, an analysis of excitonic correlation effects is by far
not trivial and outside the scope of standard quantum chemical
approaches. One strategy used to overcome these problems is
the analysis of the 1TDM, which could indeed reveal otherwise
hidden excitonic properties [17,25,51]. In this work, the idea is
moved forward and quantitative information is gained through
the analysis of exciton sizes.

For the description of PPV we revisit the strategies explored
in Refs. [46,51]. The main previous tool in this context are the
charge-transfer numbers 
AB [Eq. (37)] [45,46], which can be
used to represent the correlated electron-hole distribution in a
graphical manner (see also Refs. [7,23,25,79]). To perform this
analysis, the system is first divided into “chemically intuitive”
fragments and then the 
AB are used to encode the joint
probability of finding the hole and electron at fragments A

and B, respectively. A matrix pseudocolor plot of this quantity
is used to visualize the correlated electron-hole wave function
in a representation corresponding to Fig. 2(b), i.e., the hole and
electron positions are plotted along the horizontal and vertical
axis, respectively. Elements on the main diagonal represent
local excitations within one fragment, whereas charge-transfer
contributions between two fragments can be found as off-
diagonal elements. While the CT numbers are indeed useful
for representing excitonic structures in conjugated organic
polymers, there are several downsides. The results depend
on the fragment definitions and population analysis scheme
chosen, and the plots are only easily interpreted for linear
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FIG. 6. (Color online) Fragmentation scheme for 
AB plots of
(PV)5P.

molecules. To overcome these problems, we employ the
exciton size dexc as a more compact and clearly defined
descriptor of electron-hole separation.

A hexamer fragment of poly(para phenylene vinylene)
termed (PV)5P was considered as a model for the spectroscopic
unit in the polymer. To perform the CT number analysis,
the molecule was split into six quasiequivalent fragments by
cutting through carbon-carbon double bonds (Fig. 6; see also
Refs. [46,51]). The resulting correlation plots and additional
pieces of information of the lowest four singlet and triplet
excited states of (PV)5P are presented in Table IV.

A first visual inspection of the correlation plots for the
singlet excited states directly suggests the existence of two
distinct excitation patterns: the first three states (S1–S3)
resemble a series of particle-in-a-box-like excitations with
increasing number of nodes subdividing the π system into
regular units (see also Ref. [18]). By contrast, the S4 state
(3 1Ag) has much more pronounced off-diagonal contributions
highlighting its enhanced intrinsic charge-transfer character.
The same trend can also be seen in the ωCT values [counting
the fraction of charge separated configurations in the excited
state, Eq. (38)]. For the first three states ωCT stays between 0.61
and 0.51 getting somewhat lower for the higher excited states,
while the value of ωCT = 0.75 for S4 indicates a considerable
charge separation (according to the fragmentation scheme
chosen).

In Table IV also the exciton size dexc is presented, which
allows for a more quantitative comparison among the states.
The sizes for the first three states are somewhat smaller than the
length of the PV repeat unit (6.71 Å), while being significantly
larger than the diameter of a single phenyl ring (2.86 Å)
[see Ref. [19] for a related analysis in poly(para phenylene)].

TABLE IV. Excitation energies (�E, eV), exciton sizes
(dexc, Å), charge-transfer measures (ωCT), and electron-hole
pair-correlation plots 
AB of the first four singlet and triplet
excited states of (PV)5P computed at the ADC(2)/SV level.

S1 (11Bu ) S2 (21Ag ) S3 (21Bu ) S4 (31Ag )
ΔE 3.45 3.96 4.46 4.50
dexc 6.49 5.92 5.19 10.45
ωCT 0.61 0.59 0.51 0.75

ΩAB

T1 (13Bu ) T2 (13Ag ) T3 (23Bu ) T4 (23Ag )
ΔE 2.28 2.49 2.78 3.12
dexc 4.53 4.14 3.79 3.47
ωCT 0.38 0.36 0.34 0.32

ΩAB

These values are in agreement with the 
AB plots showing that
excitations occur either locally or between adjacent fragments.
With an increase of nodes perpendicular to the π system,
the electron-hole distance dexc drops from 6.49 to 5.19 Å
meaning that the exciton becomes somewhat more tightly
bound for the higher momentum particle-in-a-box states (a
similar trend is observed in Ref. [17]). In comparison to the
(S1–S3) states the electron-hole separation of S4 is much larger
with dexc = 10.45 Å. Previous studies [46,51] suggested the
S4 state to belong to a distinct PPV band and the difference
in dexc is in agreement with this idea (see also Ref. [10] for a
discussion of the different possible states).

For all four triplet states exciton patterns similar to the S1–S3

state series can be found. The electron-hole correlation plots
suggest a series of particle-in-a-box-like excitations. However,
in contrast to the singlet states, the triplets show a reduced CT
character (see also Ref. [17]). Accordingly, the mean electron-
hole distances are significantly smaller lying between 4.53 and
3.47 Å. These findings nicely reflect the contrasting exchange-
correlation effects expected for singlet and triplet excitons [11]
as only the former are affected by exchange repulsion between
the electron and the hole.

E. Polyacenes

Polyacenes are a promising substance class for applications
in organic electronics due to their unique electronic structure
properties. However, the description of their electronic states is
quite challenging [35,37,65,80–83]. In particular, in the case
of the larger polyacenes open-shell character in the ground
state [80] and doubly excited character in some of the excited
states come into play [81]. Furthermore, there are specific
problems for TDDFT even at smaller system sizes [35,37]. In
light of these considerations a more detailed understanding of
polyacene excited states is certainly of highest interest. This
work is specifically concerned with the tetracene and hexacene
molecules, which have comparatively large π systems but are
still amenable to a single reference approach [80].

The two lowest spectroscopically relevant states, usually
termed 1La(1 1B2u) and 1Lb(1 1B3u), are computed at the
ADC(2) level (which has been tested for this purpose pre-
viously [81]). To analyze the general character of these states,
we first consider the transition densities and moments in the
case of tetracene (Fig. 7). In this representation it can be
seen that the 1La state is polarized along the short axis (the
transition moment points in this direction) and possesses a
large oscillator strength (f = 0.113). By contrast, the 1Lb state
is polarized along the long axis and is almost dark (f = 0.002).
The transition density is located on the carbon atoms for the
1La state while it is centered around the bonds in the 1Lb case
(see also Ref. [37]).

To get more insight into the wave functions of these
states a similar strategy as in Sec. IV D is adopted, i.e., a
decomposition in terms of charge-transfer numbers as well as
the computation of dexc. However, in contrast to (PV)5P setting
up the fragmentation scheme needed for the charge-transfer
analysis is not quite as unambiguous. The choice finally
adopted is presented in Fig. 8. Unfortunately, it is not possible
to set up chemically equivalent fragments in this way and the
obtained results should be analyzed with care. By contrast,
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FIG. 7. (Color online) Transition densities (with isovalue
0.003e) and transition moments shown as yellow arrows with volume
proportional to the oscillator strength for (a) the 1La and (b) the 1Lb

state of tetracene.

there is no such arbitrariness in the computation of dexc, which
highlights the power of this approach. The results of this
investigation are presented in Table V. For both systems the
1La state is significantly lower in energy than the 1Lb state and
possesses by far the larger oscillator strength. An inspection
of the electron-hole pair-correlation plots (
AB) reveals clear
differences between the states. The 1La state possesses
enhanced charge separation (strong contributions on the upper
left and lower right corners) and notably no contribution
on the central fragment. By contrast, the 1Lb states possess
enhanced contributions on the main diagonal (going from
lower left to upper right), which derive from configurations
where the electron and hole are on the same fragment. While
the construction and interpretation of these correlation plots
is quite involved, dexc provides a more compact and simple
descriptor of the dynamical charge transfer in these systems.
Two trends can be seen immediately. First, dexc increases
when going from tetracene to hexacene, meaning that there
is a significant change in electronic structure between these
molecules, which probably derives from confinement effects.
Second, in both cases the charge separation for the 1La state
is significantly larger when compared to the 1Lb state.

Interestingly, it has been known for a long time that
the 1La state of polyacenes is not described well by local

FIG. 8. (Color online) Fragmentation scheme for electron-hole
pair-correlation plots 
AB for tetracene. Hexacene is fragmented in
analogy.

TABLE V. Excitation energies (�E, eV)
with oscillator strengths in parentheses, ex-
citon sizes (dexc, Å), and electron-hole pair-
correlation plots (
AB) of tetracene and hexac-
ene excited states computed at the ADC(2)/SV
level of theory.

Tetracene 1La
1Lb

ΔE 3.20(0.113) 3.67(0.002)
dexc 4.60 4.02

ΩAB

Hexacene 1La
1Lb

ΔE 2.18(0.093) 3.23(0.006)
dexc 5.60 4.76

ΩAB

density functionals [35]. This phenomenon, which has been
attributed to hidden charge transfer, has since been difficult
to understand in a quantitative sense [37,38]. However, the
presented results show that dexc does indeed find enhanced
charge transfer for this state. Combined with the results of
the previous sections, discussing charge separation in dimers,
these findings suggest that dexc carries potential as a general
charge-transfer diagnostic for TDDFT (see Refs. [40–44]
for alternative strategies). The present formalism is certainly
extensible to TDDFT, using for example Casida’s construction
of an approximate 1TDM [84], but to judge the full power of
this approach a more detailed investigation is needed including
most importantly an implementation at the TDDFT level.

V. CONCLUSIONS

The purpose of this work was to define and implement a
tool for excited-state analysis in the quest to bridge a gap
between quantum chemistry and solid-state physics as far as
the phenomenology of excited states is concerned. The essence
of our approach is a mapping between the molecular orbital and
quasiparticle pictures, which is achieved through identifying
the one-particle transition density matrix of a many-body
quantum chemical calculation with an effective exciton wave
function. Once this identification is made, properties of the
exciton are readily available using standard quantum chemical
methodology. The exciton size or dynamic charge-transfer
character is considered here as a highly interesting and
at the same time easily accessible property. The equations
were implemented within the ab initio ADC scheme, and an
extension to any method providing transition density matrices
is readily achieved.

We expect that our approach can provide important insight
for calculations of dimers and aggregates as well as of
extended π -conjugated systems. Three examples of the first
class were chosen: (i) an analytical dimer model of two
separated chromophores, (ii) the ethylene tetrafluoroethylene
system, and (iii) the pyridine dimer. The main result of this
investigation is that in the case of charge-transfer and charge
resonance states an almost perfect correspondence between the
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exciton size and the intermolecular separation is found, while
for local and Frenkel excitonic states the exciton size depends
only on the monomer properties. Furthermore, in the case
of the pyridine dimer state mixing, orbital interactions, and
excimeric effects could be readily analyzed using our methods.
This example also revealed that Rydberg states possess high
dexc values and a differentiation between these and charge
separated valence states is only possible when considering
additional properties, as described above.

The second class of molecular systems where our analysis
strategy has great potential are large extended π systems. In
this context PPV and polyacenes were examined. In both
cases it could be shown that a wealth of information could
be recovered, which would remain hidden if only the Hartree-
Fock orbitals were analyzed. The outcome was compared to
the literature, finding good agreement with a variety of results
and hypotheses by other researchers. Specifically, the new
exciton size measure proved beneficial with respect to the
analysis of dynamic charge separation effects providing a more
compact quantitative measure when compared to previously
used electron-hole correlation plots [25,51].

Aside from the purpose of extracting physical information
out of quantum chemical calculations, there is also an
interesting methodological component to our method: owing
to the failure of standard density functionals in the description
of charge-transfer states [31] there is an ongoing quest for
at least providing a reliable and general diagnostic to identify
charge-transfer interactions [40–44]. In this work it was shown

(i) that dexc provides the expected charge separation distance
for directed charge-transfer states, (ii) that it identifies charge
resonance states in symmetric systems, and (iii) that, even
more, dynamic charge-transfer contributions in conjugated
organic polymers can be quantified, which is a notoriously
difficult problem [37,38]. An implementation of the exciton
size within a TDDFT framework is on its way to evaluate its
utility in more detail.

The presented approach may be readily extended to fur-
ther properties of exciton wave functions. Different spatial
moments of the electron, the hole, or the combined wave
function may be directly evaluated in analogy to Sec. II C. This
could provide a wealth of new information going from simple
measures like the extent of the hole and particle densities
(allowing, e.g., the characterization of Rydberg states) to more
extended ideas like the quantification of spatial correlation.
Going beyond spatial moments, the methodology is also
amenable to energetic properties by considering the electron
repulsion (for computing binding energies) and kinetic-energy
operators.
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